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1 Secondary structure prediction

Given a protein sequence with amino acids a1a2 . . . an, the secondary structure predic-
tion problem is to predict whether each amino acid ai is in an α−helix, a β−sheet, or
neither.1 If you know (say through structural studies), the actual secondary structure
for each amino acid, then the 3-state accuracy is the percent of residues for which
your prediction matches reality. It is called “3-state” because each residue can be
in one of 3 “states”: α, β, or other (O). Because there are only 3 states, random
guessing would yield a 3-state accuracy of about 33% assuming that all structures
are equally likely.

As an example, if the correct secondary structure of a protein is ααOβ, but we predict
αβββ, then the 3-state accuracy is 50%.

Note that the 3-state accuracy measure does not convey many useful types of
information–for example, it doesn’t say where the errors are, or in what way the
algorithm failed. (Do you over predict α or β structures? Do you make more er-
rors at residues along the boundaries of secondary structure units?). Nevertheless, it
is a concise, useful measure that is commonly used to compare the performance of
different methods.

Early secondary structure prediction methods (such as Chou-Fasman and GOR, out-
lined below) had a 3-state accuracy of 50–60%. (They initially reported higher accu-
racy, but this was found to be inflated once they were tested against proteins outside
of the training set.) Today’s methods have an accuracy of > 70%.

We briefly describe several older methods, which are quite intuitive and natural,
before moving on to one of the most successful recent methods, PhD, which is based
on neural nets.

1It is possible to have more detailed descriptions of secondary structure (e.g., different types of he-
lices, turns, etc.) but for simplicity, most secondary structure prediction algorithms just characterize
structures that are neither helices or strands as either “other” or “random coil.”)
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1.1 The Chou-Fasman method

If you were asked to determine whether an amino acid in a protein of interest is
part of a α-helix or β-sheet, you might think to look in a protein database and
see which secondary structures amino acids in similar contexts belonged to. The
Chou-Fasman method (1978) is a combination of such statistics-based methods
and rule-based methods. Here are the steps of the Chou-Fasman algorithm:

1. Calculate propensities from a set of solved structures. For all 20 amino acids i,
calculate these propensities by:

Pr[i|β-sheet]
Pr[i]

Pr[i|α-helix]
Pr[i]

Pr[i|other]
Pr[i]

That is, we determine the probability that amino acid i is in each structure,
normalized by the background probability that i occurs at all. For example,
let’s say that there are 20,000 amino acids in the database, of which 2000 are
serine, and there are 5000 amino acids in helical conformation, of which 500 are
serine. Then the helical propensity for serine is:

500
5000
2000

20,000
= 1.0. Note that often

you will see propensities defined as:

Pr[β-sheet|i]
Pr[β-sheet]

Pr[α-helix|i]
Pr[α-helix]

Pr[other|i]
Pr[other]

and that these two formulations are equivalent.

2. Once the propensities are calculated, each amino acid is categorized using the
propensities as one of: helix-former, helix-breaker, or helix-indifferent. (That
is, helix-formers have high helical propensities, helix-breakers have low heli-
cal propensities, and helix-indifferents have intermediate propensities.) Each
amino acid is also categorized as one of: sheet-former, sheet-breaker, or sheet-
indifferent. For example, it was found (as expected) that glycine and prolines
are helix-breakers.

3. When a sequence is input, find nucleation sites. These are short subsequences
with a high-concentration of helix-formers (or sheet-formers). These sites are
found with some heuristic rule (e.g. “a sequence of 6 amino acids with at least
4 helix-formers, and no helix-breakers”).

4. Extend the nucleation sites, adding residues at the ends, maintaining an average
propensity greater than some threshold.

5. Step 4 may create overlaps; finally, we deal with these overlaps using some
heuristic rules.
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Figure 1: In the Chou-Fasman method, nucleation sites are found along the protein
using a heuristic rule, and then extended.

1.2 The GOR method

To determine the structure for a given amino acid position j, the GOR method
(named for the authors Garnier, Osguthorpe, Robson) looks at a window of 8 amino
acids before and 8 after the position of interest. Suppose aj is the amino acid that
we are trying to categorize. GOR looks at the residues aj−8aj−7 . . . aj . . . aj+7aj+8.
Intuitively, it assigns a structure based on probabilities it has calculated from protein
databases. These probabilities are of the form

Pr[amino acid j is α|aj−8, . . . , aj, . . . , aj+8]
Pr[amino acid j is β|aj−8, . . . , aj, . . . , aj+8]

That is, each corresponds to the probability that an amino acid has a particular
structure, given the sequence around it. The GOR method thus looks at a window
of 17 amino acids:

j

8 8
......

There are far too many possible sequences of length 17 to make calculating the above
probabilities feasible. Instead, it is assumed that these probabilities can be estimated
using just pairwise probabilities. We omit details but the overall idea is similar to
the log-odds ratios we have studied before, except that pairwise dependencies are
considered.
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Figure 2: A perceptron.

2 Introduction to Neural Networks

The most successful methods for predicting secondary structure are based on neural
nets. The overall idea is that neural nets are trained to be able to recognize amino acid
patterns in known secondary structure units (e.g., helices), and to use these patterns
to distinguish between the different types of secondary structures. Before considering
one of these modern secondary structure prediction methods, we introduce the ideas
behind neural networks. Neural networks classify input vectors or examples into two
or more categories. They are loosely based on biological neurons.

2.1 Perceptrons

Perceptrons, also called threshold units, are a simple method for classifying input
vectors, or examples, into one of two categories. They function similarly to one-layer
neural networks — in fact, we will see that full neural networks are essentially built
from many threshold units.

Think of a perceptron as a node in a directed graph with m input edges and one
output edge. See figure 2. The inputs are x1, . . . , xm, and each of the input edges
has a weight, w1, . . . , wm. Each input is multiplied by the corresponding weight of its
edge. Then, the perceptron sums all these weighted inputs. If the result is greater
than some threshold, a +1 is placed on the output edge. If the result is less than the
threshold, −1 is put on the output edge.

More formally, if θ is the threshold, then the perceptron computes A =
∑m

1 wixi and
outputs +1 if A ≥ θ, −1 otherwise. In vector notation, the input can be represented
by a vector ~x of length m, and the weights correspond to a vector ~w of length m, and
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A = ~w · ~x. Thus, the perceptron categorizes the input ~x as belonging to one category
(+1) or the other (−1). Note that if m = 1, a perceptron just corresponds to a line,
and checks whether input points lie above or below the line; in higher dimensions, a
perceptron corresponds to a hyperplane.

If the weights are not known in advance, the perceptron must be trained. For that
we need a training set: a set S of input vectors for which we know the desired
(target) answer. Ideally, the goal of training is to find a set of weights such that the
perceptron returns the correct answer for all of the training examples, with the hope
that such a perceptron will have good performance on examples it has never seen. The
training set should contain both positive and negative examples. For example, if we
were to build a perceptron to recognize α-helices, then we should have sequences that
are part of α-helices (positive examples), as well as sequences that are not (negative
examples).

Perceptron training procedure

If there is a perceptron that can return the correct answer for all training examples,
then a very simple rule (due to Rosenblatt) can be used to find one such setting of
the weights. We can train the perceptron to output 1 for the positive examples, and
−1 for the negative examples using the following procedure:

1. Run input vector ~x through the perceptron with the current weights ~w; that is
compute ~w · ~x, and use the threshold to categorize it as positive or negative.

2. If the perceptron is wrong then update the weights with the rule:

~w′ ←
{
~w − ~x if false positive (i.e., ~x should be negative but +1 is output)
~w + ~x if false negative (i.e., ~x should be positive but -1 is output)

3. Repeat until the perceptron correctly classifies all the training examples.

This rule is sensible because the weights are moving in the right direction. Suppose,
for example, the perceptron returned a false positive. Then after the training rule, if
we supply the same input, the perceptron returns (~w − ~x) · ~x = ~w · ~x − ~x · ~x. Since
~x · ~x is positive, the weighted sum is reduced, making it more likely that it is below
the threshold.

Theorem 1 If all examples have unit length and a set of weights exists that labels
all examples correctly (in such a way that for each example, its weighted sum is not
equal to the threshold θ), then the perceptron training procedure converges.
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Figure 3: Each example corresponds to a point, and positive examples are labelled
with “1” and negative examples are labelled with “0.” AND is a linearly separable
function (i.e., you can draw a line to separate the positive examples from the negative
ones), but XOR is not (i.e., no such line exists). Given these inputs, a perceptron
will learn to produce the correct output for AND, but cannot learn XOR.

Interested readers can find the (simple) proof to this theorem in the Appendix.

Continuous threshold units

But there is no guarantee that such a set of weights exists. In particular, they will not
exist if there is no set of weights that can correctly classify all positive and negative
examples in the training set. Since a threshold unit is computing a linear function,
this means that the training data is not linearly separable. Linearly inseparable data
sets are easy to find. The exclusive OR function (XOR) is linearly inseparable. See
figure 3.

Rather than fitting the examples exactly, we can try to find a set of weights that
minimizes some error function. Normally, to minimize a function we find where the
derivative is 0, but we cannot compute the derivative of the output of a perceptron as
defined above because the output is not differentiable everywhere (it’s a step function).
So we modify the perceptron to use a continuous, differentiable threshold function σ.
An often used σ is:

σ(a) = tanh(a) =
ea − e−a
ea + e−a

where the derivative of tanh(u) = sech2(u)u′ = 4u′/(eu + e−u)2. The perceptron
computes σ(~w · ~x). Figure 4 shows a graph of the tanh function and its derivative.
You can see that tanh looks like the discrete threshold function, except it is smooth.
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Figure 4: The tanh(x) function is shown by the solid line, and its derivative is shown
by the dotted line.
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2.2 Squared error

We need a notion of how close the actual output of a threshold unit (or neural net)
is to the target output. The squared error is one such measure. Let S be the set of
training examples. Let t(~x) be the target value of example ~x ∈ S. Then the squared
error is:

E(~w) =
∑

~x∈S

1
2

(σ(~w · ~x)− t(~x))2

This measure is good because it is differentiable if σ is differentiable, though in
practice “outliers” have a large effect on it.

The goal of training now is to find a ~w that minimizes E(~w).

2.3 Gradient Descent

To minimize squared error, we start with an initial weight vector ~w0 and take small
steps in the direction which reduces the error the most. This process is called gradi-
ent descent. The idea (if we were maximizing instead of minimizing) is that if you
were standing in a valley and wanted to get to the highest point, but couldn’t see the
tops of the mountains around you, you might decide to climb the steepest mountain.
Because of this analogy, the method is sometimes called hill climbing.

The gradient of a (multivariate) function f , denoted ∇f is direction in which f is
increasing fastest. If we take f = E from above then we have:

∇E =
(
∂E

∂w1
,
∂E

∂w2
, . . . ,

∂E

∂wk

)

To minimize E, we should take small steps in the direction opposite ∇E. Thus the
update rule is:

~w(i+1) ← ~w(i) − ε∇E
where ε is the learning rate. That is, our i+1-st estimate for the weight vector comes
from the i-th estimate, updated by the gradient, as given above. The parameter ε
determines how big a step the update rule takes. If ε is too small, the gradient decent
will take a long time to converge; if ε is too big, the process may “overshoot” the
minima and have trouble converging. There is no systematic way to choose ε, but
often it is set large at the start of training, and reduced as training progresses.

There is no systematic way to choose a good initial weight vector. It is often chosen
randomly.



COS551: 11/16/2000 9

The gradient of E with respect to w is

=
∑

x∈S
(σ(~w · ~x)− t(~x))σ′(~w · ~x)~x

Using the continuous threshold tanh, and substituting in, we get:
∑

x∈S
(tanh(~w · ~x)− t(~x)) sech2(~w · ~x)~x

Typically, the weights are updated one example at a time. So, the j-th example x(j)

causes the weights at the i+ 1-st update to be changed as follows:

~w(i+1) = ~w(i) − ε
(
(tanh(~w(i) · ~x(j))− t(~x(j)))sech2(~w(i) · ~x(j))~x(j)

)

2.4 Complete Neural Networks

A complete neural network is a set of continuous threshold units interconnected in
some topology so that the outputs of some units become the inputs of other units. See
figure 5 for a simple example with one “hidden” layer. Input is applied along those
edges entering the graph, and output is read from the edges leaving the graph. Each
unit in the hidden layer, as well as each unit in the output layer, computes a weighted
sum that is also thresholded using a continuous threshold unit. Neural nets can have
much more complicated topology, with multiple layers of such “hidden” units, with
outputs from one layer feeding in as inputs to the next layer.

In the one-layer networks (i.e., continous threshold units) we have previously focused
on, each network computes some linear activation function, but a multiple-layer net-
work can compute more general functions (i.e., we are no longer computing linear
functions on the input). Adding multiple layers makes the networks more expressive.

Training neural nets: Backpropagation

Again, the goal of training is to find a set of weights such that the squared error is
minimized:

E =
∑

x∈S

1
2

(NN(~x)− t(~x))2

where NN(~x) is the output of the net on input ~x. So, again, we can do gradient
descent to minimize this error function; however, now since these units are layered,
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Figure 5: A neural network with 4 input nodes, 2 output nodes and one hidden layer.

changing one weight can affect other weights as well. As with continuous threshold
units we want to move the weights in the direction opposite the gradient. To find
this direction, we need to compute ∂E/∂ ~w, where E is the squared error function
discussed above. It turns out we can compute this partial derivative for each node
using only information found in the given node and those nodes directly connected
to the output of the given node. In this way, we are “propagating” errors down the
network and the whole procedure of gradient descent to minimize errors on neural
nets is known as backpropagation. Really, backpropagation is just a clever way to do
gradient descent. The basic idea is to repeatedly apply the chain rule. It turns out
that each weight in the neural net can be updated using a simple rule; we omit the
rule and its derivation, but see [1] and [2] for details.

To summarize: a neural net is a more complicated version of the continuous threshold
units we studied in detail. A neural net is given a set of positive and negative training
examples, and its goal is to find the weights that minimize the error over the training
set. This minimization is done using gradient descent, and a simple procedure known
as backpropagation performs this gradient descent. One thing to note is that the
backpropagation procedure is susceptible to local minima.
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3 Secondary structure prediction with PhD

A more recent system for secondary structure prediction is called PhD [Rost, Sander,
1993]. We review just the main ideas, as the implementation has improved over time.
The PhD system uses a combination of multiple sequence alignments and neural
networks. When a protein is input, PhD finds all the homologs and builds a profile
using a MSA and the profile techniques we’ve discussed in other lectures. It then
feeds the profile into a series of neural networks.

The designers of PhD made 3 observations that guided their design:

1. Using multiple sequences is important.

2. In predicting what is happening at a residue, it is useful to consider a local
window around it.

3. α-helices and β-sheets occur in runs (e.g., you don’t see αβαβα, and typically
you expect to see at least 4 α helical residues in a row to form an α-helix).

Using multiple sequences is important because you can extract more information
from multiple sequences than from a single sequence. For example, you can identify
conserved residues readily. As another example, suppose you were looking at the
sequence with an Ala residue at the position of interest. Then you might guess that
this position favors small amino acids (since Ala is small). But you might also guess
that it favors hydrophobic amino acids (since Ala is also hydrophobic). You couldn’t
be sure which one or both of those guesses was true. However, if you had the multiple
sequence alignment

------S------
------A------
------A------
------S------

then since Ser is a small residue, but not hydrophobic, you would have more evidence
that the size was the characteristic that was important.

PhD is an architecture with three levels. The output of each previous level is the
input for the next level:

1. sequence → structure neural network
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2. structure → structure neural network

3. jury system

Each of these levels is explained in more detail below.

Sequence → structure neural network

PhD begins by aligning the input sequence to its homologs and calculating a profile
from the alignment. For example, with the following MSA:

KELN
KEFS
-DFA
HAEA
KEFS

we get the probabilities

col 1 col 2 col 3 col 4
K = .75 E = .6 E = .2 N = .2
H = .25 D = .2 L = .2 A = .4

A = .2 F = .6 S = .4

Of course, in the real world, we might correct for zero probabilities with the “add-
one-rule” or similar approaches.

To determine the secondary structure of residue aj, PhD first looks at a window of
the 13 residues aj−6 . . . aj . . . aj+6. The probabilities for these columns are fed into the
sequence → structure neural network, which produces 3 probabilities: the probability
that the amino acid aj is in the secondary structure α (Pjα), β (Pjβ), and other (PjO).
These probabilities become the input for the next neural network.

So, taking a 13-long window from the training set (i.e., from an annotated structural
database), if the central amino acid is helical, then the target for this example is
Pα = 1, Pβ = 0, and PO = 0.

The composition of each amino acid in the entire protein sequence is also feed into
the neural network at this stage.

The sequence → structure network reflects the belief that the secondary structure of
a residue can be predicted from a local window around it.
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Structure → structure neural network

The probabilities Pkα, Pkβ, and PkO are calculated using the network above for k =
j−8 . . . j+8. That is, it looks at a 17-long window of predictions. These probabilities
are input to a second neural network that again produces probabilities that amino
acid aj is in each of the 3 possible structures.

This network tries to capture the fact that structures occur in runs.

Jury system

Because neural networks are very sensitive to topology, the set of training data, the
order of training as well as other parameters, the PhD system independently trains
several networks at each of the first two layers, varying these parameters. The jury
system level takes as input the results from each of these nets and averages them.
The secondary structure with the highest average score is output as the prediction.

4 Folklore and Miscellaneous

For all secondary structure prediction methods, β-sheets are thought to be harder
to predict than α-helices because they tend to be shorter and are defined by longer
range interactions.

Protein

Long range
interactions

These methods can have trouble at the ends of the sequences.

An excellent feature of PhD is that it in addition to a prediction, it also reports a
reliability index from 0–9, where 9 indicates approximately 90% confidence.
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Appendix

We include the proof of Theorem 1, taken from [3].

Proof. Without loss of generality, let θ = 0, and assume that all examples are
positive (you can transform your input vectors so that both things will be true). By
assumption, a set of weights that fits the examples exists; let ~v be that set of weights,
normalized so that |v|=1. This means that for all inputs ~x, ~v · ~x > δ for some δ > 0
(since we assumed that the weighted sum using ~v for any example cannot be equal
to θ). Let ~w be the current weight vector, and let f(~w) = ~v · ~w/|~w| — that is f(~w) is
the cosine of the angle between the current weights ~w and the correct (normalized)
weights ~v. Since f(~w) is a cosine, f(~w) ≤ 1 for all ~w.

Consider what happens during an update. Let ~w ′ be the new weight vector. Since we
only have positive examples, and thus update only when we get false negatives, by
the perceptron training rule ~w′ = ~w + ~x. So, ~v · ~w′ = ~v · ~w + ~v · ~x, and we then have

|~w′|2 = ~w′ · ~w′
= (~w + ~x) · (~w + ~x)
= |~w|2 + 2~w · ~x + |~x|2.

We know that 2~w ·~x < θ = 0 since we got a false negative and since |~x|2 = 1, we have

|~w′|2 < |~w|2 + 1

This means that the square of the weight vector is increased by less than 1 after each
update.
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If we start with the weights all zero, then after t updates |~w| <
√
t and f(w) > tδ/

√
t.

For t > 1/δ2, f(~w) > 1, which is a contradiction since this function computes a cosine.
Hence, the number of updates t is bounded.


