Extending Existing Blockchains with Virtualchain

Jude Nelson’, Muneeb Alit?, Ryan Shea®, Michael J. Freedman"
TPrinceton University, ¥Blockstack Labs

Public blockchains are becoming a ubiquitous network service. However, it’s hard
to make consensus-breaking changes to production blockchain networks. To over-
come this, we created Virtualchain, a logical layer for implementing arbitrary fork*-
consistent replicated state machines (RSMs) on top of already-running blockchains.

Blockchains provide a totally-ordered, tamper-resistant journal of state transi-
tion events. New applications can store a log of all state changes in a public blockchain,
such as Bitcoin [14], Litecoin [11], or Ethereum [6]. By using the blockchain as a
shared ground truth, these applications can then bootstrap global state in a secure,
decentralized manner, since every application node subscribed to the blockchain can
independently construct the same state as all other application nodes.

However, there are two key challenges to using blockchains in this manner. First,
a blockchain can fail—it can go offline, or its consensus mechanism can become “cen-
tralized” by falling under the de facto control of a single entity. To tolerate failures,
application journals must be efficiently migrateable across blockchains. Cross-chain
migration is already needed by production systems; for example, we migrated a pro-
duction system from Namecoin [12] (which became centralized) to Bitcoin [17].

The second challenge is that the application’s journal can be forked and corrupted
by the underlying blockchain. If the blockchain forks, nodes on different forks will
write and read different events, forking the journal. The blockchain may drop and
re-order transactions when its forks join, causing bootstrapping nodes to construct dif-
ferent state than already-running nodes. Applications must be able to recover from
these failures. To do so, we created Virtualchain.

Virtualchain is a logical layer for multiplexing multiple fork*-consistent [10] state
transition journals on a blockchain. Application nodes replay their journal to achieve
application-level consensus at each block b, such that two nodes will agree on a block
if and only if the application transactions in that block leave the nodes in an identical
state. If their resulting state after executing the operations in b are identical, they gen-
erate what we term a consensus hash for that block. Consensus hashes enable nodes
to independently audit and efficiently query their journals, as well as migrate them
between blockchains and detect journal forks.

Virtualchain is implemented in a software library available and ready for production-
use. We have used it to implement a global naming and storage system called Block-
stack [1], which is one of the largest applications on the Bitcoin blockchain today [13].

b-8 b-7 b-6 b-5 b-4 b-3 b-2 b-1 b
~— 't”'7 Kv! [bs —— ~—— —~—

CH®b-8) i T CH(b-4) CH(b-2) CH(b-1) M(J,)
L)

Y
P,={CH(p) |p=b-2k} | CH(b) = Hash(Merkle(J,), P,) ‘

Figure 1: Overview of how Virtualchain constructs CH(b) from journal transactions.
Non-Virtualchain transactions are dark grey (e.g. tf’ =7, meaning “transaction i, pack-
aged in block b —7"), journal transactions for different applications are light grey
(v§’6), and application journal transactions are white (jZ’S).

Background. At a high level, blockchains are append-only, totally-ordered replicated
logs of transactions [5]. A transaction ¢ is a signed statement that moves tokens owned
by a cryptographic keypair. Transactions are causally linked: #; happens before #, if
tokens credited by #; are used in #,. Blockchain peers append transactions by packaging
unwritten transactions into a block, and then executing a leader election protocol to
determine the next block in the global blockchain.

Most public blockchains use a variant of Nakamoto consensus [5], which admits
concurrent leaders. Appending conflicting blocks creates blockchain forks, which peers
resolve using a proof-of-work [9] metric. Transactions in the fork with the most proof-
of-work are considered authoritative; conflicting transactions are silently discarded,
while non-conflicting transactions are incorporated into subsequent blocks.

Nakamoto consensus gives blockchains the property that longer forks are exponen-
tially rarer if there are no long-lasting network partitions and if most of the compute
power is controlled by honest peers [5]. This means that most of the time, transac-
tions are very likely to be durable and linearizable after a constant number of blocks
(confirmations) have been appended on top of them.

We use these properties to implement fork*-consistent RSMs on top of public
blockchains. Application nodes read the blockchain to construct state machine replicas,
and submit new transactions to the blockchain to execute state transitions.

Our work differs from prior fork*-consistent systems [10] [8] [7] in three ways.
First, we enable open applications: the sets of both application users and application
nodes are dynamic and may be empty, since we use an external blockchain to establish
the ground truth of the journal and to propagate state transitions. Second, the journal is
structured to enable efficient queries on prior state transitions without requiring a full
blockchain or state machine replica. Third, we utilize a decentralized human-in-the-
loop protocol for reconciling fork sets that result from long-lived blockchain forks.

Consensus Hashes. To make progress, nodes scan the blockchain to determine whether
or not each transaction represents a valid state transition. Since anyone can write trans-
actions, yet they can be arbitrarily delayed, nodes must be able to select only fresh
application state transitions. We achieve this with consensus hashes.

A consensus hash is a cryptographic hash that each node calculates at each block.
It is derived from the accepted state transitions in the last-processed block, and a
geometric series of prior-calculated consensus hashes (Figure 1). Specifically, let
Jp = (jb, j,...) be the sequence of journal transactions found in block b, let Merkle(J),)
be a function that calculates the Merkle tree root over Jp, and let Hash(x) be a cryp-
tographic hash function. Then, we define CH () to be the consensus hash at block b,
where CH (b) = Hash(Merkle(J,),P,). Block by contains the first journal entry, while
P, is the geometric series of prior consensus hashes starting from b, i.e., the consensus
hash for the previous block, two blocks ago, four blocks ago, etc.

Application users include their latest known CH (b) in each transaction they sub-
mit, and nodes ignore state transitions with “stale” (too old) or unknown consensus
hashes. This way, application nodes ignore forks of their own journal, and application
users (or the clients they’re using) can tell when to retry lost state transitions. In doing
so, consensus hashes preserve the join-at-most-once property of fork*-consistency: a
node will accept a state transition with CH (b) only if it has accepted all the prior state-
transitions that derived it.

Fast Journal Queries. Not all users will have a copy of the full blockchain on their ma-
chine. We use a protocol for fast queries that is useful for creating “lightweight nodes”
that do not need blockchain or state replicas. Instead, they can query highly-available
but untrusted “full nodes” (which have a full copy of the blockchain) as needed. For
example, Blockstack uses this feature to implement its SNV [15] protocol.

For fast queries, application users obtain CH (b) from a trusted node, such as one
running on the same host. A user can then use this trusted CH(b) to query previous
state transitions from untrusted nodes in a logarithmic amount of time and space. To
do so, it iteratively queries and verifies P, and Merkle(J,) using CH(b) until it finds
CH (b') and Merkle(Jy), where b’ is the block that contains the state transition to query.
Once it has Merkle(J,), it can ask for and verify Jyy to get the previous state transitions.

Blockchain Fork Detection and Recovery. If the journal never retroactively forks,
the application logic and consensus hashes can preserve the legitimate-request property
of fork*-consistency. Retroactive journal forks are highly unlikely, but they can occur,
since blockchain forks can lose or reorder journal entries. Nodes avoid short-lived
forks by only accepting sufficiently-confirmed transactions. Applications may increase
the number of required confirmations to decrease the likelihood of loss or reordering—
for example, Blockstack requires 10 confirmations (in the Bitcoin blockchain).

To detect long-lived forks, a node runs multiple processes that subscribe to a ge-
ometric series of prior block heights. If a process at a lower height derives a different
consensus hash than one from a higher height, then a blockchain fork must have oc-
curred then, and all processes at higher heights have potentially-divergent state. This
means all running nodes will be in a separate fork set from bootstrapping nodes.

Reconciling the fork sets requires human intervention, since irreversable actions
taken by the application may be based on now-lost state transitions. Fortunately, long-
lived forks are rare and severe enough to be widely noticed [2] [3] [4]. This means that
when they happen, users and administrators can determine which transactions were
affected, and come to concensus about which state-transitions need to be re-sent.

Blockchain 1 1 Blockchain 2
b b b’
: Y
e Ed- [Ny R
tP: MIGRATE_TO(2), i\\ MI}SRATE_FROM(Lb) t\o”':CH(b),
Jends at t?, | Application state J'begins att ?,
final state is éj” to migrate initial state is d.

Figure 2: Migrating from blockchain 1 to 2 at block b is accomplished by using J’s
final consensus hash from its final transaction t;’ on blockchain 1 to bootstrap trust in

the application’s state at j, d]b-, on blockchain 2.

To merge the fork sets, the administrators replicate a running node’s journal to
highly-available file servers (e.g. cloud storage), and send a specially-crafted CHECKPOINT
transaction that tells nodes the consensus hash of the authoritative journal and where to
find the replicas. When a node processes the CHECKPOINT, it fetches and validates the
off-chain journal and starts building off of it, ignoring all previous transactions.

Accepting a CHECKPOINT implies trust in the set of administrators. As such, Virtu-
alchain allows users to whitelist the principals who may send CEHCKPOINTSs, and users
can independently verify their actions by monitoring the blockchains.

Efficient Cross-chain Migration. Migrating from one blockchain to another is similar
to repairing journal forks. Doing so requires announcing a future block until which the
current blockchain will be valid (no new transactions will be accepted on the current
blockchain after that block), and then executing a two-step commit to bind the existing
journal to the new blockchain. (Figure 2).

To begin, the application administrator(s) announces a future block after which the
current blockchain will no longer be used and sends special “migrate” transactions to
both the current and the new blockchain (to announce the migration process). The
administrator(s) (a) acquires a lock on the new blockchain, (b) writes the current appli-
cation state (excluding historic state transitions) to the new blockchain, and (c) releases
the lock on the new blockchain and opens up the new blockchain to new transactions.
Virtualchain verifies that the migrate transactions are signed by the same principal and
verifies that the last-known state on the old blockchain is consistent with the consensus
hash announced on the new blockchain. This enables seemless cross-chain migration.

Conclusion. We have presented an overview of Virtualchain, a logical layer for mul-
tiplexing an existing blockchain to host multiple fork*-consistent replicated state ma-
chines. By using the blockchain to store each application’s state-transition journal, and
by handling application consensus off-chain, Virtualchain enables applications to use
any blockchain for consensus and migrate state between them. Virtualchain is already
used in a production system with 55,000 users [1] and is released as open source [16].

References

[1]

[2]

[3

[4]
[5]

[6]
[7]

[8]

[9]

[10]

[11]
[12]
[13]

[14]

[15]
[16]

[17]

M. Ali, J. Nelson, R. Shea, and M. Freedman. Blockstack: A global naming and storage system secured by
blockchains. In Proc. USENIX Annual Technical Conference (ATC ’16), June 2016.

Bitcoin Improvement Proposal 50.
Bitcoin Improvement Proposal 66.
List of Bitcoin CVEs.

J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten. Sok: Research perspectives and challenges
for bitcoin and cryptocurrencies. In Proc. IEEE Symposium on Security and Privacy, May 2015.

Ethereum. http://gavwood.com/Paper.pdf.

A. J. Feldman, A. Blankstein, M. J. Freedman, and E. W. Felten. Social networking with Frientegrity: Privacy and
integrity with an untrusted provider. In Proc. 21st USENIX Security Symposium, August 2012.

A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten. SPORC: Group collaboration using untrusted cloud
resources. In Proc. USENIX Symposium on Operating Systems Design and Implementation (OSDI "10), October 2010.

M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. In Secure Information Networks, pages
258-272. Springer, 1999.

J. Liand D. Maziéres. Beyond one-third faulty replicas in byzantine fault tolerant systems. In Proc. 4th USENIX/ACM
Symposium on Networked Systems Design and Implementation (NSDI ’07), February, 2007.

Litecoin. https://litecoin.org.
Namecoin. https://namecoin.info.
Statistics of usage for Bitcoin OP_RETURN. http://opreturn.org.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Tech report, 2009. https://bitcoin.org/
bitcoin.pdf.

Simplified name verification protocol. http://blockstack.org/docs/light-clients.
Virtualchain source code release v0.0.13, 2016. http://github.com/blockstack/virtualchain.

Why Onename is migrating to the Bitcoin blockchain. http://blog.onename.com/namecoin-to-bitcoin.

