
vCorfu: A Cloud-Scale Object Store on a Shared Log

Michael WeiF†, Amy Tai♦†, Christopher J. Rossbach�†, Ittai Abraham†, Maithem Munshed‡,
Medhavi Dhawan‡, Udi Wieder†, Scott Fritchie†,

Steven Swanson?, Michael J. Freedman♦, Dahlia Malkhi†

†VMware Research Group, ‡VMware,
FUniversity of California, San Diego, ♦Princeton University, �UT Austin

Abstract

This paper presents vCorfu, a strongly consistent cloud-
scale object store built over a shared log. vCorfu aug-
ments the traditional replication scheme of a shared log
to provide fast reads and leverages a new technique, com-
posable state machine replication, to compose large state
machines from smaller ones, enabling the use of state
machine replication to be used to efficiently in huge data
stores. We show that vCorfu outperforms Cassandra, a
popular state-of-the art NOSQL stores while providing
strong consistency (opacity, read-own-writes), efficient
transactions, and global snapshots at cloud scale.

1 Introduction

Most data stores make a trade-off between scalability, or
the ability of a system to be resized to meet the demands
of a workload and consistency, which requires that oper-
ations on a system return predictable results. The prolif-
eration of cloud services has led developers to insist on
scalable data stores. To meet that demand, a new class of
data stores known as NOSQL emerged which partition
data, favoring scalability over strong consistency guar-
antees. While partitioning enables NOSQL stores op-
erate at cloud-scale, it makes operations that are simple
in traditional data stores (e.g. modifying multiple items
atomically) difficult if not impossible in NOSQL stores.

Systems based on distributed shared logs [9, 10, 11,
40, 41] can address the scalability–consistency tradeoff.
Instead of partitioning based on data contents as NOSQL
stores do, these systems employ state machine replica-
tion (SMR) [27] and achieve scale-out by partitioning
based on the order of updates. Since the log provides
a single source of ground truth for ordering, shared logs
offer a number of attractive properties such as strong con-
sistency and global snapshots.

Shared logs, however, are not without drawbacks. In

(c) NoSQL Data Store

(a) Operations (b) table

alice → 6pm

alice → 6pm

nancy → 3pm

nancy → 3pm

Replicas →
Partition(user)

A-M N-Z

0) log(alice, 6am)
1) log(nancy, 8am)
2) log(nancy, 3pm)
3) log(alice, 6pm)

0) alice, 6am
2) nancy, 3pm

0) alice, 6am
2) nancy, 3pm

1) nancy, 8am
3) alice, 6pm

1) nancy, 8am
3) alice, 6pm

Partition(update)
Even (mod 0) Odd (mod 1)

(d) Corfu / Tango

0) alice, 6am
2) nancy, 3pm

0) alice, 6am
3) alice, 6pm

1) nancy, 8am
3) alice, 6pm

1) nancy, 8am
2) nancy, 3pm

Partition(update)
Even (mod 0) Odd (mod 1)

Partition(stream)
 A-M N-Z

(e) vCorfu

user

alice
nancy

last_login

6pm
3pm

Figure 1: Physical layout of (a) operations on a (b) table stored in a
(c) NOSQL data store (d) Shared log systems [9, 10] and (e) vCorfu.

contrast to NOSQL, clients cannot simply “read” the lat-
est data: the log only stores updates. Instead, clients play
the log, reading and processing the log sequentially to
update their own in-memory views. Playback can easily
become a bottleneck: a client may process many updates
which are irrelevant to the servicing of a request, dramat-
ically increasing latencies when the system is under load.
Figure 1 shows an example in which a client interested
in reading Alice’s last login time must read updates to
other users to find and retrieve the most recent login. As
a result, many shared log systems either target metadata
services [10] with minimal state and client load, or del-
egate playback to an intermediate server [9, 11], further
increasing latency.

This paper presents vCorfu, which makes distributed,
shared log based systems applicable to a much broader
array of settings by combining the consistency benefits of
a shared log like Corfu [9] and Tango [10] with the local-
ity advantages of scattered logs like Kafka [26] and Kine-
sis [30]. vCorfu is a cloud-scale, distributed object store.
At the core of vCorfu is a scalable, virtualized shared
log. The key innovation in vCorfu’s log is materializa-
tion, which divides a single log into virtual logs called

1

materialized streams. Unlike streams proposed in previ-
ous systems [10], which support only sequential reads,
materialized streams support fast, fully random reads,
because all updates for a stream can be accessed from
a single partition. This design enables log replicas to use
SMR to service requests directly, relieving the burden of
playback from clients. Like other shared log systems,
vCorfu supports strong consistency, linearizable reads
and transactions, but the locality advantages of materi-
alization enable vCorfu to scale to thousands of clients.
vCorfu also leverages a sequencer to implement a fast,
lightweight transaction manager and can execute read-
only transactions without introducing conflicts. A novel
technique called composable state machine replication
(CSMR) enables vCorfu to store huge objects while still
allowing client queries to be expressed using a familiar
object-based model.

We make the following contributions:

• We present the design and architecture of vCorfu,
a cloud-scale distributed object store built on a
shared log. vCorfu’s novel materialization tech-
nique enables reads without playback while main-
taining strong consistency and high availability.

• We show that vCorfu’s innovative design provides
the same strong consistency guarantees as shared
log designs while enabling scalability and perfor-
mance that is competitive with, and often better than
current NOSQL systems.

• We demonstrate that by conditionally issuing to-
kens, our sequencer performs lightweight transac-
tion resolution, relieving clients of the burden of re-
solving transactions.

• We evaluate vCorfu against a popular
NOSQL store, Cassandra, and show that vCorfu is
just as fast for writes and much faster at reads, even
while providing stronger consistency guarantees
and advanced features such as transactions.

• We describe CSMR, a technique which enables ef-
ficient storage of huge objects by composition of a
large state machine from smaller component state
machines. vCorfu can store and support operations
against 10GB YCSB! [16] database without sacri-
ficing the strong consistency afforded by SMR.

2 Background

2.1 Data Stores

Modern web applications rely heavily on multi-tiered ar-
chitecture to enable systems in which components may

be scaled or upgraded independently. Traditional ar-
chitectures consist of three layers: a front-end which
communicates to users, an application tier with stateless
logic, and a data tier, where state is held. This orga-
nization enabled early web applications to scale easily
because stateless front-end and application tiers enable
scaling horizontally in the application tier with the addi-
tion of more application servers or vertically in the data
tier by upgrading to more powerful database servers.

As more and more applications move to cloud exe-
cution environments, system and application designers
face increasingly daunting scalability requirements in
the common case. At the same time, the end of Den-
nard scaling [21] leaves system builders unable to rely
on performance improvements from the hardware: verti-
cal scaling at the data tier is no longer feasible in most
settings. As a consequence, modern cloud-scale sys-
tems generally trade off reduced functionality and pro-
grammability for scalability and performance at the data
tier. A new class of NOSQL data stores [1, 4, 12, 14, 18,
26] has emerged, which achieve cloud-scale by relaxing
consistency, eliding transaction support, and restricting
query and programming models.

A severe consequence of this trend is an increased
burden on programmers. In practice, programmers of
modern cloud systems are forced to cobble together
tools and components to restore missing functionality
when it is needed. For example, a lock server such
as ZooKeeper [23] is often used in conjunction with a
NOSQL store to implement atomic operations. Pro-
grammers commonly implement auxiliary indexes to
support queries, typically with relaxed consistency since
the auxilliary index is not maintained by the data store.

2.2 Scalable Shared Logs

Shared logs have been used to provide highly fault-
tolerant distributed data stores since the 1980s [36, 38].
Logs are an extremely powerful tool for building strongly
consistent systems, since data is never overwritten, only
appended, which yields a total order over concurrent
modifications to the log. Early shared logs had limited
scalability, as all appends must be serialized through a
single server, quickly becoming an I/O bottleneck.

More recent shared log designs [9, 10, 11, 40, 41] ad-
dress this scalability limitation to varying degrees. For
example, the Corfu protocol [9] leverages a centralized
sequencer which is not part of the I/O path, yielding a
design in which append throughput is only limited by the
speed in which a sequencer can issue log addresses.

�
� �

�

Log Replicas (§3.1)
Even Odd

Stream Replicas (§3.1)
 A-M N-Z

�

Sequencer (§3)

�

Layout (§3)

�
Runtime (§4.1)

�
�

�
�

Remote Views (§4.2)

�
�

Local Views (§4.2)

vCorfu
Stream

Protocol (§3)

�
�
�
�

CSMR (§5)

�

vCorfu Clients vCorfu Stream Store

Figure 2: The architecture of vCorfu. Solid lines highlight the write
path, while dotted lines highlight the read path. Thin lines indicate
control operations outside of the I/O path.

2.3 State Machine Replication

Most shared log systems use state machine replication
(SMR) [37] which relies on the log’s total ordering of
appends to implement an abstraction layer over the log.
Data stored on the log is modeled as a state machine.
Clients modify data by appending updates to the log and
read data by traversing the log and applying those up-
dates in order to an in-memory view. This approach en-
ables strong consistency, and significantly simplifies sup-
port for transactions over multiple data items [10, 11].

The achilles’ heel of shared log systems, however, is
playback. To service any request, a client must read ev-
ery single update and apply it to in-memory state, re-
gardless of whether the request has any dependency on
those updates. In practice, this has limited the applica-
bility of shared log systems to settings characterized by
few clients or small global state [9], such as metadata ser-
vices [10, 40]. In contrast, data tiers in typical web appli-
cations manage state at a scale that may make traditional
playback prohibitively expensive. Worse, in systems re-
lying on stateless application tiers, naı̈ve use of shared
logs induces a playback requirement to reconstruct state
for every request. The goal of vCorfu is to eliminate
these limitations, enabling SMR with shared logs over
large state and without client playback overheads.

3 vCorfu Stream Store

vCorfu implements a shared log abstraction that removes
the overhead and limitations of shared logs, enabling
playback that does not force a client to playback poten-
tially irrelevant updates. vCorfu virtualizes the log us-
ing a novel technique called stream materialization. Un-
like streams in Tango, which are merely tags within a

Operation Description
read(laddresses) Get the data stored at log address(es).
read(stream, saddresses) Read from a stream at

stream address(es).
append(stream, data) Append data to stream.
check(stream) Get the last address issued to a stream.
trim(stream, saddresses, Release all entries with
prefix) stream address < pre f ix.
fillhole(laddress) Invoke hole-filling for log address.

Table 1: Core operations supported by the vCorfu shared log.

shared log, materialized streams are a first class abstrac-
tion which supports random and bulk reads just like scat-
tered logs like Kafka [26] and Kinesis [30], but with all
the consistency benefits of a shared log like Corfu [9] and
Tango [10].

The vCorfu stream store architecture is shown in Fig-
ure 2. In vCorfu, data are written to materialized streams,
and data entries receive monotonically increasing tokens
on both a global log and on individual streams from a
sequencer server. The sequencer can issue tokens condi-
tionally to enable fast optimistic transaction resolution,
as described in Section 4. vCorfu writes data in the form
of updates to both log replicas and stream replicas, each
of which are indexed differently. This design replicates
data for durability, but enables access to that data with
different keys, similar to Replex [39]. The advantage is
that clients can directly read the latest version of a stream
simply by contacting the stream replica.

A layout service maintains the mapping from log and
stream addresses to replicas. Log replicas and stream
replicas in vCorfu contain different sets of updates, as
shown in Figure 1. The log replicas store updates by their
(global) log address, and stream replicas by their stream
addresses. The replication protocol in vCorfu dynami-
cally builds replication chains based on the global log
offset, the streams which are written to, and the streams
offsets. Subsequent sections consider the design and im-
plementation of materialized streams in more detail.

vCorfu is elastic and scalable: replicas may be added
or removed from the system at any time. The sequencer,
because it merely issues tokens, does not become an
I/O bottleneck. Reconfiguration is triggered simply by
changing the active layout. Finally, vCorfu is fault toler-
ant - data which is stored in vCorfu can tolerate a limited
number of failures based on the arrangement and number
of replicas in the system, and recovery is handled similar
to the mechanism in Replex [39]. Generally, vCorfu can
tolerate the failures as long as a log replica and stream
replica do not fail simultaneously. Stream replicas can be
reconstructed from the aggregate of the log replicas, and
log replicas can be reconstructed by scanning through all
stream replicas.

Operationally, stream materialization divides a single

"sequencers": 10.0.0.1,
"segments": {
"start" : 0,
"log" : [[10.0.1.1], [10.0.1.2]],
"stream" : [[10.0.2.1], [10.0.2.2]]] }

Figure 3: An example layout. Updates are partitioned by their stream
id and the log offset; a simple partitioning function mods these values
with respect to the number of replicas. An update to stream 0 at log
address 1 would be written to 10.0.1.2 and 10.0.2.1, while an update to
stream 1 at log address 3 would be written to 10.0.1.2 and 10.0.2.2.

global log into materialized streams, which support log-
ging operations: append, random and bulk reads, trim,
check and fillhole; the full API is shown in Table 1. Each
materialized stream maps to an object in vCorfu, and
each stream stores an ordered history of modifications
to that object, following the SMR [37] paradigm.

3.1 Fully Elastic Layout

In vCorfu, a mapping called a layout describes how
offsets in the global log or in a given materialized
stream map to replicas. A vCorfu client runtime must
obtain a copy of the most current layout to determine
which replica(s) to interact with. Each layout is stamped
with an epoch number. Replicas will reject requests from
clients with a stale epoch. A Paxos-based protocol [27]
ensures that all replicas agree on the current layout. An
example layout is shown in Figure 3. Layouts work like
leases on the log: a client request with the wrong lay-
out (and wrong epoch number) will be rejected by repli-
cas. The layout enables clients to safely contact a stream
replica directly for the latest update to a stream.

3.2 Appending to vCorfu materialized streams

A client appending to a materialized stream (or streams)
first obtains the current layout and makes a request to the
sequencer with a stream id. The sequencer returns both
a log token, which is a pointer to the next address in the
global log, and a stream token, which is a pointer to the
next address in the stream. Using these tokens and the
layout, the client determines the set of replicas to write
to.

In contrast to traditional designs, replica sets in
vCorfu are dynamically arranged during appends. For
fault tolerance, each entry is replicated on two replica
types: the first indexed by the address in the log (the log
replica), and the second by the combination of the stream
id and the stream address (the stream replica). To per-
form a write, the client writes to the log replica first, then
to the stream replica. If a replica previously accepted
a write to a given address, the write is rejected and the
client must retry with a new log token. Once the client

Log Replicas
Even (mod 0) Odd (mod 1)

Stream Replicas
 A-M N-Z

�

Sequencer

�
1a ▶ nextToken(“a”)

global = 4, “a” = 1 ◀ 1b

2a ▶ write(4 , data)

ok ◀ 2b

3a ▶ write(“a”, 1, data, commit)
ok ◀ 3b

4a ▶ commit(4)

ok ◀ 4b

Figure 4: Normal write path of a vCorfu log write, which takes four
roundtrips: one for token acquisition, two for writing to each replica
(and committing at the stream replica), and one to send a commit mes-
sage to the log replica.

writes to both replicas, it commits the write by broadcast-
ing a commit message to each replica it accessed (except
the final replica, since the final write is already commit-
ted). Replicas will only serve reads for committed data.
This enables stream replicas to provide a dense materi-
alized stream, without holes. The write path of a client,
which takes four roundtrips in normal operation is shown
in Figure 4. A server-driven variant where the log replica
writes to the stream replica takes 6 messages; we leave
implementation of this variant for future work.

3.3 Atomically appending to multiple streams

The primary benefit of materialized streams is that they
provide an abstraction of independent logs while main-
taining a total global order over all appends. This enables
vCorfu to support atomic writes across streams, which
form the basic building block for supporting transactions.

To append to multiple streams atomically, the client
obtains a log token and stream tokens for each stream
it wishes to append to. The client first writes to the log
replica using the log token. Then, the client writes to the
stream replica of each stream (multiple streams mapped
to the same replica are written together so each replica
is visited only once). The client then sends a commit
message to each participating replica (the commit and
write are combined for the last replica in the chain). The
resulting write is ordered in the log by a single log token,
but multiple stream tokens.

3.4 Properties of the vCorfu Stream Store

Materialized streams are a first class abstraction in
vCorfu, unlike streams in Tango [10] which are merely
tags within a shared log. Materialized streams strike
a balance that combines the global consistency advan-
tages of shared logs with the locality advantages of dis-

tributed data platforms. Specifically, these properties en-
able vCorfu to effectively support SMR at scale:

The global log is a single source of scalability, consis-
tency, durability and history. One may wonder, why have
log replicas at all, if all we care to read from are material-
ized streams? First, the global log provides a convenient,
scalable mechanism to obtain a consistent snapshot of
the entire system. This can be used to execute long run-
ning read-only transactions, a key part of many analytics
workloads, or a backup utility could constantly scan the
log and move it to cold storage. Second, the log provides
us with a unique level of fault tolerance - even if all the
stream replicas were to fail, vCorfu can fall back to using
the log replicas only, continuing to service requests.

Materialized streams are true virtual logs, unlike
streams. Tango streams enable clients to selectively con-
sume a set of updates in a shared log. Clients read
sequentially from streams using a readNext() call,
which returns the next entry in the stream. Tango clients
cannot randomly read from anywhere in stream because
streams are implemented using a technique called back-
pointers: each entry in a stream points to the previous
entry, inducing a requirement for sequential traversal.
Materializing the stream removes this restriction: since
clients have access to a replica which contains all the up-
dates for a given stream, clients can perform all the func-
tions they would call on a log, including a random read
given a stream address, or a bulk read of an entire stream.
This support is essential if clients randomly read from
different streams, as backpointers would require reading
each stream from the tail in order.

vCorfu avoids backpointers, which pose performance,
concurrency and recovery issues. Backpointers can re-
sult in performance degradation when concurrent clients
are writing to the log and a timeout occurs, causing a hole
filling protocol to be invoked [9]. Since holes have no
backpointers, timeouts force a linear scan of the log, with
a cost proportional to the number of streams in the log.
Tango mitigates this problem by keeping the number of
streams low and storing multiple backpointers, which has
significant overhead because the sequencer must main-
tain a queue for each stream. Furthermore, backpointers
significantly complicate recovery: if the sequencer fails,
the entire log must be read to determine the most recent
writes to each stream. vCorfu instead relies on stream
replicas, which contain a complete copy of updates for
each stream, free of holes thanks to vCorfu’s commit pro-
tocol, resorting to a single backpointer only when stream
replicas fail. Sequencer recovery is fast, since stream
replicas can be queried for the most recent update.

Stream replicas may handle playback and directly

serve requests. In most shared log designs, clients must
consume updates, which are distributed and sharded for
performance. The log itself cannot directly serve re-
quests because no single storage unit for the log contains
all the updates necessary to service a request. Stream
replicas in vCorfu, however, contain all the updates for
a particular stream, so a stream replica can playback up-
dates locally and directly service requests to clients, a
departure from the traditional client-driven shared log
paradigm. This removes the burden of playback from
clients and avoids the playback bottleneck of previous
shared log designs [10, 11].

Garbage collection is greatly simplified. In Tango,
clients cannot trim (release entries for garbage collec-
tion) streams directly. Instead, they must read the stream
to determine which log addresses should be released, and
issue trim calls for each log address, which can be a
costly operation if many entries are to be released. In
vCorfu, clients issue trim commands to stream replicas,
which release storage locally and issue trim commands
to the global log. Clients may also delegate the task of
garbage collection directly to a stream replica.

4 The vCorfu Architecture

vCorfu presents itself as an object store to applications.
Developers interact with objects stored in vCorfu and
a client library, which we refer to as the vCorfu run-
time, provides consistency and durability by manipulat-
ing and appending to the vCorfu stream store. Today, the
vCorfu runtime supports Java, but we envision support-
ing many other languages in the future.

The vCorfu runtime is inspired by the Tango [10] run-
time, which provides a similar distributed object abstrac-
tion in C++. On top of the features provided by Tango,
such as linearizable reads and transactions, vCorfu lever-
ages Java language features which greatly simplify writ-
ing vCorfu objects. Developers may store arbitrary Java
objects in vCorfu, we only require that the developer pro-
vide a serialization method and to annotate the object
to indicate which methods read or mutate the object, as
shown in Figure 5.

Like Tango, vCorfu fully supports transactions over
objects with stronger semantics than most distributed
data stores, thanks to inexpensive global snapshots pro-
vided by the log. In addition, vCorfu also supports
transactions involving objects not in the runtime’s local
memory (case D, §4.1 in [10]), opacity [22], which en-
sures that transactions never observe inconsistent state,
and read-own-writes which greatly simplifies concurrent
programming. Unlike Tango, the vCorfu runtime never

class User {
String name; String password;
DateTime lastLogin; DateTime lastLogout;

@Accessor
public String getName() {

return name;}

@MutatorAccessor
public boolean login(String pass, DateTime time){

if (password.equals(pass)) {
lastLogin = time;
return true;}

return false;}

@Mutator
public void logout(DateTime time) {

lastLogout = time;}}

Figure 5: A Java object stored in vCorfu. @Mutator indicates that the
method modifies the object, @Accessor indicates the method reads the
object, and @MutatorAccessor indicates the object reads and modifies
the object.

needs to resolve whether transactional entries in the log
have succeeded thanks to a lightweight transaction mech-
anism provided by the sequencer.

4.1 vCorfu Runtime

To interact with vCorfu as an object store, clients load
the vCorfu runtime, a library which manages interactions
with the vCorfu stream store. Developers never interact
with the store directly, instead, the runtime manipulates
the store whenever an object is accessed or modified. The
runtime provides each client with a view of objects stored
in vCorfu, and these views are synchronized through the
vCorfu stream store.

The runtime provides three functions to clients:
open(), which retrieves a in-memory view of an object
stored in the log, TXbegin(), which starts a transac-
tion, and TXend(), which commits a transaction.

4.2 vCorfu Objects

As we described earlier, vCorfu objects can be arbitrary
Java objects such as the one shown in Figure 5. Objects
map to a stream, which stores updates to that object.

Like many shared log systems, we use state machine
replication (SMR) [27] to provide strongly consistent ac-
cesses to objects. When a method annotated with @Mu-
tator or @MutatorAccessor is called, the runtime seri-
alizes the method call and appends it to the objects’
stream first. When an @Accessor or @MutatorAccessor
is called, the runtime reads all the updates to that stream,
and applies those updates to the object’s state before re-
turning. In order for SMR to work, each mutator must be
deterministic (a call to random() or new Date() is
not supported). Many method calls can be easily refac-
tored to take non-deterministic calls as a parameter, as

shown in the login method in Figure 5.
The SMR technique extracts several important proper-

ties from the vCorfu stream store. First, the log acts as a
source of consistency: every change to an object is totally
ordered by the sequencer, and every access to an object
reflects all updates which happen before it. Second, the
log is a source of durability, since every object can be
reconstructed simply by playing back all the updates in
the log. Finally, the log is a source of history, as pre-
vious versions of the object can be obtained by limiting
playback to the desired position.

Each object can be referred to by the id of the stream
it is stored in. Stream ids are 128 bits, and we provide a
standardized hash function so that objects can be stored
using human-readable strings (i.e., “person-1”).

vCorfu clients call open() with the stream id and an
object type to obtain a view of that object. The client also
specifies whether the view should be local, which means
that the object state is stored in-memory locally, or re-
mote, which means that the stream replica will store the
state and apply updates remotely (this is enabled by the
remote class loading feature of Java). Local views are
similar to objects in Tango [10] and especially powerful
when the client will read an object frequently through-
out the lifespan of a view: if the object has not changed,
the runtime only performs a quick check() call to ver-
ify no other client has modified the object, and if it has,
the runtime applies the relevant updates. Remote views,
on the other hand, are useful when accesses are infre-
quent, the state of the object is large, or when there are
many remote updates to the object - instead of having
to playback and store the state of the object in-memory,
the runtime simply delegates to the stream replica, which
services the request with the same consistency as a local
view. To ensure that it can rapidly service requests, the
stream replicas generate periodic checkpoints. Finally,
the client can optionally specify a maximum position to
open the view to, which enables the client to access the
history, version or snapshot of an object. Clients may
have multiple views of the same object: for example, a
client may have a local view of the present state of the
object with a remote view of a past version of the object,
enabling the client to operate against a snapshot.

4.3 Transactions in vCorfu

Transactions enable developers to issue multiple opera-
tions which either succeed or fail atomically. Transac-
tions are a pain point for partitioned data stores since a
transaction may span across multiple partitions, requir-
ing locking or schemes such as 2PL [32] or MVCC [35]
to achieve consistency.

vCorfu leverages atomic multi-stream appends and
global snapshots provided by the log, and exploits the
sequencer as a lightweight transaction manager. Trans-
action execution is optimistic, similar to transactions in
shared log systems [10, 11]. However, since our se-
quencer supports conditional token issuance, we avoid
polluting the log with transactional aborts.

To execute a transaction, a client informs the runtime
that it wishes to enter a transactional context by calling
TXBegin(). The client obtains the most recently is-
sued log token once from the sequencer and begins op-
timistic execution by modifying reads to read from a
snapshot at that point. Writes are buffered into a write
buffer. When the client ends the transaction by calling
TXEnd(), the client checks if there are any writes in the
write buffer. If there are not, then the client has success-
fully executed a read-only transaction and ends transac-
tional execution. If there are writes in the write buffer,
the client informs the sequencer of the log token it used
and the streams which will be affected by the transaction.
If the streams have not changed, the sequencer issues
log and stream tokens to the client, which commits the
transaction by writing the write buffer. Otherwise, the se-
quencer issues no token and the transaction is aborted by
the client without writing an entry into the log. This im-
portant optimization ensures only committed entries are
written, so that when a client encounters a transactional
commit entry, it may treat it as any other update. In other
shared log systems [10, 11, 40], each client must deter-
mine whether a commit record succeeds or aborts, either
by running the transaction locally or looking for a deci-
sion record. In vCorfu, we have designed transactional
support to be as general as possible and to minimize the
amount of work that clients must perform to determine
the result of a transaction. We treat each object as an
opaque object, since fine-grained conflict resolution (for
example, determining if two updates to different keys in
a map conflict) would either require the client resolve
conflicts or a much more heavyweight sequencer.

Opacity is ensured by always operating against the
same global snapshot, leveraging the history provided by
the log. Opacity [22] is a stronger guarantee than strict
serializability as opacity prevents programmers from ob-
serving inconsistent state (e.g. a divide-by-zero error
when system invariants prevent such a state from occur-
ing). Since global snapshots are expensive in partitioned
systems, these systems [1, 2, 3, 4] typically provide only
a weaker guarantee, allowing programs to observe incon-
sistent state but guaranteeing that such transactions will
be aborted. Read-own-writes is another property which
vCorfu provides: transactional reads will also apply any

writes in the write buffer. Many other systems [1, 4, 10]
do not provide this property since it requires writes to be
applied to data items. The SMR paradigm, however, en-
ables vCorfu to generate the result of a write in-memory,
simplifying transactional programming.

vCorfu fully supports nested transactions, where a
transaction may begin and end within a transaction.
Whenever transaction nesting occurs, vCorfu buffers
each transaction’s write set and the transaction takes the
timestamp of the outermost transaction.

4.4 Querying Objects

vCorfu supports several mechanisms for finding and re-
trieving objects. First, a developer can use vCorfu like
a traditional key-value store just by using the stream id
for object as a key. We also support a much richer query
model: a set of collections, which resemble the Java col-
lections are provided for programmers to store and ac-
cess objects in. These collections are objects just like
any other vCorfu object, so developers are free to im-
plement their own collection. Developers can take ad-
vantage of multiple views on the same collection: for
instance a List can be viewed as a Queue or a Stack
simultaneously. Some of the collections we provide in-
clude a List, Queue, Stack, Map, and RangeMap.

Collections, however, tend to be very large objects
which are highly contended. In the next section, we dis-
cuss composable state machine replication, a technique
which allows vCorfu to build a collection out of multiple
objects.

5 Composable State Machine Replication

In vCorfu, objects may be composed of other objects, a
technique which we refer to as composable state machine
replication (CSMR). The simplest example of CSMR is
a hash map composed of multiple hash maps, but much
more sophisticated objects can be created.

Composing SMR objects has several important advan-
tages. First, CSMR divides the state of a single object
into several smaller objects, which reduces the amount
of state stored at each stream. Second, smaller objects
reduce contention and false sharing, providing for higher
concurrency. Finally, CSMR resembles how data struc-
tures are constructed in memory - this allows us to apply
standard data structure principles to vCorfu. For exam-
ple, a B-tree constructed using CSMR would result in a
structure with O(logn) time complexity for search, insert
and delete operations. This opens a plethora of familiar
data structures to developers.

Programmers manipulate CSMR objects just as they
would any other vCorfu object. A CSMR object starts

class CSMRMap<K,V> implements Map<K,V> {
final int numBuckets;

int getChildNumber(Object k) {
int hashCode = lubyRackoff(k.hashCode());
return Math.abs(hashCode % numBuckets);}

SMRMap<K,V> getChild(int partition) {
return open(getStreamID() + partition);}

V get(K key) {
return getChild(getChildNumber(key)).get(key);}

@TransactionalMethod(readOnly = true)
int size() {

int total = 0;
for (int i = 0; i < numBuckets; i++) {
total += getChild(i).size();}

return total;}

@TransactionalMethod
void clear() {

for (int i = 0; i < numBuckets; i++) {
total += getChild(i).clear();}}}

Figure 6: A CSMR Java Map in vCorfu. @TransactionalMethod indi-
cates that the method must be executed transactionally.

with a base object, which defines the interface that a de-
veloper will use to access the object. An example of a
CSMR hash map is shown in Figure 6. The base object
manipulates child objects, which store the actual data.
Child objects may reuse standard vCorfu objects, like a
hash map, or they may be custom-tailored for the CSMR
object, like a B-tree node.

In the example CSMR map shown in Figure 6, the ob-
ject shown is the base object and the child objects are
standard SMR maps (backed by a hash map). The num-
ber of buckets is set at creation in the numBuckets
variable. Two functions, getChildNumber() and
getChild() help the base object locate child objects
deterministically. In our CSMR map, we use the Luby-
Rakoff [28] algorithm to obtain an improved key distri-
bution over the standard Java hashCode() function.
Most operations such as get and put operate as be-
fore, and the base object needs to only select the correct
child to operate on. However, some operations such as
size() and clear() touch all child objects. These
methods are annotated with @TransactionalObject so
that under the hood, the vCorfu runtime uses transactions
to make sure objects are modified atomically and read
from a consistent snapshot. The vCorfu log provides fast
access to snapshots of arbitrary objects, and the ability
to open remote views, which avoids the cost of playback,
enables clients to quickly traverse CSMR objects without
reading many updates or storing large local state.

In a more complex CSMR object, such as our CSMR
B-tree, the base object and the child object may have
completely different interfaces. In the case of the B-tree,
the base object presents a map-like interface, while the

child objects are nodes which contain either keys or ref-
erences to other child objects. Unlike a traditional B-
tree, every node in the CSMR B-tree is versioned like
any other object in vCorfu. CSMR takes advantage of
this versioning when storing a reference to a child object:
instead of storing a static pointer to particular versions of
node, as in a traditional B-tree, references in vCorfu are
dynamic. Normally, references point to the latest version
of an object, but they may point to any version during
a snapshotted read, allowing the client to read a consis-
tent version of even the most sophisticated CSMR ob-
jects. With dynamic pointers, all pointers are implicitly
updated when an object is updated, avoiding a problem in
traditional trees, where an update to a single child node
can cause an update cascade requiring all pointers up to
the root to be explicitly updated, known as the recursive
update problem [42].

6 Evaluation

Our test system consists of sixteen 12 core machines run-
ning Linux (v4.4.0-38) with 96GB RAM and 10G NICs
on each node with a single switch. The average latency
measured by ping (56 data bytes) between two hosts is
0.18±0.01 ms when the system is idle. All benchmarks
are done in-memory, with persistence disabled. Due to
the performance limitations and overheads from Java and
serialization, our system was CPU-bound and none of
our tests were able to saturate the NIC (the maximum
bandwidth we achieved from a single node was 1Gb/s,
with 4KB writes).

Our evaluation is driven by the following questions:

• What advantages to we obtain by materializing
streams? (§ 6.1)

• Do remote views offer NOSQL-like performance
with the global consistency of a shared log? (§ 6.2)

• How does the sequencer act as a lightweight, lock-
free transaction manager and offer inexpensive
read-only transactions? (§ 6.3)

• How does CSMR keep state machines small, while
reducing contention and false conflicts? (§ 6.4)

6.1 vCorfu Stream Store

The design of vCorfu relies on performant materializa-
tion. To show that materializing streams is efficient, we
implement streams using backpointers in vCorfu with
chain replication, similar to the implementation de-
scribed in Tango [10].

10 1K 100K

vCorfu

Streams

A
pp

en
ds

 p
er

 s
ec

on
d

0
60

K
12

0K

2 Replicas 4 Replicas 8 Replicas

10 1K 100K

Backpointers

Streams

Figure 7: vCorfu’s replication protocol imposes a small penalty on
writes to support materialization. Each run is denoted with the number
of streams used.

8K 16K 80K 160K

32 Streams

Sy
nc

 L
at

en
cy

 (s
)

0
20

40
60

80

5K 10K 15K

1K Streams

Entries per stream

0
5

10
15

20

10 100 200

100K Streams

0
.0

5
.1

.1
5

.2

Figure 8: vCorfu enables quick reading of streams. Shaded bars are
runs with vCorfu, while white bars represent backpointers. We test
with 32, 1K and 100K streams, the number under the bars denotes the
number of entries per stream.

For these tests, in order to compare vCorfu with a with
a chain replication-based protocol, we use a symmetri-
cal configuration for vCorfu, with an equal number of
log replicas and stream replicas. For the backpointer im-
plementation, we use chain replication (i.e. log replicas
only), but with the same number of total replicas as the
comparison vCorfu system. Our backpointer implemen-
tation only stores a single backpointer per entry while
Tango uses 4 backpointers. Multiple backpointers are
only used to reduce the probability that a linear scan - in
tests involving Tango, we disable hole-filling for a fair
comparison, except in Figure 9.

The primary drawback of materialization is that it re-
quires writing a commit message, which results in extra
messages proportional to the number of streams affected.
We characterize the overhead with a microbenchmark
that appends 32B entries, varying the number of streams
and logging units. Figure 7 shows that writing a commit
bit imposes about a 40% penalty on writes, compared
to a backpointer based protocol which does not have to
send commit messages. However, write throughput con-
tinues to scale as we increase the number of replicas, so
the bottleneck in both schemes is the rate in which the
sequencer can hand out tokens, not the commit protocol.

Now we highlight the power of materializing streams.
Figure 8 shows the performance of reading an entire
stream with a varying number of 32B entries and streams
in the log. The 100K stream case uses significantly fewer
entries, reflecting our expectation that CSMR objects
will increase the number of streams while decreasing the
number of entries per stream. As the number of streams
and entries increase, vCorfu greatly outperforms back-
pointers thanks to the ability to perform a single bulk
read, whereas backpointers must traverse the log back-

1e+00 1e+02 1e+04 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distribution of backpointer seek sizes

Number of log entries per seek

C
D

F

l
l

l
l
l

l
l
l
l

l
l

l
l

l
l
l
l

l

l
l

l
l

l
l

l
l

l
l

l
l
l
l

l
l

l
l
l
l
l

l
l

l
l

l
l

l

l
l

l
l

l
l

l
l
l
l

l
l
l

l
l
l
l

l
l
l
l
l
l

l
l
l
l
l

l

l
l
l

l
l
l
l
l

l
l
l

l
l

l
l
l

l
l

l
l
l

l
l

32 streams
1K streams
10K streams
100K streams
500K streams

Figure 9: Distribution of the entries that a backpointer implementation
must seek through. As the number of streams increases, so does the
number of entries that must be scanned as a result of a hole. With 500k
streams, there is a 50% chance that 10k entries will have to be scanned
due to a hole.

Time (s)

op
 p

er
 s

ec
0 10 20 30 40 50 60

0
20

K
40

K

l

l

Write
Read

Figure 10: Append and read throughput of a local view during stream
replica failure. On the dotted line, we fail a single stream replica. Ap-
pend throughput increases because the replication factor has now de-
creased, while read throughput remains constant.

wards before being able to serve a single read.
When hole-filling occurs due to client timeouts, back-

pointers perform very poorly, falling back to a scan be-
cause the hole fill does not contain backpointers result-
ing in a linear scan of the log. Figure 9 examines the
number of log entries a backpointer implementation may
have to read as a result of a hole. To populate this test,
we use 256 clients which randomly select a stream to
append a 32B entry to. We then generate a hole, vary-
ing the number of streams in the log, and measure the
number of entries that the client must seek through. The
backpointer implementation cannot do bulk reads, and
reading each entry takes about 0.3 ms. The median time
to read a stream with a hole takes only 210ms with 32
streams, but jumps to 14.8 and 39.6 seconds with 100K
and 500k streams, respectively. vCorfu avoids this issue
altogether because stream replicas manage holes.

Finally, Figure 10 shows that vCorfu performance
degrades gracefully when a stream replica fails, and
vCorfu switches to using the log replicas instead. We in-
stantiate two local views on the same object, and fail the
stream replica hosting the object at t = 29.5s. The sys-
tem takes about a millisecond to detect this failure and
reconfigure into degraded mode. The append throughput
almost doubles, since the replication factor has decreased
while the read throughput stays about the same, falling

back to using backpointers. Since the local view con-
tains all the previous updates in the stream, reading the
entire stream is not necessary. If a remote view was used,
however, vCorfu would have to read the entire stream to
restore read access to the object.

6.2 Remote vs. Local Views

Next, we examine the power of remote views. We first
show that remote views address the playback bottleneck:
In Figure 11, we append to a single local view and in-
crease the number of clients reading from their own
local views. As the number of views increases, read
throughput decreases because each view must playback
the stream and read every update. Once read through-
put is saturated readers are unable to keep up with the
updates in the system and read latency skyrockets: with
just 32 clients, the read latency jumps to above one sec-
ond. With a remote view, the stream replica takes care
of playback and even with 1K clients is able to maintain
read throughput and millisecond latency.

We then substantiate our claim that remote views offer
performance comparable to many NOSQL data stores.
In Figure 12, we run the popular Yahoo! cloud serv-
ing benchmark with Cassandra [1] (v 2.1.9), a popular
distributed key-value store, as well as the backpointer-
based implementation of vCorfu described in the pre-
vious section. In vCorfu, we implement a key-value
store using the CSMR map described in Section 5 with
a bucket size of 1024, and configure the system in a
symmetrical configuration with 12 replicas and a chain
length of 2. Since the Java map interface returns the pre-
vious key (a read-modify-write), we implement a spe-
cial fastPut() method, which does a write without
performing a read. For Cassandra, we configure 12
nodes with a replication factor of 2, SimpleStrategy
replica placement, a consistency level of ALL and select
the MurMur3Partitioner [24]. We turn off syn-
chronous writes to the commit log in Cassandra by set-
ting durable_writes to false. The workloads exer-
cised by YCSB are described in Table 2. We configure
YCSB with the default 1KB entry size.

vCorfu exhibits comparable write performance to Cas-
sandra - showing that the overhead of the sequencer is
low, since both Cassandra and vCorfu must write to two
replicas synchronously. However, for reads, Cassandra
must read from both replicas in order to not return stale
updates, while vCorfu can service the read from the log
replica. This leads to significant performance degrada-
tion for Cassandra on most of the read-dominated work-
loads in YCSB. In fact, even with an extra read, Cassan-
dra does not provide the same consistency guarantees as

l l l l

l

l

Number of Clients

La
te

nc
y

(s
)

1 2 4 8 16 32

l l l l l l

l

l

LocalView
RemoteView

0
1

2

Figure 11: Latency of requests under load with local views and re-
mote views. As the number of clients opening local views on an object
increases, so does the latency for a linearized read.

Load A B C F D E

vCorfu−Remote
Cassandra

Workload

Th
ro

ug
hp

ut
 (o

p/
se

c)

0
20

K
40

K
60

K
80

K
10

0K
12

0K
14

0K

Figure 12: YCSB suite throughput over 3 runs. Error bars indicate
standard deviation. Results in order executed by benchmark.

Name Workload Description
Load 100% Insert Propagating Database
A 50% Read/50% Update Session Store
B 95% Read/5% Update Photo Tagging
C 100% Read User Profile Cache
D 95% Read/5% Insert User Status Updates
E 95% Scan/5% Insert Threaded Conversations
F 50% Read/50% Read-Modify User Database

Table 2: YCSB workloads.

l l l l l

Number of Clients

TX
 p

er
 s

ec

1 2 4 8 16

l

l

l

l

l
l

l

LocalView
RemoteView

0
5K

10
K

Figure 13: Snapshot transaction performance. The number of snapshot
transactions supported scales with the number of client views.

vCorfu as cross-partition reads in Cassandra can still be
inconsistent.

6.3 Transactions

We claimed that vCorfu supports fast efficient trans-
actions through materialization and harnessing the se-
quencer as a fast, lightweight transaction manager. We
demonstrate this by first examining the performance of
read-only transactions, and then compare our optimistic
and fast-locking transaction design to other transactional
systems.

l l

l

l

Number of Clients

TX
 p

er
 s

ec

1 10 100 200

0
4K

8K
l l l

l

l l

l

l

0
30

60
90

2P
L

A
bo

rt
 %l

l

l

2PL
2PL AbortRate
vCorfu

Figure 14: Read-only Transactions Goodput vs. 2PL. As the number
of reader clients increase, so does the abort rate for 2PL. In vCorfu, the
goodput remains 100%, since read-only transactions never conflict.

We begin our analysis of read-only transactions by
running a microbenchmark to show that snapshot trans-
actions scale with the number of clients in vCorfu. In
Figure 13, we run snapshot transactions against the
YCSB populated database in the previous section with
both local views and remote views. Each transaction se-
lects a random snapshot (log offset) to run against, and
reads 3 keys. Local views suffer from having to play-
back the log on each read (they currently do not utilize
the snapshots generated by the stream replicas), and can
only sustain a few hundred operations per second, while
remote views take advantage of the stream replicas abil-
ity to perform playback and sustain nearly 10K transac-
tions/s, and scales with the number of clients.

Next, we compare read only transactions to a 2PL ap-
proach taken by many NOSQL systems. We use the
same Cassandra cluster as in the previous section with
a single node ZooKeeper lock service (v 3.4.6) and com-
pare against vCorfu. In the 2PL case, a client acquires
locks from ZooKeeper and releases them when the trans-
action commits. Objects can be locked either for read or
for writes, To prevent deadlock, if a transaction cannot
acquire all locks, it releases them and aborts the trans-
action. We use a single writer which selects 10 entries
at random to update, and set the target write transaction
rate at 5K op/s, and populate each system with 100K
objects. We then add an increasing number of reader
threads, each which read 10 entries at random. Figure 14
shows that as the number of readers increase, so does the
abort rate for the writer thread in the 2PL case, until at
200 concurrent readers, where the abort rate is 92% and
the writer thread only can perform a few hundred op/s. In
vCorfu, read-only transactions never conflict with other
transactions in the system, so the writer throughput re-
mains constant.

We then evaluate vCorfu using a benchmark which
models a real-world advertising analytics workload. In
this workload, a database tracks the number of views on
web pages. Each view contains a small amount of data,
including the IP address, and x,y coordinates of each
click. Each web page is modeled as an vCorfu object,
and the pages views are constantly recorded by a simu-
lator which generates 10K page views/sec. The database

Time (m)

op
 p

er
 s

ec
on

d

0 5 10 15 20 25 30

0
10

K
20

K

2
6

10

La
te

nc
y

(u
s)l

l

l

l

WithoutAnalytics−TPut
WithAnalytics−TPut
WithoutAnalytics−Latency
WithAnalytics−Latency

Figure 15: Advertising analytics workload. The system exhibits con-
sistent write performance with a long-running read-only transaction.

tracks a total of 10K pages. We then run a long-running
analytics thread, which for 30 minutes, runs a read-only
snapshot which iterates over all the web pages, changing
the snapshot it is running against every iteration. In Fig-
ure 15, we show that running the analytics thread has no
impact on write throughput or latency of the system.

6.4 CSMR

Next, we investigate the trade-offs afforded by CSMR.
One of the main benefits of CSMR is that it divides large
SMR objects into smaller SMR objects, reducing the cost
of playback, and reducing the burden on stream repli-
cas. In Figure 16 (top), we compare the performance
of initializing a new view and servicing the first read
on a in-memory local view of a traditional SMR map,
and a CSMR map of varying bucket sizes using 1KB en-
tries. We test using both a uniform key distribution and a
skewed Zipf [13] distribution. In a CSMR map, servicing
the first read only requires reading from a single bucket,
and as the number of buckets increases, the number of
updates, and the resulting in-memory state that has to be
held is reduced. With 100MB of updates, the SMR map
takes nearly 10s to open, while the CSMR maps take no
more than 70ms for both the zipf and uniform random
distributions, reflecting a 150× speedup.

In addition to keeping the size of the SMR object
small, dividing the SMR object through CSMR also re-
duces contention in the presence of concurrency. Since
concurrent writers now touch multiple smaller objects in-
stead of one large object, the chance of conflict is re-
duced. In Figure 16 (bottom) we compare the abort rate
of SMR maps and CSMR maps as before. We perform a
transaction which performs two reads and a write over
uniformly distributed and zipf distributed keys. Even
with only two concurrent writers, transactions on the
SMR map must abort half the time. With the CSMR map
with 1000 buckets, even with 16 concurrent writers, the
abort rate remains at 2%.

Finally, we examine the cost of CSMR: since the state
machine is divided into many smaller ones, operations
which affect the entire state will touch all the divided
objects. To quantify this cost, Figure 17 performs a clear
operation, followed by a size operation - which requires

l l l l

l

l

0
40

00
80

00
Uniform

La
te

nc
y

(m
s)

1 10 100 1000 10000 100000

l l l l l

l

l l l l l ll l l l l l

l

l

l

l

Primitive
C10
C100
C1000

l l l
l

l

l

0
40

00
80

00

zipf

La
te

nc
y

(m
s)

1 10 100 1000 10000 100000

l l l l
l

l

l l l l l ll l l l l l

Number of Inserts

l

l
l

l

l

A
bo

rt
 R

at
e

(%
)

1 2 4 8 16

l

l

l

l

l

l
l l

l

l

l l l l l0%

20%

40%

60%

80%

100%

l

l

l

l

l

A
bo

rt
 R

at
e

(%
)

1 2 4 8 16

l

l

l

l

l

l

l l
l

l

l l l l

l

0%

20%

40%

60%

80%

100%

Number of Clients

Figure 16: Top: The latency of initializing a local view versus the
number of updates to the object, for different bucket sizes and on a
primitive SMR map. Bottom: The abort rate of optimistic transactions
with varying concurrency and bucket sizes on a primitive SMR map.

l l l l
l

Number of Buckets

La
te

nc
y

(s
)

1 10 100 1000 10000

l l
l

l

l

l

l

FirstRead
InMemory

0
10

20

Figure 17: The latency of a clear operation followed by a size opera-
tion versus the number of buckets.

a transactional write followed by a transactional read to
all buckets. If this operation is performed using remote
views, the latency remains relatively low, even with 10K
buckets, but can shoot up to almost 30s if a remote view
has to playback entries for all buckets. This shows that
even with a heavily divided object, remote views keep
CSMR efficient even for transactional operations.

7 Related Work

The vCorfu stream store design is inspired by Re-
plex [39] and Hyperdex [20], systems which deviate
from traditional replication by placing replicas according
to multiple indexes. In vCorfu, we use two indexes: one
for the log replicas and the other for a stream replicas.
The unique requirement in vCorfu is that these indexes
will maintain the same relative ordering for entries: two
entries i, j which appear on a stream such that i precedes
j must also appear on the global log with i preceding j.
This requirement is enforced by the dynamic chain repli-
cation protocol described in Section 4.

Whereas vCorfu starts with a global shared log as
a source of serialization and virtualizes it, other trans-
actional distributed data platforms do precisely the op-
posite: They partition data into shards, and build dis-
tributed transactions over them. A wide variety of mech-
anisms were developed for distributed transactions at
scale, some providing weaker semantics than serializ-
ability [5, 25], others optimize specific kinds of trans-
actions [6]. The cores of serializable transaction systems

include variants of two-phase locking [17, 32], a seri-
alization oracle [8, 15], or a two-round distributed or-
dering protocol [20, 31]. By leveraging both log and
stream replicas, vCorfu provides both the benefits of a
total order and partitioning at the same time. In partic-
ular, vCorfu trivially supports lockless read-only trans-
actions. This turns out to be a desirable capability for
long-lived analytics transactions, which has caused con-
siderable added complexity in systems [17, 29].

vCorfu is built around SMR [37], which has been
used both with [10, 11] and without [7, 23] shared logs
to implement strongly consistent services. The SMR
paradigm requires that each replica store a complete copy
of the state, which is impractical for replicating large sys-
tems at scale, such as databases. vCorfu takes advantage
of CSMR to logically partition large state machines, and
stream replicas to scale SMR and the shared log to many
clients.

vCorfu also shares similarities to log-structured file
systems such as LFS [34], btrfs [33] and WAFL [19].
These systems suffer from a recursive update prob-
lem [42], which can result in significant write amplifi-
cation and performance degradation. CSMR avoids this
issue, since pointers to vCorfu objects refer to the latest
version of the object, no pointer updates are required.

8 Conclusion

Driving transacional data platforms over a shared log is
a well understood paradigm in the database world, but
has been challending to scale out in systems like Hy-
der, Tango, and Calvin; driving data platforms over a
scattered collection of logs like Kafka or Kinesis has
met serious challenges around consistency and transac-
tions. The vCorfu branch store strikes an ideal bal-
ance which marries the global consistency advantages of
shared logs with the locality advantages of distributed
data platforms. We presented the vCorfu design and im-
plementation and described how it tackles performance
challenges in data services with strong and rich atomic-
ity guarantees.

Acknowledgements

This paper is dedicated to all members of the Corfu team,
wherever they may be today. Special thanks to our shep-
herd, Robbert van Renesse for his detailed feedback, as
well as our anonymous reviewers, for their helpful feed-
back and the term materialized stream.

References

[1] Cassandra. http://cassandra.apache.
org/.

[2] Cockroach Labs. http://www.
cockroachlabs.com/.

[3] Couchbase. http://www.couchbase.com/.

[4] Gemfire. http://www.gemfire.com/.

[5] Marcos K. Aguilera, Joshua B. Leners, and Michael
Walfish. Yesquel: Scalable SQL storage for web
applications. In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP ’15, pages
245–262, Monterey, California, USA, 2015. ACM.

[6] Marcos K. Aguilera, Arif Merchant, Mehul Shah,
Alistair Veitch, and Christos Karamanolis. Sin-
fonia: A new paradigm for building scalable dis-
tributed systems. ACM Transactions on Computer
Systems (TOCS), 27(3):5:1–5:48, November 2009.

[7] Deniz Altinbuken and Emin Gun Sirer. Commodi-
fying replicated state machines with OpenReplica.
2012.

[8] J. Baker, C. Bond, J.C. Corbett, J. Furman,
A. Khorlin, J. Larson, J.M. Léon, Y. Li, A. Lloyd,
and V. Yushprakh. Megastore: providing scalable,
highly available storage for interactive services. In
Proceedings of Conference on Innovative Data Sys-
tems Research, CIDR, pages 223–234, Asilomar,
CA, USA, 2011.

[9] Mahesh Balakrishnan, Dahlia Malkhi, John D.
Davis, Vijayan Prabhakaran, Michael Wei, and
Ted Wobber. Corfu: A distributed shared log.
ACM Transactions on Computer Systems (TOCS),
31(4):10, 2013.

[10] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wob-
ber, Ming Wu, Vijayan Prabhakaran, Michael Wei,
John D. Davis, Sriram Rao, Tao Zou, and Aviad
Zuck. Tango: Distributed data structures over a
shared log. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
Nemacolin, PA, USA.

[11] Philip A Bernstein, Colin W Reid, and Sudipto Das.
Hyder-A transactional record manager for shared
flash. CIDR, Asilomar, CA.

[12] Josiah L. Carlson. Redis in Action. Manning Pub-
lications Co., 2013.

[13] William B. Cavnar, John M Trenkle, et al. N-gram-
based text categorization. In 3rd Annual Sympo-
sium on Document Analysis and Information Re-
trieval (SDAIR ’94), volume 48113, pages 161–
175, Las Vegas, NV, USA, 1994.

[14] Kristina Chodorow. MongoDB: the definitive
guide. O’Reilly Media, 2013.

[15] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh
Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver,
and Ramana Yerneni. PNUTS: Yahoo!’s hosted
data serving platform. Proceedings of the Very
Large Data Base Endowment, 1(2):1277–1288,
August 2008.

[16] Brian F. Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears. Bench-
marking cloud serving systems with YCSB. In
Proceedings of the 1st ACM Symposium on Cloud
Computing (SOCC), pages 143–154, Indianapolis,
IN, USA, 2010. ACM.

[17] James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, J. J. Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, Wilson Hsieh, Sebastian
Kanthak, Eugene Kogan, Hongyi Li, Alexander
Lloyd, Sergey Melnik, David Mwaura, David Na-
gle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-
sushi Saito, Michal Szymaniak, Christopher Tay-
lor, Ruth Wang, and Dale Woodford. Span-
ner: Google’s globally-distributed database. In
Proceedings of the 10th USENIX conference on
Operating Systems Design and Implementation,
OSDI’12, pages 251–264, Hollywood, CA, USA,
2012. USENIX Association.

[18] Giuseppe DeCandia, Deniz Hastorun, Madan Jam-
pani, Gunavardhan Kakulapati, Avinash Lakshman,
Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s
highly available key-value store. ACM SIGOPS
Operating Systems Review (OSR), 41(6):205–220,
2007.

[19] John K. Edwards, Daniel Ellard, Craig Everhart,
Robert Fair, Eric Hamilton, Andy Kahn, Arkady
Kanevsky, James Lentini, Ashish Prakash, Keith A.
Smith, et al. FlexVol: flexible, efficient file volume
virtualization in WAFL. In USENIX 2008 Annual
Technical Conference (ATC ’08), pages 129–142,
Boston, MA, USA, 2008. USENIX Association.

http://cassandra.apache.org/
http://cassandra.apache.org/
http://www.cockroachlabs.com/
http://www.cockroachlabs.com/
http://www.couchbase.com/
http://www.gemfire.com/

[20] Robert Escriva, Bernard Wong, and Emin Gün
Sirer. Hyperdex: A distributed, searchable key-
value store. ACM SIGCOMM Computer Commu-
nication Review, 42(4):25–36, 2012.

[21] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant,
Karthikeyan Sankaralingam, and Doug Burger.
Dark silicon and the end of multicore scaling. In
38th Annual International Symposium on Com-
puter Architecture (ISCA ’11), pages 365–376, San
Jose, CA, USA, 2011. IEEE.

[22] Rachid Guerraoui and Michal Kapalka. On the cor-
rectness of transactional memory. In Proceedings
of the 13th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP
’08), pages 175–184, Salt Lake City, UT, 2008.
ACM.

[23] Patrick Hunt, Mahadev Konar, Flavio Paiva Jun-
queira, and Benjamin Reed. Zookeeper: Wait-free
coordination for internet-scale systems. In USENIX
Annual Technical Conference (ATC ’10), Boston,
MA, USA.

[24] Markus Klems, David Bermbach, and Rene Wein-
ert. A runtime quality measurement framework
for cloud database service systems. In Quality
of Information and Communications Technology
(QUATIC), 2012 Eighth International Conference
on the, pages 38–46. IEEE, 2012.

[25] Tim Kraska, Gene Pang, Michael J. Franklin,
Samuel Madden, and Alan Fekete. MDCC: Multi-
data center consistency. In Proceedings of the 8th
ACM European Conference on Computer Systems,
EuroSys ’13, pages 113–126, Prague, Czech Re-
public, 2013. ACM.

[26] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka:
A distributed messaging system for log processing.
In Proceedings of the NetDB, pages 1–7, 2011.

[27] Leslie Lamport. The part-time parliament. FAST,
3:15–30, 2004.

[28] Michael Luby and Charles Rackoff. How to con-
struct pseudorandom permutations from pseudo-
random functions. SIAM Journal on Computing,
17(2):373–386, 1988.

[29] Dahlia Malkhi and Jean-Philippe Martin. Span-
ner’s concurrency control. ACM SIGACT News,
44(3):73–77, 2013.

[30] Sajee Mathew. Overview of Amazon Web Services.
Amazon Whitepapers, 2014.

[31] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd,
and Jinyang Li. Extracting more concurrency from
distributed transactions. In 11th USENIX Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI’ 14), pages 479–494, Broomfield,
CO, USA, October 2014. USENIX Association.

[32] D. Peng and F. Dabek. Large-scale incremental pro-
cessing using distributed transactions and notifica-
tions. In Proceedings of the 9th USENIX confer-
ence on Operating Systems Design and Implemen-
tation (OSDI ’10), Vancouver, BC, Canada.

[33] Ohad Rodeh, Josef Bacik, and Chris Mason. btrfs:
The Linux B-tree filesystem. ACM Transactions on
Storage (TOS), 9(3):9, 2013.

[34] Mendel Rosenblum and John K. Ousterhout. The
design and implementation of a log-structured file
system. ACM Transactions on Computer Systems
(TOCS), 10(1):26–52, 1992.

[35] Pierangelo Di Sanzo, Bruno Ciciani, Francesco
Quaglia, and Paolo Romano. A performance
model of multi-version concurrency control. In
Modeling, Analysis and Simulation of Computers
and Telecommunication Systems, 2008. MASCOTS
2008. IEEE International Symposium on, pages 1–
10. IEEE, 2008.

[36] Frank Schmuck and Jim Wylie. Experience with
transactions in QuickSilver. In ACM SIGOPS Op-
erating Systems Review (OSR), volume 25, pages
239–253. ACM, 1991.

[37] Fred B. Schneider. Implementing fault-tolerant ser-
vices using the state machine approach: A tutorial.
ACM Computing Surveys (CSUR), 22(4):299–319,
1990.

[38] Alfred Z. Spector, Joshua J. Bloch, Dean S.
Daniels, and Richard P. Draves. The Camelot
project. 1986.

[39] Amy Tai, Michael Wei, Michael J. Freedman, Ittai
Abraham, and Dahlia Malkhi. Replex: A scalable,
highly available multi-index data store. In 2016
USENIX Annual Technical Conference (USENIX
ATC ’16), Denver, CO, June 2016. USENIX As-
sociation.

[40] Alexander Thomson and Daniel J. Abadi. Calv-
inFS: consistent WAN replication and scalable
metadata management for distributed file systems.
In 13th USENIX Conference on File and Storage
Technologies (FAST ’15), pages 1–14, Santa Clara,
CA, 2015.

[41] Alexander Thomson, Thaddeus Diamond, Shu-
Chun Weng, Kun Ren, Philip Shao, and Daniel J.
Abadi. Calvin: Fast distributed transactions for par-
titioned database systems. In Proceedings of the
2012 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’12, pages 1–12,
Scottsdale, Arizona, USA, 2012. ACM.

[42] Yiying Zhang, Leo Prasath Arulraj, Andrea C.
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
De-indirection for flash-based SSDs with nameless
writes. In Proceedings of the 10th USENIX confer-
ence on File and Storage Technologies (FAST ’12),
page 1, Santa Clara, CA, USA, 2012.

	Introduction
	Background
	Data Stores
	Scalable Shared Logs
	State Machine Replication

	vCorfu Stream Store
	Fully Elastic Layout
	Appending to vCorfu materialized streams
	Atomically appending to multiple streams
	Properties of the vCorfu Stream Store

	The vCorfu Architecture
	vCorfu Runtime
	vCorfu Objects
	Transactions in vCorfu
	Querying Objects

	Composable State Machine Replication
	Evaluation
	vCorfu Stream Store
	Remote vs. Local Views
	Transactions
	CSMR

	Related Work
	Conclusion

