
Experiences with Tracing Causality in Networked Services

Rodrigo Fonseca

Brown University

Michael J. Freedman

Princeton University

George Porter

UC San Diego

Abstract

Unlike device-centric monitoring, task-centric tracing

enables an operator to causally trace the complete execu-

tion of a networked system across the boundaries of ap-

plications, protocols, and administrative domains. In this

paper, we argue that causal, end-to-end tracing should be

an integral part of network services. Moreover, it is not

fundamentally difficult to achieve, given a primitive that

propagates task metadata alongside logical execution and

communication paths.

X-Trace is a framework that relies on such propaga-

tion to provide comprehensive causal tracing. We report

on our experience integrating X-Trace into several pro-

duction networked services—including 802.1X authenti-

cation, Web content distribution, and DNS-based replica

selection—to illustrate benefits of causal tracing, and to

discuss the instrumentation of different protocols and

component architectures. We highlight the challenges we

encountered and techniques we developed to better inte-

grate causal tracing into network services.

1 Introduction

As the scale and complexity of networked services in-

creases, so do the challenges of developing, deploying,

managing, and troubleshooting them. These services rou-

tinely depend on equipment and software produced by

a number of different parties. While standard protocols

and interfaces typically govern their components’ interac-

tions, there is no standard way to integrate management,

monitoring, or diagnostics. Common solutions to this

problem are device-centric rather than end-to-end task-

centric, and they rely on ad-hoc, brute-force log analy-

sis [19] or inference techniques [13].

We argue that networked services should be built with

end-to-end, task-centric monitoring as a first-class con-

cept. It should be possible to follow a request through a

networked service from start to finish, with variable level

of detail, and across application and network layers. Such

a mechanism should be incrementally deployable, and it

should be composable by components provided by differ-

ent parties, much like services themselves.

The alternative to such a model—the status quo—

sacrifices visibility, causality, and completeness. Trying

to reconstruct the causality of a task across compo-

nents is generally done by joining logs on time and on

application-specific, ad-hoc identifiers [4]. This is tedious

and error-prone, relies on well-synchronized clocks, and

requires extensive knowledge of the applications in-

volved. Furthermore, it requires that all operations be

logged at components to guarantee coverage. Causal end-

to-end traces, on the other hand, sidestep these problems:

they allow one to naturally join events on different nodes,

and they can detect and even fix time-synchronization is-

sues. They also allow a powerful task-based sampling of

events: It becomes possible to record all information per-

taining to a given task across nodes in great detail, while

ignoring other extraneous events. This coherent sampling

is of critical import at scale.

On the flip-side, both the end-to-end tracing mech-

anism we developed, X-Trace [10], and those of other

projects with similar goals [6, 18], require that devel-

opers explicitly modify source code to carry end-to-end

metadata throughout a task’s computation and communi-

cation. A significant concern is that such a process would

be infeasible, even if source code is available, given the

complexity of real-world network systems.

This paper addresses this concern by reporting on

the integration and experimentation with X-Trace in sev-

eral production services: an 802.1X authentication in-

frastructure, CoralCDN [11], and the OASIS anycast

service [12]. X-Trace’ causal, end-to-end visibility into

these services enabled the discovery of a number of bugs

and the diagnosis of performance faults, which we de-

scribe. Together, these services cover both thread and

event-based architectures, vary in maturity and code size,

and consider both local and wide-area network systems.

In all these settings, we found that small additions

to the systems’ communication libraries (e.g., RPC or

HTTP) or concurrency management mechanisms (e.g.,

thread pools, event hooks, or continuation passing) was

sufficient for tracking end-to-end causality throughout

the services. Subsequently, programmers typically only

needed to add simple log statements for recording meta-

data. That said, there were several subtleties and chal-

lenges that arose across multiple systems. Thus, the final

contribution of this paper are recommendations for how

to better integrate end-to-end tracing into a variety of sys-

tem architectures and implementations.

1

client t
1

server 1

e
8

e
4

e
7

e
3

e
9

e
5

e
6

e
2

client t
2

server 2

e
1 e

10

(a) Two parallel RPCs.

e
8

e
4 e

7

e
3

e
9

e
5

e
6

e
2

e
1

e
10

(b) Corresponding X-Trace representation.

Figure 1: Example RPC calls and X-Trace representation. Edges

e3e8 and e2e9 are redundant, abstracting the boxed subgraphs.

2 X-Trace Overview

X-Trace is a framework that allows an operator to trace

the execution of a networked system across the bound-

aries of applications, protocols, and administrative do-

mains [9, 10]. X-Trace represents discrete events in an

execution of a distributed system and their causal rela-

tion. Events are grouped into logical tasks. Tasks gener-

ally have an intuitive meaning in the context of the traced

application. They have a well-defined starting event and

comprise all of the causally-related subsequent events,

e.g., an HTTP request to a content distribution network

(CDN), or a user request to a network authentication ser-

vice (such as 802.1X).

Each task in X-Trace receives a probabilistically

unique task id, and within a task each event receives

a probabilistic unique event id. Events are created by

X-Trace logging statements in source code. Each X-

Trace event generates a report, which contains informa-

tion about the even, and the id of zero or more preceding

events. To accomplish this, X-Trace must carry constant-

sized metadata along a process’s computation and across

communication boundaries; this metadata corresponds to

the task and event ids of the last causally-related event.

While this metadata is kept in-band, reports are sent to

a collection service out-of-band. This practice both mini-

mizes the overhead and decouples the fate of reports from

the fate of the execution.

A system instrumented with X-Trace outputs a set of

task graphs, directed acyclic graphs connecting events ac-

cording to Lamport’s happens before relation. X-Trace

does not rely on clocks, but on the sequence of event exe-

cution. Because of the propagation of metadata among re-

lated events, X-Trace captures true causality, rather than

incidental causality due to execution ordering.

Figure 1 shows an example graph for parallel RPCs

between a client and two servers. The task graph is

constructed offline by collecting reports for each event.

A task graph captures the concurrency in the task’s

execution—and in fact, semantic causality—such as

the two parallel sequence of events e1e3e5e6e8e10 and

e1e2e4e7e9e10 in Figure 1. It also captures the abstrac-

tion of a subgraph by an edge. In the same figure, the

edge between e3 and e8 abstracts, from the point-of-view

of the client, the subgraph {e5, e6}. We call an edge such

as e3e8 a redundant edge, and can determine the redun-

dant edges when post-processing the task graph, by doing

a transitive reduction of the graph. These edges are useful

for summarizing the graph and highlighting the concur-

rent structure of the tasks.

X-Trace requires no prior coordination, as ids are

probabilistically unique. It only requires carrying muta-

ble and fixed-size metadata in protocol messages, inter-

faces between modules, and within modules themselves.

Lastly, because it uses redundant edges and a standard

metadata format, it supports incremental deployment in

legacy environments. In the example of Figure 1, if server

2 were not instrumented, the client would still represent

the edge from e3 to e8, effectively treating the server as

a black box. Even when unable to instrument within that

black box, reports can still reconstruct the latency of op-

erations within it, as well as any erroneous return values

or exceptions from its execution.

3 A Case for Causal Tracing

We now describe three systems in which causal tracing

enabled us to determine the cause of faults and perfor-

mance problems, find subtle bugs, and identify timing

problems: an enterprise IEEE 802.1X deployment and

two wide-area network services, CoralCDN and the OA-

SIS anycast service. We present some of our findings

here, and discuss the process of instrumenting the pro-

grams and protocols with X-Trace in the next section.

3.1 802.1X Authentication Services

The IEEE 802.1X network authentication service is a crit-

ical, distributed system for providing end-user access to

network resources. Debugging it is a challenge, since fail-

ures at lower levels of the network stack (such as miscon-

figured firewall rules or high packet loss rates) manifest

themselves as authentication failures at the 802.1X layer

and thus prevent users from joining the network.

A successful authentication request typically involves

the cooperation of at least four independent subsystems:

(i) a client device that requests network access; (ii) a au-

thenticator device that provides network access, such as

a wireless access point, wired Ethernet switch, or VPN

concentrator; (iii) a RADIUS server that decides if the

client should be permitted on the secured network; and

(iv) one or more identity stores that provide information

about an organization’s users or devices (e.g., typically

2

LDAP directories, but also Kerberos, token servers, NIS,

and databases). Often these components are managed by

different administrative domains.

To better investigate 802.1X system failures, we part-

nered with a vendor of authentication network appli-

ances. From their database of service requests, we identi-

fied five of the most common real-world error conditions

that were non-trivial to detect and diagnose, and a small

number of X-Trace instrumentation points were added

to the authentication path that were sufficient to detect

each of these faults. Given a reference graph of a “known

good” authentication request, we can use abnormalities in

the structure of collected graphs to indicate failures. This

approach is a significant change from the common prac-

tice of piecing together hints of the root cause of failure

from disconnected logs and protocol-specific diagnostic

tools like ping and traceroute. We now briefly describe

the features of the X-Trace graphs that we use to deter-

mine the root cause of authentication failures.

Misconfigured timeouts. We detect authentication

timeouts by identifying the presence of both a timeout

report (issued by the RADIUS server) at time T1 as well

as a report from the identity store at time T2 > T1.

Packet loss. Since the RADIUS protocol resides on

UDP, packet loss between the authenticator and the RA-

DIUS server results in the loss of an entire RADIUS re-

quest. We detect this by looking for paths in which there

is an authenticator report but no corresponding RADIUS

report. To detect loss on the reverse path, we look for

X-Trace paths in which the RADIUS server sends a re-

sponse to the authenticator at time T1, only to have the

authenticator time out at time T2 > T1 + δ, where δ is

greater than the one-way latency between the RADIUS

server and the authenticator.

RADIUS Overload. A RADIUS server will reject

RADIUS requests during overload, issuing a report to

provide a deterministic signal that overload is the cause

of the resulting 802.1X failure.

LDAP Overload. To detect LDAP overload, we ap-

ply a threshold test to the observed query latency, deter-

mining an error condition whenever the query latency ex-

ceeds 100ms. In our experience, any deployment with la-

tency greater than this is exhibiting an error condition.

Misconfigured firewall rules. Network operators of-

ten put LDAP servers, which are considered “applica-

tion” layer technology, in a different part of the network

than the core network infrastructure. Thus, authentication

requests often have to transit the firewall, leading to errors

where a misconfigured firewall rule prevents authentica-

tion requests from completing. Since X-Trace optionally

extends to the network layer, it is possible to directly de-

tect loss due to firewalls, though we did not support those

reports in our deployment.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000 1e+06 1e+07 1e+08

T
o
ta

l
C

o
ra

l
P

ro
c
e
s
s
in

g
 T

im
e
 (

s
)

Object size (bytes)

1 KB/s

10 KB/s

100 KB/s

1 M
B/s

189 seconds

Status 200
Status 300
Status 400
Status 500

Figure 2: CoralCDN processing time versus object size for 20,000

requests. Several different problems may have the same causes.

3.2 CoralCDN and OASIS

CoralCDN is a popular open content distribution net-

work, while OASIS is an anycast service used to select

the best (e.g., closest) replica of a client service. Each sys-

tem is composed of multiple servers programmed using

the event-based library libasync, and communicate

among themselves in a distributed hash table-like (DHT)

fashion using libasync’s RPC library or via HTTP.

Externally, CoralCDN functions as a distributed HTTP

caching proxy, while OASIS can be accessed either via

DNS, RPC, or HTTP protocols. We instrumented live de-

ployments on PlanetLab, and, unlike the 802.1X exam-

ple, these systems’ traces were complex, highly variable,

and much larger (10s to 100s of vertices).

Coherent Sampling. We gathered data for this paper

over two short periods for both services. Since we were

severely limited in our collection infrastructure (we only

used a couple of machines to gather the X-Trace reports),

task-based sampling proved crucial. The 258 CoralCDN

nodes we traced received a total of over 1.7M requests

per day over 2.5 days, and we generated complete traces

for a sampled 0.1% of these. For OASIS, we traced all

223,961 requests that the 19 servers received for one day.

Same symptoms, different causes. Figure 2 shows,

for 20,000 CoralCDN tasks, the total response time given

by CoralCDN versus the response’s object size, also clas-

sified by HTTP status code. For each size, we see varia-

tions of 5 to 7 orders of magnitude. A deeper discussion

on the many interesting phenomena present in this graph

is beyond the scope of this paper, and we focus on a sin-

gle group of requests. The rectangle in the figure shows

several requests that took close to 189 seconds, for very

different object sizes. Using X-Trace, we were able to ex-

amine complete traces for each point in the plot and to

distinguish at least four different causes for the delays:

a slow connection between the client and the proxy, a

slow connection between the origin server and the proxy,

3

Recursive remote GETSRV calls

A

B

C

D

RECS call

remote GETSRV calls GETSRV to repeated nodes

O
A

S
IS

 N
o
d
e
s

Figure 3: X-Trace graph showing OASIS repeated nodes bug.

a TCP SYN timeout when connecting to the origin server,

and a large delay at a proxy due to it being de-scheduled

by its PlanetLab kernel.

Bugs. We found a few bugs in both CoralCDN and

OASIS, which had escaped other debugging techniques.

We describe two such bugs that were easy to find using

the task graphs, but hard to piece together otherwise.

In OASIS, an internal DNS record lookup is done

through a RECS RPC call, which may invoke a series of

GETSRV RPCs, the specifics of which are not important

here. We found that in 3.3% of all resolutions, the calling

node would issue remote GETSRVs to three nodes, which

is normal, but then would issue repeated calls to the same

three nodes in random order. These repeated calls were

wasteful and guaranteed to fail, and they caused a 1.8×
increase in response time. Figure 3 shows a simplified X-

Trace task graph with the problem. While not impossible

to identify using normal logging, this bug is easy to go

unnoticed unless one is specifically looking for it.

The other bug caused CoralCDN to increase the load

to an already overloaded origin server. In CoralCDN,

many proxies can cache the same content. When a proxy

A receives a request, it contacts one or more of its peers

(say, B) that are caching the content. If proxy B’s cached

content is expired, B will first contact the origin server

to revalidate it. If the origin server was taking too long to

respond to B’s request, then A could timeout waiting for

B, and issue the same recursive query to another peer, C.

Thus, as a whole, CoralCDN could issue one revalidation

to the origin for each proxy storing a copy, certainly not

within its goals of reducing origin load. Identifying this

bug required correlating all revalidation requests at the

proxies with the same original request: easy to do with

causal tracing, but tedious with standard logging.

Tuning timeouts. As with 802.1X, we found X-

Trace useful in tuning timeout parameters for specific

RPCs, because with causal tracing we see both sides of

an RPC. Specifically, if a RPC client times-out, we still

see the server’s execution (or lack thereof) and can judge

whether the timeout was premature or too long.

Fixing time. Most distributed logging systems de-

pend on synchronized clocks to correlate events. Not only

does causal tracing not depend on synchronized clocks,

it can correct unsynchronized clocks. For a pair of nodes,

we can use any two messages in opposite directions (such

as a request/response pair) and their local timestamps

to detect clock inconsistencies, either online or in post-

processing [16]. From our CoralCDN data, we found that

86% of nodes were synchronized to within 100ms, 95%

to within 1s, and two nodes were close to a 1000s offset.

4 Instrumenting Systems with X-Trace

We have added X-Trace support to a number of systems.

In addition to those described in the previous section,

these include Apache, i3, Chord, Hadoop, DONA [14],

and SCADS [2]. This involved modifying components

written in C, C++, Java, Ruby, PHP and Javascript, and

integrating with a variety of network protocols, includ-

ing HTTP, LDAP, RADIUS, Thrift, DNS, IP, and Sun

RPC. Extending these protocols to propagate end-to-end

metadata (i.e., X-Trace ids) not only provides increased

visibility to that specific protocol, but also makes the

higher-level applications—which use various combina-

tions of these protocols—easier to reason about and de-

bug. However, support solely at the network layer is not

sufficient; applications must propagate appropriate meta-

data within and between processes, following the execut-

ing path. This section describes our experiences integrat-

ing X-Trace and some important challenges involved.

4.1 Propagation in Protocols

Communication protocols should have support for

opaque metadata. This is already the case for many recent

protocols. For example, HTTP has always supported ex-

tension headers, together with the requirement that imple-

mentations should propagate unknown headers unmodi-

fied when forwarding messages. Integrating X-Trace in

the 802.1X authentication framework was straightfor-

ward, with each authentication request/response transac-

tion represented by a since X-Trace task. For the RA-

DIUS communication between authenticator and authen-

tication server, we added a custom vendor-specific at-

tribute (VSA) containing the X-Trace metadata. To in-

strument LDAP, we added a custom LDAP control. On

the other hand, for some protocols we had to add X-

Trace support in an ad-hoc manner that worked in prac-

tice but technically violated the specification. For exam-

ple, when instrumenting arpc, libasync’s RPC li-

brary, we added the metadata after the payload of the

message, which worked for both TCP and UDP transports

in a backwards-compatible way.

4.2 Propagation within Programs

Propagating metadata inside programs is more of a chal-

lenge. At the most basic level, we need to take metadata

from incoming messages/calls and carry it to causally-

related outgoing messages/calls, while optionally logging

events inside the application. In X-Trace, logging consists

of creating a new event id and a report that binds the new

4

id with the immediately preceding event. It also changes

the metadata going forward, as the new id has to be ref-

erenced by the next logged event. Thus, when logging

an event, the code must have a reference to the X-Trace

metadata which has the task and previous event ids.

The programming style of the application affects how

easy it is to add metadata propagation. Perhaps the easiest

style is that of request-oriented software with a simple in-

ternal execution path per object (i.e., no parallelism), with

well-defined hooks for event handlers that change the re-

quest object. A prime example is Apache, which main-

tains a context for each request and passes it around to dy-

namically linked modules that register callbacks. Adding

X-Trace then is a matter of registering callbacks for the

events of interest, such as receiving the request or sending

the response, and adding X-Trace metadata to the (exten-

sible) request context. Adding trace support to the LDAP

component of the 802.1X framework similarly involved

writing pre- and post-authorization “hooks”.

For regular thread-based code, we wrote prototype li-

braries in C++, Java, and Ruby which have a per-thread

global X-Trace context. Our libraries also hide all of the

metadata manipulation and reporting from the program-

mer, and essentially expose a regular logging API. Inter-

nally, the logging call creates the new event id, writes the

report, and updates the X-Trace context. The basic API

consists of the following calls:

void xtr::setContext(xtr::Metadata m)

xtr::Metadata xtr::getContext()

void xtr::logEvent(string message)

xtr::Event xtr::prepareEvent(string message)

void xtr::Event::addEdge(xtr::Metadata)

void xtr::logEvent(xtr::Event)

A very different style of programming is event-

based, such as in programs written with libasync or

libevent. This continuation-passing style uses event

handlers that schedule each other to govern program flow,

e.g., in order to avoid blocking I/O calls. The key to in-

strumenting such programs is to modify the event han-

dler that registers and dispatches function calls, in order

to save and restore the X-Trace context across “context

switches” between disparate logical execution paths. Our

instrumentation of libasync’s core changed four call-

back scheduling functions and the part of the event loop

that dispatches callbacks, totaling less than 20 lines of

code. The programmer can then always access informa-

tion about the last event in the current logical execution

path, using the same API as above.

4.3 Challenges and Experiences

While the instrumentation we have described so far cov-

ers most cases, there are some additional challenges.

Hidden Channels. One challenge is the use of com-

putational deferral structures in systems. For example, it

is not uncommon to add objects to queues for multiplex-

ing and later processing. In this case, we want the meta-

data to be stored with the queue object, and restored when

the object is processed. Sometimes control is passed be-

tween threads via shared memory structures, and meta-

data has to follow the control. Similar concern over hid-

den channels was made about CATOCS-based distributed

systems [8]. Fortunately, these deferral structures are of-

ten part of libraries, making instrumentation easier.

We were able to detect instances of uninstrumented

hidden channels by looking at graphs with unexpected

structures, in an iterative process akin to the converg-

ing of instrumentation and expectations in Pip [18]. One

example is the DNS resolver module in libasync, as

used by CoralCDN. Initially, traces that included DNS

resolution would always end at the event right before

the call to DNS: the stateless DNS responses were not

being matched with the X-Trace task that issued the

request. The resolver, however, could demultiplex re-

sponses based on the DNS request id and port, stored in a

hash table. The fix was to add the X-Trace metadata to ta-

ble entries and to restore the proper context when return-

ing control to the caller. In another example, CoralCDN

would occasionally traceroute clients to detect network

locality, but used a queue to limit the number of con-

current traceroutes. By extending the queued data struc-

ture to carry X-Trace metadata, we carried the appropri-

ate context across this deferral.

Black-Box Tracing through Partial Annotations.

It may not be possible to instrument some of the com-

ponents involved in a task, either because source code is

unavailable or the component runs outside of your con-

trol. For example, DNS servers and origin webservers

played critical roles in CoralCDN, yet both were running

unmodified in remote autonomous domains. However, it

was still possible to capture their behavior in the X-Trace

graphs by treating them as black-box components that X-

Trace traced around, as opposed to through. X-Trace re-

ports can still record timing information, as well as the

existence, type, and return value of responses. Of course,

the root causes of latency or errors of the subsystem are

not visible if it is uninstrumented.

If the proxy in Figure 4 has no support for X-Trace,

we can always trace around it, recording events at the

client only. If it can propagate metadata, even without

understanding it (like HTTP proxies are required to do,

for example), we can trace through it, correlating events

at the client and the server. Lastly, if it fully supports X-

Trace we get events from all three components. X-Trace

requires no coordination, and different parties can instru-

ment the three components, provided they agree on a way

to exchange their X-Trace reports.

5

client proxy server

c
1

c
2

Figure 4: Tracing through a black-box proxy (as depicted) de-

pends on whether the proxy propagates metadata. Even if it does

not, we can always trace around it at the client, establishing the

causal relationship between c1 and c2.

Semantic vs. Incidental Concurrency. Another

challenge is to capture concurrency correctly. In the case

of several threads logging concurrently, X-Trace distin-

guishes the incidental ordering due to how they are sched-

uled from the true dependencies. However, there are chal-

lenges when concurrent events in logical threads interact.

Figure 5 shows a hypothetical program that starts

three parallel function calls in line 5 and implements a

barrier in line 12. If we use the standard X-Trace instru-

mentation by just recording the relevant events, we get

the graph at the bottom of the figure. While the forks are

technically correct (a fork is always a bifurcation in the

program flow), the join is misrepresented: the end event

is connected to the last done event to finish, even though

it depends on all three. Currently, X-Trace requires man-

ual annotation in the end event to represent this, as shown

in Figure 6. For the fork, line 6 sets the preceding event

to the start event. For the join, we first create an event in

line 14, add the edges in line 16, and finally log the event

in the last completion, in line 18. The programmer has to

keep around the ids of all events that are waited for in the

barrier, and record all edges in the last one. It is an open

question how to do this automatically.

Task-based Severity and Sampling. We described

how X-Trace allows for easy coherent sampling. The first

logical event in a task can decide whether the trace the

entire task (i.e., the sampling decision); later in the task

flow, we first test whether a valid context exists before

generating an X-Trace log event. Another mechanism we

found valuable is severity-based reporting. Like common

logging frameworks, each log statement in X-Trace has a

severity level, and the runtime has a global logging sever-

ity threshold. A statement is logged if its severity is above

the global threshold. X-Trace metadata can include a per-

task severity threshold that overrides the global threshold,

thereby enabling per-task logging detail.

Expectation-Driven Analysis. Our analysis of the

802.1X service used a notion of a “ground truth” graph

structure, and other LAN or intra-datacenter services

have low-latency expectations that, when exceeded, sig-

nify some type of fault. In both cases, it is easy to auto-

matically flag particular traces as exhibiting anomalous

1: const int N = 3;

2: xtr::logEvent("start");

3: for (i = 0; i < N; i++) {
4: xtr::logEvent("do(%d)", i);

5: doSomething(i);

6: }
7: int remaining = N;

8: void somethingDone(int i) {
9: xtr::logEvent("done(%d)",i);

10: if (--remaining == 0) {
11: xtr::logEvent("end");

12: done();

13: }
14: }

!"#$"% &'()*% &'(+*% &'(,*% -.&%

&'.-()*% &'.-(+*% &'.-(,*%

Figure 5: Standard X-Trace instrumentation (in bold) for a

fork/join pair. In the resulting X-Trace graph, the fork looks un-

intuitive, and the join is not captured correctly.

1: const int N = 3;

2: xtr::logEvent("start");

3: xtrMetadata start = xtr::getContext();

4: for (i = 0; i < N; i++) {
5: xtr::logEvent("do(%d)", i);

6: xtr::setContext(start);

7: doSomething(i);

8: }
9: int remaining = N;

10: XtrEvent xte = null;

11: void somethingDone(int i) {
12: xtr::logEvent("done(%d)",i);

13: if (xte == null)

14: xte = xtr::prepareEvent("end");

15: else

16: xte.addEdge(xtr::getContext());

17: if (--remaining == 0) {
18: xtr::logEvent(xte);

19: done();

20: }
21: }

!"#$"%

&'()*%

&'(+*%

&'(,*%

-.&%

&'.-()*%

&'.-(+*%

&'.-(,*%

Figure 6: Modified instrumentation that captures the fork and the

join correctly. For the fork, we have to reset the context to start after

each fork, and for the join, we have to manually add the extra edges

to the join event.

6

behavior, and then perform subsequent manual analysis

of these traces. Tracing the wide-area CoralCDN and OA-

SIS, however, did not similarly enjoy such easily classifi-

able behavior, e.g., traces with repeated queries (Figure 3)

often experienced lower execution times than correct be-

havior involving distant peers. Similarly, the behavior of

system components would vary greatly from request to

request, depending on the state of both local and remote

nodes (e.g., in CoralCDN, whether the requested URL

was cached locally, required a DHT lookup or revalida-

tion, was fetched from a nearby or distant peer or from the

origin, etc.) Yet when faced with 100,000s or millions of

traces, purely manual inspection is not feasible, and we

must rely on automatic, unsupervised detection schemes,

which we leave as future work.

5 Related Work

A counterpoint to causal logging are device-centric man-

agement and monitoring solutions such as SNMP or

Nagios. Correlating log entries across these types of

single-node logs is a challenge, and approaches such as

Splunk [19] allow searching across multiple log streams.

In [20], the authors use machine learning with source-

code analysis for anomaly detection in console logs.

We are not the first to argue for metadata propaga-

tion as a valuable primitive, and others include Cause-

way [6] and SDI [17]. Many other systems [5, 7, 17, 18]

provide different levels of causal tracing, anomaly de-

tection, or profiling using propagated metadata to corre-

late events. Whodunit [5] also integrates metadata prop-

agation to libevent-based systems and across some

shared-memory structures, and it uses the information to

build a profiler that spans components of a distributed

system. Magpie [4] does causal tracking without using

any annotation, but requires extensive domain knowl-

edge and logging. Microsoft’s Event Tracing for Win-

dows provides cross-component tracing that can propa-

gate activity ids across Windows-based systems. Pip’s it-

erative expectation-refining model is similar to what we

did in practice when finding errors both in the code and

in our own instrumentation.

Other systems avoid modifying applications or adding

metadata, and have limited visibility into the system.

BorderPatrol [15] uses knowledge about protocols and

assumptions about application behavior to correlate in-

puts and outputs to system components treated as black

boxes. Project5 [1], Sherlock [3], and NetMedic [13] take

an inference-based approach and try to find performance

anomalies or the root cause of problems.

6 Conclusions

In this work, we describe our experiences adding sup-

port for tracing causality in real-world applications. De-

spite the diversity of applications, protocols, and pro-

gramming runtimes employed by these case studies, we

find that a simple, uniform graph data structure is suf-

ficient to detect a variety of error conditions. These in-

clude network-level faults like firewall misconfigurations

and packet-loss events, to network service failures in the

case of DNS, to detecting timing and clock synchroniza-

tion issues at the application layer. X-Trace has served

as a single, coherent view of the state and history of a

composed application, making the management of that

application across increasingly complex network archi-

tectures tractable. Our experiences have shown that in-

strumenting non-trivial systems is not only possible, but

often straightforward.

References
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance debugging for distributed sys-

tems of black boxes. In SOSP, 2003.

[2] M. Armbrust, A. Fox, D. Patterson, N. Lanham, H. Oh,

B. Trushkowsky, and J. Trutna. SCADS: Scale-independent stor-

age for social computing applications. In CIDR, 2009.

[3] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz,

and M. Zhang. Towards highly reliable enterprise network ser-

vices via inference of multi-level dependencies. SIGCOMM CCR,

37(4):13–24, 2007.

[4] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie

for request extraction and workload modeling. In OSDI, 2004.

[5] A. Chanda, A. L. Cox, and W. Zwaenepoel. Whodunit: Transac-

tional profiling for multi-tier applications. In Eurosys, 2007.

[6] A. Chanda, K. Elmeleegy, A. L. Cox, and W. Zwaenepoel. Cause-

way: System support for controlling and analyzing the execution

of multi-tier applications. In Middleware, 2005.

[7] M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox. Pinpoint:

Problem determination in large, dynamic, Internet services. In

DSN, 2002.

[8] D. R. Cheriton and D. Skeen. Understanding the limitations

of causally and totally ordered communication. SIGOPS OSR,

27(5):44–57, 1993.

[9] R. Fonseca. Improving Visibility of Distributed Systems through

Execution Tracing. PhD thesis, EECS, U.C. Berkeley, Dec. 2008.

[10] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica. X-Trace:

A pervasive network tracing framework. In NSDI, 2007.

[11] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing

content publication with Coral. In NSDI, 2004.

[12] M. J. Freedman, K. Lakshminarayanan, and D. Mazières. OASIS:

Anycast for any service. In NSDI, 2006.

[13] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and

P. Bahl. Detailed diagnosis in enterprise networks. SIGCOMM

CCR, 39(4):243–254, 2009.

[14] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,

S. Shenker, and I. Stoica. A data-oriented (and beyond) network

architecture. In SIGCOMM, 2007.

[15] E. Koskinen and J. Jannotti. BorderPatrol: Isolating events for

black-box tracing. In Eurosys, 2008.

[16] V. Paxson. On calibrating measurements of packet transit times.

SIGMETRICS Perform. Eval. Rev., 26(1):11–21, 1998.

[17] J. Reumann and K. G. Shin. Stateful distributed interposition.

ACM TOCS, 22(1):1–48, 2004.

[18] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and

A. Vahdat. Pip: Detecting the unexpected in distributed systems.

In NSDI, 2006.

[19] Splunk. http://www.splunk.com.

[20] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. Large-

scale system problem detection by mining console logs. In SOSP,

2009.

7

