A Peer-to-Peer Anonymizing Network Layer
by
Michael J. Freedman

S.B., Computer Science and Engineering,
Massachusetts Institute of Technology (2001)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2002

(© Massachusetts Institute of Technology 2002. All rights reserved.

Department of Electrical Engineering and Computer Science
June 17, 2002

Certified DY . e
Robert T. Morris

Assistant Professor of Computer Science and Engineering

Thesis Supervisor

ACCEPted DY . .
Arthur C. Smith
Chairman, Department Committee on Graduate Students

A Peer-to-Peer Anonymizing Network Layer

by
Michael J. Freedman

Submitted to the Department of Electrical Engineering and Computer Science
on June 17, 2002, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Existing Internet systems implement anonymity at the application layer or through centralized com-
ponents. A robust, decentralized infrastructure that anonymizes any Internet traffic could benefit a
wide array of existing protocols and systems. This anonymous network layer could seamlessly re-
place the current communications channel, and it could continue to offer anonymity and availability
even while components fail maliciously.

This thesis proposes Tarzan, a peer-to-peer anonymous IP network overlay. Because it provides
IP service, Tarzan is general-purpose and transparent to applications. Organized as a decentralized
peer-to-peer overlay, Tarzan is fault-tolerant, highly scalable, and easy to manage.

Tarzan achieves its anonymity with layered encryption and multi-hop routing, much like a Chau-
mian mix. A message initiator chooses a path of peers pseudo-randomly in a way that adversaries
cannot easily influence. Cover traffic prevents a global observer from drawing conclusions based
on traffic analysis as to an initiator’s identity.

Tarzan provides anonymity to either clients or servers, without requiring that both participate,
presenting the abstraction of a one-way anonymous tunnel. In both cases, Tarzan uses a network
address translator (NAT) to bridge between Tarzan hosts and oblivious Internet hosts.

We quantify Tarzan’s anonymity properties and show that Tarzan imposes minimal performance
overhead over a corresponding non-anonymous overlay route.

Thesis Supervisor: Robert T. Morris
Title: Assistant Professor of Computer Science and Engineering

Acknowledgments

First, I would like to thank my advisor, Robert Morris, for his guidance and advice for both my
research and my professional life. Robert is always able to focus on the real problems, ask the right
questions, and steer me away from purely tangential issues. Although this topic falls outside his
normal interests, Robert welcomed and fully supported me nonetheless.

Second, | acknowledge Emil Sit and Josh Cates for significant contributions to the software
design and implementation of the basic Tarzan tunnelling architecture.

| first became interested in Internet anonymity through work with Roger Dingledine and David
Molnar. | thank them for fun paper collaborations and continued interesting discussions.

My research has benefited from many other people. | thank David Karger and Charles Leiserson
for theoretical discussions on peer discovery, and David Andersen and Chuck Blake for help on the
systems-side. Furthermore, David Maziéres, Frans Kaashoek, Richard Clayton, George Danezis,
and the rest of PDOS have provided useful thoughts and comments.

MIT and LCS have been amazing places for learning and discovery for these past five years.
I doubt if they can be replicated elsewhere. Wonderful summer experiences at ZKS Labs and In-
terTrust STAR Lab also motivated my desire to pursue academics.

My MITOC friends have kept me sane with numerous adventures, over cliff and yonder moun-
tain, through summer’s breeze and winter’s roar. Nick Feamster and Ajay Kulkarni have provided
excellent late-night discussions, both in computer science and otherwise.

Lastly, I wish to dedicate this thesis to my family. My parents have been a constant source of
support and love: My father has taught me the value of dedication, perserverance, and constancy;
my mother has nurtured and reinforced in me a concern for others. My brother continues to look
out for his younger sibling in his own way and has always been a receptive audience, even though
his talents lie in physics. My four grandparents—one now of blessed memory—have been just as

instrumental in raising me. | hope | have made them proud.

Contents

1

3

Introduction

11
1.2
1.3

Theproblem e e
Oursolution e

ThesiS OVEIVIEW e

Design goals and network model

Architecture and design

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Packetrelay e
Tunnel setup e e e
IP packet forwarding
Tunnel failure and reconstruction
Peerdiscovery e e
Peerselection
Cover traffic mechanisms
3.7.1 Selectingmimics
3.7.2 Tunnelling through mimics

3.7.3 Unifying trafficpatterns

Security analysis

4.1
4.2

Asimpleattack model
Measuring anonymity
4.2.1 Protecting relay selection
4.2.2 Securing resource disCOVery

4.2.3 Hardening the open admissions policy

4.2.4 Enforcing proper mimic selection
4.3 Considering independent node failure,
4.4 Passive observation and covertraffic o oL
4.4.1 Information leakage fromtunnels

4.4.2 Information leakage from application-layer

5 Implementation

6 Performance

7 Integration
7.1 Transport-layer protocols L.
7.2 Application-layer protocols

7.3 Software systems e e

8 Reated Work
8.1 Application-specific systems
8.1.1 Anonymousemail
8.1.2 Anonymouswebbrowsing
8.1.3 Anonymous publishing, storage, and file-sharing systems

8.2 Towardsanonymous IProuting
9 Conclusion

Bibliography

50

51

Chapter 1

| ntroduction

The right to be let alone is indeed the beginning of all freedom.
— William O. Douglas, U.S. Supreme Count Justice, 1939-1975

Every man should know that his conversations, his correspondence, and his personal

life are private.
— Lyndon B. Johnson, President of the United States, 1963-69

Over the past decade, the Internet has seen explosive growth in both the number of users and
the sheer quantity of available materials. This expansion has changed its role from the realm of
academic research to that of mainstream use. As users perform more conventional activities on
the Internet everyday, the amount and value of information related to these activities becomes ever
greater.

The New Yorker magazine explained in a famous cartoon, “On the Internet, nobody knows
you’re a dog” [18]. Unfortunately, the opposite has become increasingly true. While people do not
communicate face-to-face in this medium, identities can be assigned to Internet users nonetheless.
Some party can monitor and log virtually every email a user sends, every post to a newsgroup,
every purchase made online, and every World Wide Web page accessed. Furthermore, the growth
of online databases, the trend towards cheaper and larger hard disks, and the increase in bandwidth
capacity all provide for the easy storage of and access to personal information.

In such ways, the Internet enables an improved means of forming personal dossiers on in-
dividuals by aggregating information from possibly diverse sources. A multitude of entities—

governments, corporations, organizations, and other individuals—may create and use these dossiers.

The lack of privacy in online activities is fairly obvious. Email headers include the routing
paths of email messages, including DNS names and IP addresses. Web browsers display user IP
addresses; web servers log this information by default. Commonly-used online chat applications
such as ICQ and Instant Messenger divulge IP addresses as well.

But the Internet also offers the potential for greater personal privacy. Enabling technologies can
bring privacy to areas and activities where such protection was previously impossible. Communi-
cations anonymity provides a means for reaching this goal. This type of anonymity “blinds” any

information that may be divulged on a communications channel between any two or more parties.

1.1 The problem

The ultimate goal of Internet anonymization is to allow a host to communicate with an arbitrary
server in such a manner that nobody can determine the host’s identity. Toward this goal, we envision
an Internet-wide pool of nodes, numbered in the millions, that relay each others’ traffic to gain
anonymity. This thesis describes a design aimed at realizing that vision. First, however, we discuss
why less ambitious approaches are not adequate.

In the simplest alternative to our vision, a host connects to a server through a proxy, such as
Anonymizer.com [1]. This system fails if the proxy reveals a user’s identity or an adversary can
observe the proxy’s traffic. Furthermore, servers can block these centralized proxies and adversaries
can prevent usage with denial-of-service attacks.

To overcome this single point of failure, a host can connect to a server through a set of mix
relays [3]. The anonymous remailer system [10], Onion Routing [25], and Zero-Knowledge’s Free-
dom [12] offer such a model, providing anonymity through a small, fixed core set of relays. How-
ever, a corrupt relay can perform network-edge traffic analysis on such a system: if the relay receives
traffic from a non-core node, that node must be the ultimate origin of the traffic. A corrupt entry
and exit relay can use timing analysis to determine both source and destination. An external adver-
sary capable only of observing traffic that enters and exits the set of core relays can make the same
analysis. This attack reduces the anonymizing power of long mix paths. Therefore, the connecting
host still remains vulnerable to individual relay failures, and these relays provide obvious targets for

attacking or blocking.

10

1.2 Our solution

Tarzan, the design presented in this thesis, involves sequences of mix relays chosen from a large
pool of volunteer participants. All participants are equal peers; they are all potential originators
of traffic, as well as potential relays. This design overcomes the edge-analysis weakness: a relay
cannot tell if it is the first hop in a mix path.

An open-ended set of participating nodes composes Tarzan, lacking in any centralized com-
ponent. As in other peer-to-peer systems, this lowers the barriers to participation. Tarzan allows
client applications on participating hosts to talk to non-participating servers on the Internet. Tarzan
is transparent to both client applications and servers, though it must be installed and configured on
each participating node. In the long term, the ability for individual anonymizing relays to participate
in multiple kinds of traffic may make it easier to achieve a critical mass of anonymizing relays.

Tarzan routes packets through tunnels involving a randomly chosen sequence of Tarzan peers
using mix-style layered encryption [3]. The two ends of a tunnel are a Tarzan node running a client
application and a Tarzan node running a network address translator; the latter forwards the client’s
traffic to the ultimate destination, an ordinary Internet server. These mechanisms provide anonymity
in the face of malicious Tarzan participants, inquisitive Internet servers, and observers who can see
traffic on a very limited number of network links.

Tarzan also uses cover traffic to ensure anonymity, even if an adversary can passively observe
most or all network traffic. Tarzan generates the cover traffic using a novel mimic technique, prac-
tical in the sense that it consumes only a small factor more bandwidth than the data traffic to be
hidden, and powerful in that it shields all network participants, not only some core routers.

Tarzan supports a systems-engineering position: anonymity can be built-in at the transport layer,
transparent to most systems, trivial to incorporate, and with a tolerable loss of efficiency compared
to its non-anonymous counterpart. This approach immediately reduces the effort required for ap-
plication writers to incorporate anonymity into existing designs, and for users to add anonymity

without changing existing non-anonymous applications.

1.3 Thesis overview

The rest of this thesis is structured as follows. Chapter 2 explains the two threat models that Tarzan
considers. Chapter 3 describes the design of Tarzan: its tunneling architecture, peer discovery

and selection protocols, and cover traffic mechanism. Chapter 4 presents an analysis of Tarzan’s

11

anonymity properties. Chapter 5 describes Tarzan’s implementation, and Chapter 6 evaluates its
performance. Chapter 7 discusses integration transparency, Chapter 8 describes related work, and

Chapter 9 concludes.

12

Chapter 2

Design goals and network model

We use the following terminology. A node is an Internet host running an instantiation of the Tarzan
software on a single IP address. A node, named by a unique IP address and public key, constitutes
a unique identity in the system. A tunnel is an ordered sequence of nodes that form a virtual circuit
for communication. A relay is a node acting as a packet forwarder as part of a tunnel.

We designed Tarzan to meet a number of goals. Ordered by priority, the goals are the following:

1. Application independence: Tarzan should provide the abstraction of an IP tunnel and per-

form transparently to user applications.

2. Anonymity against malicious nodes. Tarzan should ensure that a participant has sender and
recipient anonymity against colluding nodes. That is, a particular host should not be uniquely
linkable as the sender (recipient) of any message, and that a message should not be linkable
to any sender (recipient). We consider these properties in terms of an anonymity set: the
set of possible senders of a message. The larger this set, the “more” anonymous an initiator

remains.

This property implies the weaker relationship anonymity: an adversary should not be able
to identify a pair of hosts as communicating with each other, irrespective of which host is

running Tarzan.

3. Fault-tolerance and availability: Tarzan should resist an adversary’s attempts to overload
the system or to block system entry or exit points. Tarzan should minimize the damage any
one adversary can cause by running a few compromised machines. We note that centralized

anonymizing systems do not offer these properties.

13

unswitched

correct routers (O correct nodes
maliciousrouters @ malicious nodes

L]
|

" corrupted domains

spoofed nodes

Figure 2-1: Tarzan network model. In relation to node X, adversarial machines can control address
spaces and can spoof virtual nodes within corrupted domains.

4. Performance: Tarzan should maximize the performance of tunnel transmission, subject to

our anonymity requirements, to make Tarzan a viable IP-level communication channel.

5. Anonymity against a global eavesdropper: An adversary observing the entire network
should be unable to determine which Tarzan relay initiates a particular message. Therefore,
a node’s originated traffic should be statistically indistinguishable from the traffic it receives-

and-forwards.

Because anybody can join Tarzan, the system will likely include misbehaving entities. A correct
entity will run one correct node, which forwards packets properly, does not log addressing or timing
information, and so on. A faulty entity, also referred to as an active adversary, will run potentially
many malicious nodes. A node is malicious if it modifies, drops, or records packets, analyzes traffic
patterns, returns incorrect network information, or otherwise does not properly follow the protocols.

To a first approximation, the fraction of Tarzan nodes that are malicious determines the prob-
ability that the malicious nodes can break anonymity. Unfortunately, a single malicious computer
might be able to pretend to be multiple nodes by controlling multiple IP addresses and thus multiple
Tarzan identities.

We assume that one malicious computer controls only a contiguous range of IP addresses, typ-
ically by promiscuously receiving packets addressed to any IP address on a particular LAN. This

assumption will turn out to be useful in bounding the damage each malicious node can cause. We

14

will call the contiguous range of IP addresses controllable by a single malicious computer a do-
main.t

A node belongs to a /d domain if the node’s d-bit IP prefix matches that of the domain. Figure 2-
1 shows the dependence of intra-domain node failure: a malicious machine “owns” all of the address
space behind it.

Domains capture some notion of fault independence: an adversary can subvert nodes within the
same domain in a dependent fashion. We assume that nodes in different domains fail independently
(modulo software exploits and the like). Therefore, when choosing relays, Tarzan should consider
the notion of distinct domains, not that of distinct nodes. This differentiation is unique to Tarzan
among anonymous systems.

Ideally, we would know the actual size of each domain in address space and count all nodes
within that address space as a single entity. However, this internetwork topology is non-uniform
and difficult to measure. Therefore, Tarzan chooses some fixed IP prefix size as its granularity for
counting domains: first among /16 subnet masks, then among /24 masks. We believe that this

provides a reasonable notion of distinct physical and administrative control.

10ur domain notion is completely unrelated to DNS.

15

Chapter 3

Architecture and design

This section describes the design of Tarzan: the basic tunnel mechanism, the peer discovery proto-
col, and the cover traffic technique.

Figure 3-1 shows a simple Tarzan overlay network. All participating nodes run software that
1) discovers other participating nodes, 2) intercepts packets generated by local applications that
should be anonymized, 3) manages tunnels through chains of other participants to anonymize these
packets, 4) forwards packets to implement other nodes’ tunnels, and 5) operates a NAT (network
address translator) to forward other participants’ packets onto the ordinary Internet.

Typical use proceeds in three stages. First, a node running an application that desires anonymity
selects a set of nodes to form a path through the overlay network. Next, this source-routing node
establishes a tunnel using these nodes, which includes the distribution of ephemeral encryption
keys. Finally, it routes data packets through this tunnel. The exit point of the tunnel is a NAT. This
NAT forwards the anonymized packets to servers that are not aware of Tarzan, and it receives the
responses from these oblivious servers and reroutes the packets over this tunnel.

Tarzan operates at the IP (Internet Protocol) level and offers a best-effort delivery model. End
hosts must provide functionality like like reliability or authentication.

Tarzan uses layered encryption similar to Chaumian mixes [3]: each leg of the tunnel removes
or adds a layer of encryption, depending upon the direction of traversal of the packet. The tunnel

initiator sanitizes IP headers.

16

L \ Internet

cgggt initiator | relayd : | relayd | PNAT _T_> Dest
/\,{ <ma»PrI>/zsz;a)‘ (s Ui '

src. PNAT

kernel dst: Dest
Zrc: App divert Iagfﬂ-__l Tag 17 Tag: 59
relayd | src: Priv I src: Priv |} src: Priv relayd !
Ii| dst: Dest [} i dst: Dest dst: Dest /

Figure 3-1: Tarzan Architecture Overview: An IP packet is diverted to the local tunnel initiator,
which NATs it to a private address space, wraps it in several layers of encryption, and sends it to the
first relay in UDP. Based on the packet’s flow tag, the relay decrypts one layer of the encryption and
sends the result to the next relay. The PNAT decrypts the last layer, extracts the original IP packet,
NATSs the packet to its own public address, and writes the raw packet to the Internet.

3.1 Packet relay

A Tarzan tunnel passes two distinct types of messages between nodes: data packets, to be relayed
through existing tunnels, and control packets, containing commands and responses that establish
and maintain these virtual circuits. Tarzan encapsulates both packet types inside UDP.

A flow tag (similar to MPLS [22]) uniquely identifies each link of each tunnel. A relay rapidly
determines how to route a packet based on its tag. Symmetric encryption protects data on a per-relay
basis, with separate keys being used in each direction of each relay.

In the forward path, the tunnel initiator clears each IP packet’s source address field, performs a
nested encryption per tunnel relay, and encapsulates the result in a UDP packet. More precisely, if
the tunnel consists of a sequence of nodes 7" = (h1, ha, ..., hy, hpmt)l and the forward key for each
node is ky,, the originating node produces the encrypted block {{---{{p}x, . ‘&, == }rn, ks,

from the input packet p. The origin tags this block with the first relay’s flow identifier and forwards

pnat

it to ~;. That node’s relay will decrypt the block (i.e., strip off one layer of encryption,) retag the
packet, and forward it on to the next relay. This process continues until the packet reaches the last
relay, which strips off the innermost layer of encryption, revealing the initiator’s IP packet.

On the reverse path, each successive relay performs a single encryption with its appropriate key
for the reverse direction, re-tags and forwards the packet back towards the origin. This process wraps
the packet in layers of encryption, which the origin of the tunnel must unwrap by performing [+1

decryptions. Note that this design places the bulk of the encryption workload on the node seeking

1Section 3.7 explains our strange bookkeeping with the last relay.

17

ho = initiator;
hi1 €r {nodes};
fori=1tol
hi+1 €r {nodes}
send establish_request(h;_1, h;y1) to h; viatunnel;
rc =wait for establish_response;
if rc € {lok, timeout}
1=1—1;
while rc € {!ok, timeout}
if max retries exceeded
decrement 7 and break;
hiy1 €r {nodes};
send reset_forward_request(h;1) to h;;
rc¢ =wait for reset_forward_response;
send establish_response(h;) t0 hpnas;

Figure 3-2: Pseudocode for tunnel establishment protocol

anonymity. Nodes that are merely relaying will perform only a single symmetric key operation per

packet that is processed.?

3.2 Tunnel setup

When forming a tunnel, a Tarzan node randomly selects a series of nodes from existing peers in
the network. Each relay publishes a public key that it generates locally the first time the it enters
the network. We rely on this relay being the only one that knows the corresponding private key.
Section 3.5 describes how Tarzan discovers nodes and their corresponding public keys.

Tunnels are established iteratively one relay at a time. The tunnel source-routing entry-point is
responsible for setting up the entire tunnel, which consists mainly of generating and distributing the
symmetric keys.

The high-level establishment algorithm is shown in Figure 3-2. An establish request sent to
node h; is relayed as a normal data packet from h; through h;_;. Node h; cannot distinguish
whether the packet originated from node h;_; or from one of that node’s predecessors; node h;_1
cannot distinguish successive establish requests from ordinary tunneled data. The establish request
contains the forward decryption key that ;1 will use when sending packets to h; and the encryption
key that should be used for sending packets received from h; 1. Additionally, it establishes the flow

identifiers that will be used to tag packets going in each direction. The initiating node uses the

23ection 3.7 also describes an additional pair-wise encryption-decryption used between nodes for stronger anonymity
properties.

18

public key of node h; to encrypt the initial forward session key and then this session key to encrypt
the subsequent reverse key, node addresses, and flow identifiers. When h; has successfully stored
the state for this request, it responds to the origin for an end-to-end check of correctness.

For path length , this algorithm takes O(1) public-key operations and O(1?) inter-relay messages

to complete. This overhead is sufficiently small for realistic choices of {.

3.3 IP packet forwarding

Tarzan provides a client IP forwarder and a server-side pseudonymous network address translator
(PNAT) to create a generic anonymizing IP tunnel. The IP forwarder diverts certain packets from the
client’s network stack and ships them over a Tarzan tunnel. The client replaces its real address in the
packets with a random address assigned by the PNAT from the reserved private address space. The
PNAT translates this private address to one of its real addresses. Remote hosts can communicate
with PNAT normally, as if it originated the traffic. Correspondingly, response packets are deNAT ed
twice, once at each end of the tunnel.

The IP forwarder only hides the Internet Protocol address and origin port numbers for TCP and
UDP packets. Chapter 7 discusses ways of coping with applications that require more work than
this to anonymize.

The pseudonymous NAT also offers port forwarding to allow ordinary Internet hosts to connect
through Tarzan tunnels to anonymous servers. In fact, any two users can communicate anonymously
by each creating a tunnel to a different PNAT; each user’s application connects to the other’s PNAT

to form a double-blinded channel.

3.4 Tunnel failure and reconstruction

A tunnel fails if one of its relays stops forwarding packets. To detect failure, the initiator sends
ping messages to the PNAT through the tunnel and waits for acknowledgments. Upon multiple
unsuccessful retries, the initiator attempts to reconstruct a tunnel. 1f the PNAT is the point of failure,
i.e., hy still responds to pings, the initiator simply selects a new k4 for the tunnel. Otherwise, it
attempts to rebuild the tunnel to the original PNAT, so that higher-level connection-based protocols,

such as TCP, do not die upon tunnel failure.

19

To reconstruct a broken tunnel, the initiator selects a random ¢ uniformly from [1,]. It attempts
to rebuild the tunnel from h; forward, 77 = (h1,...,hi—1,h}, ..., h}, hpnat). If hi—1 cannot be
contacted to update next relay pointers and distribute new keys, the initiator decrements ¢ by one

and repeats the reconstruction attempt.

3.5 Peer discovery

A Tarzan node requires some means to learn about all other nodes in the network, knowing initially
only a few other nodes. Anything less than near-complete network information allows an adversary
to bias the distribution of a node’s neighbor set towards malicious peers, leaks information through
combinatorial profiling attacks, and results in inconsistencies during relay selection. Section 4.2.1
discusses these attacks in more depth.

Tarzan uses a simple gossip-based protocol for peer discovery. Tarzan’s goal—to learn about
all network resources—differs than recent peer-to-peer lookup protocols [24], which spend much
effort to achieve immediate information propagation and load balancing in a flat namespace, often
at the cost of security.

Gossiping offers a simple mechanism for nodes to learn about new neighbors. A node can prune
inactive neighbors lazily when they do not respond to cover traffic establishment requests, which
we explain further in Section 3.7.

We model this problem as a directed graph: vertices represent Tarzan nodes; edges correspond
to the relation that node a knows about node b. Edges are added to the graph as nodes discover
other peers. Node a can communicate with b only if they are neighbors, i.e., (a,b) € E. A node
is reachable only if its in-degree > 1. We assume that the graph is initially weakly connected:;
otherwise, nodes in separate network partitions could never learn of one another. Tarzan’s peer
discovery goal is to make this graph fully connected.

Note that our use of “gossiping” is a slight misnomer. Traditional gossiping protocols generally
assume a fully-connected or fixed communication network and seek to optimize the broadcast of
extra information, such as link state.

Our technique to grow this network graph is similar to the Name-Dropper resource discovery
protocol [15]. In each round of Name-Dropper, node a simply contacts one neighbor at random and

transfers its entire neighbor set.

20

The Tarzan discovery protocol supports three related operations: initialization, redirection, and
maintenance. Initialization provides the bulk-transfer functionality of Name-Dropper, which allows
fast information propagation. Redirection allows nodes to shed load by redirecting new nodes to
random neighbors.

As this protocol progresses, the in-degree of each node increases. Nodes will transmit neighbor
sets whose elements are largely known by their recipients, wasting bandwidth.

In response, maintenance messages provide an incremental update P of a node’s peer database
with only new information (P N db = (). Tarzan calculates these set differences efficiently by
performing k-nary searches on prefix-aggregated hashes of the elements. A full description of this
mechanism is outside the scope of this thesis; we briefly discuss it in Section 4.2.1.

Tarzan differentiates between unvalidated addresses (U,) and validated addresses (V) in a
node’s peer database. A node learns {1 Paddr, port, hash(pubkey)} tuples through gossiping: these
unvalidated values can easily be forged.

A node validates a tuple once its corresponding peer correctly responds to a discovery request
sent directly to its gossiped address. The request includes a random nonce. This two-way network
handshake is a weak yet practical authentication mechanism to show a node “speaks for” its address.
This validation distinction stops an adversary from injecting arbitrary tuples into a peer database and
later impersonating a streak of invalid addresses following it in a tunnel (see Section 4.2.1).

Figure 3-3 shows the main gossip protocol. To join the system, a new node a contacts some
existing node b to learn a new set of unvalidated addresses. Node a validates b once a receives a
response. Node a successively contacts the new neighbors in U, before retrying neighbors in V.

Running the discovery protocol, nodes quickly learn about all other nodes in the network (see

Section 4.2.1).

3.6 Peer selection

Having built a peer database, we want to select nodes from this database for building cover traffic
links in the next section.

One may be tempted to simply choose nodes completely at random from V,,. However, while an
adversary can potentially run as many Tarzan relays as IP addresses to which he has access, these

addresses are rarely scattered uniformly through the IP address space. Instead, they are often located

21

/I Node a joins the network
/I Node b is an arbitrary node in the network known to a
a.join(b)

Ua = {b}; Vo = 0;

a.gossip();

/I Main Tarzan discovery protocol
/[Let U, bethe set of a’s unvalidated known peers
/I Let V, bethe set of a’s validated known peers
a.gossip()
while true
if (Uy=0),U, =Vg;
ber Uyg;
if ([Va| < 1Vi))
b.busy 7 a.redirect(b) : a.initialize(b);
dseif (|3 < L[Va])
a.busy 7 b.redirect(a) : b.initialize(a);
else
a.maintain(b); b.maintain(a);

a.initialize(b)
a.redirect(b)
a.maintain(b)
[re, P] = get peersvia RPC to b;
if rc € {lok, timeout}
Va.remove(V, [b]);
U,.remove(U,[b]);
else
a.gossip_success(b, P);

// validate b and record nemy-learned peers
a.gossip_success(b, P)
// validate b as returning successfully
Va.insert(U, [b]);
U,.remove(U,[b]);
forpe P
ifpgV,uU,
Il p is a newly-discovered peer
U,.insert(p);

Figure 3-3: Pseudocode for the peer discovery protocol

22

/0

18D3 18.26/16
3CB8 21F8
49A1 3A25
S8E2 45F1 18.26.4/24
T12F 5212 23A5
9D37 7C38 4F9A
B541 94D1 61D1
. | CAlL3 B1E3 974F
F72A E436 B11A

Figure 3-4: Peer selection on validated nodes. Shown is a lookup on key 541A, resulting in the node
tuple with hash value 61D1, which belongs to the domain 18.26.4/24.

in the same IP prefix space. Thus, we choose among distinct IP prefixes, not among all known IP
addresses.

Therefore, we select nodes by choosing randomly among the populated domains at each level of
the table in Figure 3-4. Tarzan uses a three-level hierarchy: first among all known /16 subnets, then
among /24 subnets belonging to this 16-bit address space, then among the relevant IP addresses.

A node generates this table by inserting all peers in V, into their corresponding identifier rings
at each level. An IP address or domain prefix is transformed to an identifier via hash(addr, date),
where hash is a cryptographic hash function and date is the day-of-the-month according to GMT.
These identifiers are ordered modulo 2/%l. Under the random oracle assumption, they are randomly
distributed on this ring.

Therefore, Tarzan’s lookup (k) method selects peers as follows: Node « first generates a key
k and iteratively calls successor (k) on identifier rings on increasing specificity. successor (k) se-
lects the smaller identifier > key (with wrap-around) on a ring. We explain this complexity in
Section 4.2.1.

Note that a node executes lookup completely locally, based on information already accumu-
lated in its peer database. This local operation differs from peer-to-peer distributed hash tables [24].
Therefore, two nodes may have slightly different lookup structure replicas, which can yield tem-
porarily inconsistent results. We return to the impact of these possible inconsistencies in the next

section.

23

Tarzan uses the date when computing address identifiers to provide a daily reordering of ring
elements. This randomization stops any particular domain or address from owning a larger space in
the ring for any duration, which might otherwise tempt an adversary. Furthermore, this rebalancing
reorders the validated set daily, randomizing how nodes propagate their neighbors during maintain

operations.

3.7 Cover traffic mechanisms

If the pattern of inter-node Tarzan traffic varied with usage, a wide-spread eavesdropper could ana-
lyze the patterns to link messages to their initiators. Prior work has suggested the use of cover traffic
to provide more time-invariant traffic patterns independent of bandwidth demands [3]. Such traffic
provides a node with stronger plausible deniability that it is the actual message initiator.

Our key contributions include introducing the concept of a traffic mimic. We propose traffic
invariants between a node and its mimics that protect against information leakage. These invariants

require some use of cover traffic and yield an anonymity set exponential in path length.

3.7.1 Selecting mimics

Upon joining the network, node a asks k other nodes to exchange mimic traffic with it. The value
k is a global parameter. Mimics are assigned verifiably at random from the set of nodes in the
network.

A node establishes a bidirectional, time-invariant packet stream with a mimic node, into which
real data can be inserted, indistinguishable from the cover traffic.

Each node has « mimics, where x has an expected value of 2k: Node a selects k& nodes at
random as its mimics, and an expected & nodes select a as they look for their own mimics.

This mimic relationship must be symmetric for two reasons. First, a otherwise would send
data only on its outgoing links, not trusting its incoming mimic connections. This practice halves
a’s anonymity set. Second, a otherwise would not be incentivized to provide cover traffic on its
incoming links.

This mimic relationship must be universally verifiable in order to stop an adversary from se-
lecting more than &£ mimics. As mimics will be used for tunnel establishment, an adversary could

otherwise bias a node’s choice of tunnel relays.

24

Node a chooses its ith mimic, or AM“

7

as the peer returned by lookup(K;), where K; =
hash;(a.IPaddr, date). hash; is a cryptographic hash function recursively applied i times, i <
(k+1). Node a sends a mimic request, including the tuple {K;, a.IPaddr,i}, to M, which we
refer to as b.

Node b accepts a mimic establishment request from node « if and only if the following hold:

o 1<i<(k+1)
e K; = hash;(a.IPaddr, b.date)

e b.lookup(K;) =b

If the lookup check fails, we must consider two cases. First, node b can have a different view
of the network than «; its execution of lookup(K;) can map to a different domain or peer. This
inconsistency occurs when b knows an identifier in the ring between K; and b of which a is unaware.
Node b declines the mimic request but returns the identifier’s corresponding node, to which a sends
a new mimic request.

Second, a may initially contact node ¢ and receive no response, signifying failure. Node a
removes ¢ from Vj; its execution of lookup(X;) now maps to b. However, b is not aware of this
failure, thus a’s new request includes the message that ¢ has failed. To verify the failure, b pings ¢
and waits for the acknowledgment to timeout, at which time b removes ¢ from V}, and thus accepts
a’s mimic request.

If a looses connectivity to its 7" mimic, a removes it from V, and replaces it with the new node

mapped from lookup(K;).

3.7.2 Tunnelling through mimics

We constrain a tunnel initiator’s choice of relays at each hop to those mimics of the previous hop,
instead of allowing it to choose any random node in the network. Therefore, nodes only construct
tunnels over links protected by cover traffic. Figure 3-5 shows this manner of tunnel establishment
over mimics.

To initiate a tunnel, node a chooses a mimic M as its first tunnel relay. This node M has
its own mimics M = {MlM’L'a e M,iwia}, and it returns this list to a. Node « already knows about
most of these returned nodes (from gossiping) and can verify them: a’s execution of lookup with

il
M¢*’s key should result in the same set. Node a randomly selects M]Mi from the resulting set and

25

Figure 3-5: Mimic topology and traffic flows for £ = 3: each node has x ~ 6 mimics (shown con-
nected by solid lines); a node establishes its tunnel over mimic links (arrows in bold) and completes
it with a random PNAT (dotted line). Nodes inject cover traffic with data traffic to yield a uniform
total traffic 7 that flows bidirectionally over the solid lines. All packets on these links are pair-wise
encrypted and padded to the same size.

continues by tunneling an establish request to MJMZ'I via M. It repeats this process for [relays.
Finally, a selects a random node for hy,;,q; by lookup(random).

If a chose its PNAT in the mimic overlay as well, it could not reconstruct a broken tunnel to this
same publicly-addressed node, as no alternative -length path to the PNAT likely exists. Changing

PNATSs breaks any application-layer connections over the tunnel.

3.7.3 Unifying traffic patterns

The packet headers, sizes, and rates of a node’s incoming traffic from its mimics must be identical
to its outgoing traffic, so that an eavesdropper cannot conclude that the node originated a message.

All packets along these mimics links are symmetrically encrypted. This encryption—an addi-
tional layer on top of the tunnel encoding—makes cover traffic indistinguishable from data flows.
Encrypted packets along these links are padded to be all the same size.® A node generates and
distributes symmetric keys when it connects with a new mimic.

Our model considers several types of traffic flows in order to properly regulate throughput and
cover traffic levels. Data requires a fixed path, i.e., an unsplittable flow. Thus, it places a demand
on some specific outgoing link. Incoming cover traffic can be dropped on demand or rebalanced on

any outgoing links. We consider the following traffic flows between a node and its mimic b:

30ur implementation pads to two different sizes as a performance optimization and thus manages two separate queues.
See Section 5.

26

e 7;(b): Total incoming traffic rate (data + cover) from b
e Do (b): Outgoing data rate to b on a single tunnel

e 75(b): Total outgoing traffic rate to b

For a node’s behavior to appear innocuous, the following relations must hold. Let M be the set
of a node’s mimics, and let 7 = {7;(b) : Yb € M} be the set of total incoming traffic rates from
M.

F(TM < To(b) < max(TM), Vb e M (3.1)

We choose f(-) as the 3374 percentile of send rates.

Ideally, each node provides “enough” traffic to cover its mimics’ actions. Per the lower-bound
in Equation 3.1, a correct node maintains a reasonably high level of outgoing traffic to its mimics, in
order to cooperatively provide them with anonymity. Additionally, this rate stops a node from being
a clear sink of traffic, which would otherwise impact its recipient anonymity. The upper-bound
specifies a maximal rate to prevent a node from being a clear source of traffic: its outgoing volume
should always be accounted for by a corresponding incoming volume.

This total outgoing traffic level is independent of actual data traffic, which itself is constrained:

Do(b) < f(TM),¥be M (3.2)

Intuitively, Equation 3.2 limits the outgoing data rate on any link to a function of the incoming
traffic rate. This function allows the node to still send data at reasonable speeds if up to % of its
mimics are slow, either maliciously faulty or not.

Each time period, a relay batches some number of data packets from the previous period (per
Equation 3.2), creates cover packets to round up to its packet-rate requirement (per Equation 3.1),
randomly permutes this set, and writes them to the link-layer. The relay starts dropping data packets
once its data queue begins to fill. Any congestion control and retransmission are pushed back to the

higher-lever protocol between communicating end-hosts.

27

Chapter 4
Security analysis

This section analyzes Tarzan’s anonymity properties. Unfortunately, our formality is limited by
the lack of any standardized anonymity proof model. In order to make quantitative statements
supporting our negative goal—that a tunnel initiator’s identity is not exposed—we take the following
approach.

First, we present a restricted attack model for a theoretical adversary. Then, we analyze Tarzan
under this model and calculate both the probability that an initiator escapes identification and its
expected anonymity set size.

Next, we describe a set of attacks on Tarzan’s peer-to-peer design and argue that Tarzan prevents
these attacks. If these claims are true, our strict attack model actually subsumes many practical
attacks.

Lastly, we describe attacks for which we offer no guaranteed protections, perhaps because they

should be handled at a higher level.

4.1 A simple attack model

Our attack model considers a static adversary (or set of colluding static adversaries). At some time
t;, he corrupts some number of independent physical machines and thus present m malicious nodes
(identities) to the system. Let M be the number of malicious colluding domains in the system,
equivalent to the number of corrupted physical machines, yet M < m in likelihood.

For the rest of this section, we assume a network that is guaranteed to transmit messages without
failure or modification. This network includes both correct and malicious nodes. n is the number of

nodes in the network. N is the number of domains containing these nodes.

28

We consider domains in our analysis, not nodes, so as to argue about distinct system entities:
Nodes within the same domain can be corrupted in a correlated fashion. Tarzan’s node-selection
mechanism of choosing randomly from known domains supports this counting method. Note that
this model for counting colluding adversaries differs from the Byzantine fault tolerance concern
with the total number of “faulty” nodes.

Node a runs Tarzan’s peer discovery protocol to learn all » nodes in the network. a establishes
connections with x mimics at time ¢;, for ¢; < ¢;. These mimics are malicious with independent
probability % Node a then initiates and constructs a tunnel of length {. Relays on this tunnel are
also malicious with probability %

At some later time ¢, the malicious nodes activate and begin analyzing their traffic flows. These
colluding nodes can monitor and analyze the message contents, sizes, rates, and volumes of their
own traffic. They can use timing analysis to determine that packets are on the same tunnel (but not
to estimate the tunnel distance between relays).® For now, these nodes can perform no other attacks.

To a first-order approximation, this simple attack model subsumes many of the threats that
Tarzan should expect to weather. In some sense, the model is what remains after we consider
Tarzan’s protections against certain threats and assume away other more powerful attacks.

Against malicious participants, Tarzan prevents attacks on its peer-to-peer design that would
bias its its choice of tunnel relays. However, Tarzan cannot defend against an adversary that can
adaptively compromise arbitrary nodes (can a defense ever be possible?); we thus ignore such a
threat in our analysis. Against a global eavesdropper—which perhaps itself is an overly strong
threat model—Tarzan protects information leakage from the tunnel through the use of cover traffic
and argues that information leakage from the application-layer should be handled by that layer. We
discuss these issues later in this section.

Our analysis examines two issues. First, we derive the probability that a malicious node can
identify a as the tunnel initiator. That is, given that a chooses a tunnel length randomly, established
through several potentially malicious nodes, what is the probability that a malicious relay’s prede-
cessor is actually a? Second, we calculate a’s expected anonymity set within the network: While
the malicious nodes cannot deterministically identify a, how many nodes do they suspect may be

the initiator a?

1As transmission time is dominated by wire propagation delays (see Section 6), we expect it difficult to estimate
tunnel length beyond a margin of error 4 several hops, likely approximate to [itself.

29

4.2 Measuring anonymity

Tarzan provides sender and recipient anonymity through its relay homogeneity: All nodes both
originate and forward traffic. If an eavesdropper observes some node forwarding traffic, the eaves-
dropper can distinguish neither whether the packets are cover or data traffic, nor whether the nodes
initiates the traffic or merely relays it.

We now analyze the probability that a set of malicious nodes on a tunnel can correctly conclude
that the first non-malicious node upstream of them is the originator. Let h; be the first such malicious
relay on a’s tunnel. It can distinguish between cover and data traffic from h;_1, but cannot determine
whether h;_1 is initiating the traffic (and is thus a) or merely relaying the data. Crowds [21] provides
a similar argument for sender anonymity, but without the security benefits of layered-encryption,
source-routing, or cover traffic.degree.

Let I be the event that h;’s observed predecessor is actually the initiator a. Let .S, denote the
event that (r—1) malicious participants succeed h; on the same tunnel. If these nodes cannot link
traffic on the tunnel through timing analysis, they require p = r contiguous relays on the tunnel.
However, if colluding nodes can always tell when they are relays on the same tunnel, they only need
to directly control p = Q([Z1]) relays, as every node knows at most its two correct neighbors.

Given our model that a malicious relay is chosen independently with probability %

p-1 i
pris =1 (5=7) < ()

=

For simplicity, hereafter we say Pr(S,) = (4£)”.

If the malicious relay h; is the immediate successor of a, then I is true and the tunnel length
[actually equals r. As Tarzan allows variable path lengths, [normally takes some probability
distribution L. In general, the probability that [> r is simply >°>° Pr(L(7)), or one minus the

cumulative density function at L(r). Thus,

_ _ Pr=nPrir=l) _ (_Pr(L(r)
Pri=rilzr)=—F055— = (1—0df(L(T))>

The probability an adversary at h; sees the tunnel initiator:

e}

pr(1us,) = 1-] (I—PT(ST)Pr(l:r|l2r)>
r=1

30

T T T
Timing, median=3 —+— ol
Timing, median=5 ---x--- XY

No timing, median=3 ----

No timing, median=5 & X X n

®

Probability adversary observes initiator

Figure 4-1: Probability of exposure given tunnel length taking a Lognormal distribution with median
lengths 3 and 5, o of 0.5. We plot the case in which adversaries can perform timing analysis
(p = (%1) and the case in which they cannot perform such analysis (p = r).

- 1 (-(5) (Firen)
11 ~edf (L(r))

Figure 4-1 shows this probability of exposure plotted against increasing adversarial compromise
of the network. We model L(-) as a Lognormal (heavy-tailed) distribution and plot probability of
exposure when malicious nodes can and cannot use timing analysis to determine that they belong to
the same tunnel.

Tarzan’s mimic mechanism ensures that every node has incoming traffic from an expected ~
different mimic nodes. For our analysis, we assume that « is fixed and n is large enough such
that there is no appreciable overlap in mimics. Thus, while the malicious relay h; identifies h;_1
uniquely, it has (x—1) possible suspects for h;_o (one of h;_1’s mimics is h;). An adversary must
recursively back-trace these mimic links as far as the suspected remaining path length, increasing
the set of possible initiators—the anonymity set—exponentially.

If none of these recursively counted mimics are malicious, the initiator’s anonymity set is simply
(k— 1)“" for some fixed tunnel length [and a compromised sequence of relays of length 7.

As a node’s mimics may be malicious, the fan-out factor of possible initiators reduces to x —
(Hj;é %—:ﬁf) ~ m—(%)n. Therefore, we calculate the expected anonymity set size given malicious
nodes:

E(AS) = Y Pr(s) Y Pr(l:mzr)[msy}
r=0

i=r+1

31

le+15

Anonymity set size

1e+10

100000 -

Figure 4-2: Anonymity set size with x = 6. The number of nodes in the network is unbounded:
there is no overlap between possible initiators. We plot the cases in which adversaries can and
cannot perform traffic analysis.

(M 'k (k=) ifr=0

(A1) (k—1)] otherwise

Figure 4-2 shows an initiator’s expected anonymity set size for an unbounded network.

4.2.1 Protecting relay selection

Our attack model makes several claims that allow us to quantitatively analyze the anonymity of
Tarzan tunnel initiators. In this section, we argue that these claims are reasonable given Tarzan’s

design.
Claim 1. A node selects a malicious mimic with probability %
Claim 2. Nobody can bias an initiator’s choice of relays.

Together, these claims imply that an initiator selects a malicious node as a tunnel relay with
probability % This probability is used when calculating a’s chance of exposure and its expected
anonymity set size.

Consider what is required to support these strong claims: Node a must select its mimics at
random and in an unbiased manner from the entire set »; it also must build tunnels only through
other nodes’ mimics that are similarly randomly-selected.

However, malicious nodes may attempt to do one or more of the following after joining the
network, in order to bias a’s mimic selection and increase the frequency of use of malicious relays

in its tunnel.

32

e Corrupt gossiping protocol: An adversary gossips addresses that do not exist or only returns

malicious nodes.

e Leverage open admission paolicy: An adversary tries to squat on important IP addresses or

run multiple Tarzan nodes on different IP addresses or with different public keys.

e Ignoreneighbor-selection mechanism: A malicious node attempts to select malicious nodes

as its mimics, to ensure correct nodes will build tunnels through sequences of malicious nodes.

In this section, we describe how Tarzan protects against these types of attacks on Tarzan’s open

peer-to-peer design.

4.2.2 Securing resource discovery

In an attempt to bias the distribution of known nodes, an adversary may gossip invalid or only
malicious neighbors.

To protect against fake entries, Tarzan differentiates between unvalidated and validated ad-
dresses in the peer discovery and selection process. Correct nodes only propagate validated ad-
dresses and only select mimics from their set of validated addresses.

Fake addresses could otherwise be used as placeholders in a tunnel. Consider a malicious node
that creates fake addresses and the corresponding key pairs. If an initiator selects this node as
tunnel relay h;, the node can respond successfully to tunnel establishment requests to fake addresses
following it on the tunnel (h;41 ... h;), even though it might not control their relevant domains.
Therefore, this attack causes an initiator to select a malicious relay with probability > %

A node must learn all n nodes in the network to protect against a bias towards malicious nodes
in its peer database. This bias arises as correct nodes return both correct and malicious nodes, while
adversaries return only the latter.

Furthermore, a global eavesdropper that watches nodes gossip can record the oz nodes we assume
each learns from the total set n. If a colluding malicious node receives a tunnel establishment
request, only « possible nodes could have initiated the message. Therefore, the expected number
of nodes that know about a particular node sequence of length r is n (%) /(""). As Tarzan constrains
tunnel selection to mimics, this bound is actually tighter:

ala—1)(a=2)...(a—r+1) - (k—1)Tar
nn—1)(n—2)....(n—r+1) n’

(K—l)l_r (?) — (I{—l)l_r

()

33

l—r

To uniquely identify the initiator, an eavesdroppers needs this value to be < 1,or o < n/(k—1) 7+ .

In general, for any o < n, this discovery profiling attack learns some information. Therefore, our
discovery protocol need ensure that a node learns close to all » neighbors.
Lastly, a node attempts to check the validity of other nodes’ mimics during tunnel establishment.

For this check to succeed often, the node must also know nearly all nodes in the network.

Theorem 1. A node will discover all n nodes in the network with high probability in connection

complexity O(n) and pointer complexity O(n log; n).

Proof. A full proof is beyond the scope of this thesis. Tarzan’s discovery protocol propagates knowl-
edge the same as Name-Dropper [15]. However, for nodes with neighbor lists of size within a
constant factor, node a will only transmit to node b those neighbors not previously known to b.

In Name-Dropper, each node contacts an expected O(log?n) other nodes. As a Tarzan node
validates its neighbor list by directly contacting every neighbor, we increase the per node connection
complexity to O(n).

We measure pointer complexity by both the number of machine addresses and hash values
passed during communication. Nodes determine one set difference as follows. The ith element of a
node’s sorted set V, has the hash value A(.. .h(h(Va[1])+Va[2]). . .+V4[i]), generated by recursively
aggregating prefixes. If two nodes have the same last element V/,[|V,|], their sets are identical and

the comparison terminates. Otherwise, the nodes compare their value for V[“;H] and proceeds with

a binary search. Therefore, nodes can find one set difference in O(logn) by transferring one hash
value per round. We can reduce round complexity to O(log,, n) on average by sending (k—1) values
per round.

Thus, maintain passes O(log;, n) pointers to learn one new neighbor. Each node receives
O(nlogy, n) pointers to learn all n nodes.

A node’s initial entry point into the network must be correct; otherwise, all tuples the node

learns thereafter could correspond to malicious nodes. O

4.2.3 Hardening the open admissions policy

A entity can present multiple identities in Tarzan. To perform this attack, an adversary uses different
public keys or runs multiple instances of Tarzan on different IP addresses. There are no known
techniques to prevent this type of attack in a large-scale distributed system without some trusted

centralized authority [8, 9].

34

However, Tarzan provides practical measures to lessen the impact of such attacks. First, nodes
distribute their keys indirectly through a gossiping protocol. Second, tunnel initiators choose mimics
(and thus relays) by selecting uniformly at random from among available domains.

First, consider a poor alternative to Tarzan’s key-distribution via gossiping: node a learns b’s
public key by directly contacting it. If b is malicious, it could create a new public key per request
and store a mapping from this key to the requester. Later, upon receiving a tunnel establishment
message, b could use this mapping to resolve the identity of the tunnel’s initiator (based on which
key the message is encrypted under).

A node distributes its public key through gossip channels beyond its direct control. Such indirec-
tion protects a tunnel initiator against this key-mapping attack. Note that this attack arises from the
decentralized, untrusted nature of peer-to-peer systems: Tarzan does not provide an authenticated
key-to-identity binding with public keys.

Second, consider alternative approaches to peer selection. One approach is a local variant of
Chord’s distributed hash table [24], which maps IP addresses onto a single identifier ring via a
hash function. successor(random(ID)) selects some random element from this ring. This I1D-
space selection approach has obvious load-balancing and randomness benefits, but suffers from the
admission control problem [9]: An adversary’s multiple addresses are distributed randomly around
the identifier ring, each having an equal probability of selection as individual correct nodes.

Alternatively, a node can simply map IP addresses onto the identifier ring, rather than mapping
their hash values. This IP-space approach offers better protection against the admission control
problem, as a node selects contiguous IP addresses with low probability. However, certain IP ad-
dresses now would be much more “important” than others, given a non-uniform distribution of
Tarzan nodes in IP space. These nodes subsume more of the IP ring according to successor: for
example, if Xerox’s /8 has few Tarzan nodes. Such nodes could become overloaded and would be
a clear target for attack.

Tarzan takes a hybrid approach with its identifier rings. Nodes hierarchically select among
domains (IP prefixes), not nodes (IP addresses). Therefore, an adversary does not benefit much by
running multiple intra-domain nodes. Furthermore, as domain prefixes map to random locations on

the identifier ring, we assign equivalent importance to all individual domains.

35

4.2.4 Enforcing proper mimic selection

A node should construct its tunnel only through nodes selected in an unbiased and random fashion.
Therefore, as an initiator extends its tunnel recursively through mimics, it must be able to verify a
relay’s proper mimics. Merely asking the potentially-malicious relay is certainly not sufficient.

Tarzan ensures verifiable mimic-selection through the following theorem:

Theorem 2. A tunnel initiator will only select among a node’s correctly-chosen mimics with high

probability when extending a tunnel.

Proof. Assume to the contrary that the initiator will accept an arbitrary node w that malicious node
u Specifies as one of its mimics. Then, the initiator’s lookup on node u’s key K; will result in node
w. This result occurs if either the initiator does not know of node v which lies between K; and w
on the identifier ring, or node w is actually a correctly-chosen mimic. The first point contradicts
Theorem 1 that the initiator knows all n nodes in the network with high probability. The second

point contradicts the ability of node u to return an incorrectly-chosen node. O

A similar proof by contradiction shows that mimic selection is secure. A node trusts the k
mimics it chooses itself. It can also trust the expected & mimics it accepts from other nodes’ requests.
Otherwise, it would know about some other currently-available node v between the lookup keys and

itself.

4.3 Considering independent node failure

The attack model in Section 4.1 conceals two underlying assumptions. First, domains fail indepen-
dently. Second, passive observation yields no additional information. We consider these assump-
tions in the next two sections.

Tarzan introduces the concept of a domain to capture some notion of a network security point of
failure. Nodes within a domain certainly experience correlated failures, e.g., by the compromise of
their gateway router or by the corruption of a machine on a unswitched LAN. Tarzan assumes that
nodes in different domains fail independently of one another.

For domains to fail independently, we require a static adversary. An adaptive adversary can
otherwise pick-and-choose specific nodes and compromise them at will. In our attack scenario, the

malicious relay h; could otherwise compromise his predecessor h;_1, and so on, until it back-traces

36

the tunnel to a. Similarly, h; could DoS a’s mimics to reduce its mimic fan-out to zero, making its
anonymity set exactly {a}.

Virtually all security and cryptographic proofs make our assumption that correct nodes have
trusted, uncorruptible private execution environments.

In reality, standard system attacks like buffer overflow are much easier and likely than wide-
spread network compromise and monitoring. While Tarzan’s peer-to-peer architecture manages
and scales to large numbers of participants, centralized systems like Mixmaster [10], Onion Rout-
ing [25], and Freedom [12] provide only a small number of available nodes. Thus, while these
systems do not need to handle some of the security concerns in Section 4.2.1, limited targeted at-
tacks can have a much greater impact on them. This divide becomes greater as the number of Tarzan
users increases.

Tarzan takes the traditional stance that distributing trust among fully-decentralized participants
benefits fault-tolerance and security. We imagine several hundred nodes in early stages of deploy-
ment and possibly thousands or more in later stages.

Tarzan’s domain-driven selection process constructs tunnels that emphasize host diversity. It
spreads relays across jurisdictional and operational boundaries; these relays probably run a variety

of operating systems and could potentially use different software implementations.

4.4 Passive observation and cover traffic

Our analysis assumes that passive observation leaks no identifying information. This section dis-
cusses how Tarzan protects against information leakage within the Tarzan overlay itself, and notes

how some attacks may be successful by using additional application-layer information.

4.4.1 Information leakage from tunnels

Existing provably-secure anonymous communication algorithms assume synchrony [3, 4], but a
practical system must operate asynchronously. Thus, practical systems must hide discernible, asyn-
chronous events in background statistical noise. Approaches include mixing the order of received
packets, batching packets to ensure a sufficient pool size for mixing, delaying packets at relays, and
sending cover traffic to hide discernible traffic patterns.

Prior system proposals have several shortcomings: they protect only the core of the static mix

network and thus allow traffic analysis on its edges [2, 25], they simulate full synchrony and thus

37

trivial DoS attacks halt their operation [7], or they require central control and knowledge of the
entire network [14].

If an eavesdropper can observe all network traffic, relay homogeneity alone does not provide
sender or relationship anonymity. An eavesdropper wishing to identify users that contact a particular
Internet host can 1) identify a connection’s PNAT easily by the packets’ IP address, 2) observe
which Tarzan nodes communicate with this PNAT and learn the set of potential previous relays, and
3) iterate this process yields a set of potential senders. If most of these nodes have little activity at
that exact time, the adversary may uniquely identify the sender with high probability.

Cover traffic (dummy traffic) that is indistinguishable from data can prevent such analysis. First,
an eavesdropper cannot determine whether a relay initiates new data or just sends cover packets.
Second, an observer must back-trace the multiple sources of a node’s incoming traffic, creating a
fan-out of possible senders.

Different mix network topologies provide various benefits and challenges for achieving anonymity
against a global eavesdropper. If an initiator has complete freedom in randomly building tunnels
within the network, its anonymity set is naively (n—m). However, such systems cannot guarantee
some number of incoming traffic flows to any particular node. Explicitly providing cover traffic
across all n? links is prohibitively expensive.

In contrast, Tarzan’s mimic mechanism explicitly assigns node pairs to exchanges cover traffic.
This fixed allocation makes the generation of cover more practical, at the cost of a loss of freedom
for tunnel initiators. A pair of mimics exchange a fixed volume of traffic per time period, consisting
of a variable amount of real data padded with enough cover to reach the fixed volume. All packets
are of the same size and are link-encrypted between cooperating mimics.

How might misbehaving mimics affect the protections offered by cover traffic? A misbehaving
mimic b may not send traffic at the appropriate incoming packet rate 77(b), either through malice
or bandwidth limitations. So, Equation 3.2 balances the threat of denial-of-service when using slow
mimics with the risk of reducing anonymity fan-out when using malicious mimics: It sets the rate
of any individual outgoing data flow Do (b) to at most the 33 percentile of incoming traffic rates.

Alternatively, if node a rate-limits Do (b) to its minimum incoming traffic rate, one misbhehaving
mimic could effectively stop the node from transmitting any data.

On the other hand, if a limits Do (b) only by the maximum incoming rate, the node’s fan-out
reduces to the one maximal mimic. This mimic is likely & itself, and thus a may originate data faster

than could be explained by its incoming traffic from correct mimics. (This attack extends to when

38

malicious nodes comprise two-thirds (1— f(-)) of a’s mimics and a originates data faster than any
incoming traffic from its correct mimics.)

In short, Tarzan selects its rate equations to maintain a “sufficient” outgoing data rate, even
if one-third of mimics are slow or malicious. Tarzan’s cover traffic mechanism offers protection
against traffic analysis of message volume or content, against message flooding, and against DoS

attacks by slowing incoming rates.

4.4.2 Information leakage from application-layer

Designed at the IP-layer, Tarzan offers no protection against information that leaks through application-
layer interaction.

First, an adversary may time application-layer event, such as the period between queries and
responses, to estimate tunnel length. This information would change our analysis in Section 4.2 as
it tightens the probabilistic distribution of tunnel lengths. Application-layer anonymizing support at
the PNAT or initiator can defend against such attacks, e.g., Crowds suggests a PNAT web proxy to
defeat automatic HTTP re-requests [21].

Second, an adversary may use users’ online/offline behavior to trace them by observation over
a long period. An analysis of anonymity degradation by this intersection attack is presented in [30].
If a tunnel’s first and last relays collude, and these relays determine they are on the same tunnel
(through timing analysis), the adversaries require 2(%)2 Inn rounds to uncover the initiator’s iden-
tity with high probability.

A new round begins when an initiator constructs a completely new tunnel that an adversary
can deterministically link to the initiator’s previous tunnels, through content, timing, or behavioral
information leaked by the application-layer. As the network grows in size or usage, this attack may
become increasingly difficult.

We note that Tarzan’s iterative tunnel establishment and partial reconstruction protocol offers
some protection against the set-up attack proposed in [30] and described as an open problem: An

initiator chooses a new tunnel successor /1 only with probability 1/1 or when hy fails.

39

Chapter 5

| mplementation

We have implemented Tarzan in C++ on Unix to validate our approach. SFS libraries [17] pro-
vide callback-style functionality for fast asynchronous 1/0 and automate marshalling data into the
standard XDR wire representation.

The core component of Tarzan is a stand-alone relay server which performs the per-hop packet
relaying. This relay daemon can be run by unprivileged users, as can be the peer discovery daemon.

Tarzan’s source-routing IP forwarder and its pseudonymous NAT require root permissions to
make raw socket calls. For IP forwarding, we take advantage of FreeBSD divert sockets.

These IP forwarder and PNAT components are built on top of the Tarzan library, which com-
municates with the relay server to establish tunnels, to listen for incoming connections, and to send
and receive data. The Tarzan library presents an APl modeled after standard Unix sockets, albeit
asynchronous, and is executable on a variety of BSD, Linux, and Unix platforms.

Other Tarzan-aware applications can easily be written using this library as well. For example,
the implementation of an anonymous echo client-server is about 150 lines of code. Or, one may
wish to modify the PNAT to require access control via SSL certificates and use Tarzan tunnels as an
anonymous VPN.

All built-in cryptographic operations are implemented by the SFS crypt library. The payloads
of all Tarzan packets, which include encapsulated IP headers in data packets, are encrypted in CBC
mode with a 20-byte Blowfish [23] key. Each packet includes an 8-byte random initialization vec-
tor. Tarzan uses the Rabin public-key cryptosystem [29] to encrypt the forward-path session key
for tunnel establishment. The Rabin implementation is secure against adaptive chosen-ciphertext

attacks and is plaintext-aware.

40

A pseudo-random generator based on DSS [19] generates symmetric-keys, 1Vs, and packet flow
tags. See [17] for details of the seeding mechanism. Tarzan uses SHA-1 [20] for all cryptographic
hash operations.

Nodes send a burst of randomly-permuted packets to their mimics once every 20 msec. The
encrypted payload of these packets are one of two sizes—184 bytes or 1456 bytes—in equal pro-
portion each time period. The smaller number is sufficient for the 40-byte encapsulated packet
header, 20 bytes of payload (as is common in interactive protocols), and layered encryption for up
to five hops. Packets requiring fewer layers of encryption fit more payload. The 1456-byte choice
reflects Ethernet MTU and cipher-block size. Prior to link encryption, a Tarzan node pads packets

up to the relevant fixed size.

41

Chapter 6

Per for mance

This section examines the overhead added by Tarzan’s packet handling and crypto processing, as
well as packet forwarding rates. Tunnel latency is lower-bounded by the propagation delay of
Internet routes between Tarzan relays.

We performed controlled-environment tests on a 100 Mbps switched network with the tested
relayd running on a 1.2 GHz Athlon box with 128 MB of RAM running FreeBSD 4.3. Tables 6.1
and 6.2 summarize our results.

Table 6.1 shows the average time that a Tarzan relay needs to read a packet off the network,
decrypt and route it, and send it out to the next relay. We calculated latency using tcpdump
measurements. For large enough packets, the latency scales linearly with packet size. Throughput
also scales roughly linearly. As shown, a Tarzan relay has reasonable performance for user-level
packet forwarding and can easily saturate a T1 line.

The authors have personal experience running Tarzan over multi-hop tunnels within a LAN. We
experienced no noticeable delays while web-surfing and only slightly noticeable delays, although
acceptable, while running the ssh protocol over Tarzan.

Efficient concerns for per-packet public-key operations motivate Tarzan’s design criteria for
separating tunnel setup from packet forwarding. Table 6.2 shows the overhead incurred by setting
up multi-hop tunnels using public-key operations.

Setup latency is measured end-to-end from when a client initiates the tunnel, connects iteratively
through one to four relay processes run on the relay machine, registers itself with the server-side

tunnel end-point application (such as a PNAT), and receives a final acknowledgment. On average,

42

Pkt size || Latency Throughput

(bytes) || (u-sec) [(pkigs) | (Mbitss)
64 244 | 14000 72
512 376 | 8550 35.0
1024 601 | 7325 60.0

Table 6.1: Per-hop latency and forwarding rate. Packet sizes shown are the actual number of bytes
transmitted: packets have not been padded to Tarzan’s standardized lengths.

Tunndl || Setup | Variance
length || latency | (1 StD)

1 30.19 1.38
2 46.54 0.53
3 68.37 0.73
4 91.55 1.20

Table 6.2: Setup latency (msec) and its variance for the construction of multi-hop tunnels.

we incur a setup cost of 20 msec per hop. This data suggests that the cost of latency incurred on the
underlying network will dominate latency even during tunnel setup.

In summary, a Tarzan relay enjoys a fast packet forwarding rate, high throughput, and rea-
sonable tunnel-setup latency. As each relay adds a packet-handling overhead of less than 1 msec,
propagation delays through the underlying Internet route will completely dominate tunnel latency.
Therefore, route efficiency will pervade any performance measurements.

These measurements support our goal that anonymity can be incorporated at the IP level within

a tolerable loss of perceived efficiency compared to its non-anonymous counterpart.

43

Chapter 7

| ntegration

A primary goal of Tarzan’s design is to factor out anonymity in the design of larger systems. That
is, one should be able to take an existing non-anonymous application that uses IP (or UDP/IP or
TCP/IP), and make it anonymous by substituting the Tarzan layer for IP. In order for this to work,
Tarzan should be as transparent as possible, and integrate with applications and higher-level proto-
cols as painlessly as possible. This section presents examples of transparent and painless integration

of Tarzan with existing protocols and applications.

7.1 Transport-layer protocols

To a first order, Tarzan acts just like an IP layer from the point of view of higher-level protocols
such as TCP or UDP. The main difference is that Tarzan uses a network address translator at the exit
point. Thus it inherits the non-transparent aspects of NATSs. For example, if a NAT fails, connections

already set up through it will also fail.

7.2 Application-layer protocols

One can transparently anonymize an existing protocol with Tarzan only if the protocol reveals the
client’s identity solely in the source IP address in the IP header. Protocols that put identifying
information in packet payloads need additional work to anonymize. The following are examples of

how Tarzan could help anonymize existing protocols:

e HTTP: HTTP headers include identifying information such as page referrals and cookies.

However, web browsers and plug-ins offer cookie-blocking tools, as well as the ability to turn

44

Javascript off. Users may use a simple web proxy to sanitize HTTP headers. Tarzan offers

the piece still lacking with these tools: a method to strongly anonymize IP address.

DNS: Since DNS requests do not identify the sender, Tarzan can transparently anonymize

them.

Email: SMTP headers include a list of servers through which a message has been routed.
While a sanitizing proxy could scrub this information, pseudonymous email would be more
convenient, since it handles replies. A user could simply connect to any free web-based email

service such as Hotmail through Tarzan.

FTP and IRC: Some protocols explicitly encode IP address and port information in packet
payloads. Tarzan uses existing NAT code which takes care of this in the case of common

protocols such as FTP and IRC.

telnet, ssh, and SSL: These interactive and/or authentication protocols do not leak any ad-
ditional information. Any login authentication mechanism could be used to identify the user

pseudonymously. Tarzan can handle these protocols transparently.

Instant messaging: IM systems such as ICQ, AIM, and Jabber implement their own names-

paces at the application-layer. Tarzan could be used for pseudonymous instant messaging.

7.3 Software systems

Beyond anonymizing existing protocols, we designed Tarzan as a building-block for anonymous

systems. Section 8 mentions several such publishing and file-sharing systems. Systems like Freenet [5]

make architectural design decisions for anonymity that impact functionality and performance. For

example, the current Freenet implementation (version 0.4.4) always rewrites the source addresses of

replies, likely for anonymity reasons. This decreases the ability of Freenet nodes to build efficient

routing tables.

Good design practices suggest that such systems should use a layered approach to peer-to-peer

file-sharing. For instance, CFS [6] separates its file-system block store from its Chord lookup mech-

anism. Similarly, Tarzan could serve as its underlying communications layer. We note that Free

Haven [8] and Tangler [27] specifically cite the need for a system like Tarzan for their anonymity

requirements.

45

Chapter 8

Related Work

A wide body of existing work focuses on how to achieve anonymity on the Internet. This prior work
falls into two categories: systems which provide application-specific anonymity, and systems that

offer a more generic transport framework.

8.1 Application-specific systems

The majority of application-specific anonymous systems focus on email, web browsing, or file-
sharing. Each of these systems provides its own particular anonymity design, interwoven with the
design of the application-specific protocol. In contrast, Tarzan provides a single general-purpose

anonymizer that can be used transparently by many applications.

8.1.1 Anonymous email

The theoretical pursuit of anonymity on the Internet began with David Chaum’s 1981 proposal for a
system called a “mix network” [3]. A mix network is a collection of routers, called mixes, that use
a layered encryption technique to encode data and routing information as messages pass through
the network. Each mix in a chain between sender and receiver strips off the identifying marks on
incoming messages, randomly permutes the messages, and then sends the messages to the next mix
using this new ordering.

Until the rise of proxy-based and TCP/IP-based systems, the most popular form of anonymous
communication was the anonymous remailer: a form of mix which works for e-mail sent over
SMTP. The evolutions of remailers has led to the Mixmaster Type Il remailer [10]. When receiving

a message, all of which are padded to the same length, a mix decrypts the messages header, which

46

includes the next-hop header, and places the message in a “message pool.” Once enough messages
have been placed in the pool, the node picks a random message to forward.

Remailers also provide reply blocks for users to create and maintain pseudonyms which re-
ceive e-mail. By prepending the reply block to a message and sending the two together to the
first remailer in the chain, a user can send a message to a party without knowing his real email
address. Pseudonym servers, like nym.alias.net [16] automate management of such reply blocks.
While Tarzan’s PNAT is conceptually similar to the pseudonym mail servers, PNATSs are widely

distributed and serve their function for any given node only transiently.

8.1.2 Anonymous web browsing

Proxy services provide one of the most basic forms of anonymity: A sender inserts a centralized trust
third party party between him and the recipient of a given message. The Anonymizer was one of the
first examples of a form-based web proxy [1]. Users point their browsers at the Anonymizer page at
www . anonymizer . comand enter their destination URL into a form displayed on that page. The
Anonymizer acts as an HTTP proxy for these users, stripping off all identifying information from
HTTP requests and forwarding them on to the destination URL.

Crowds [21] was named for collections of users that are used to achieve partial anonymity for
Web browsing. A user initially joins some crowd via a central rendezvous server and begins peering
messages within that crowd. To instantiate communications, the user creates some path through the
crowd by a random-walk of other peers, in which each peer has some small probability of sending
the actual HTTP request to the end server. A symmetric key is shared amongst peers in the path to
ensure link-encryption within a crowd.

Web Mixes [2] is another more recent effort to apply a mix network to web browsing, using
“mix-cascades” to form anonymous paths. While traditional mixes source-route messages, chains
of servers pre-establish these mix-cascades. A sender will only select the first server of a mix-

cascade, and his message will be routed deterministically through this cascade.

8.1.3 Anonymous publishing, storage, and file-sharing systems

The Rewebber [13] system encodes mix paths in URLs. These URLSs contain the name of a Reweb-
ber server and a packet of encrypted information. The server decrypts the packet to uncover the
address of another Rewebber server or a legitimate web site. The Publius [28] censorship-resistant

publishing system uses Rewebber to provide anonymous retrieval for document readers.

47

The Freenet system [5] seeks to build a network for file caching and retrieval. Peers chain file
requests and responses through other peers in the system. In a technique reminiscent to Crowds,
intermediate peers decide how to route messages based on some local knowledge of possible file
location.

Free Haven [8] and Tangler [27] seek censorship-resistant publishing and storage. They require
some underlying anonymous communication channel such as Tarzan to achieve their anonymity

goals for all concerned parties.

8.2 Towards anonymous IP routing

While a number of systems have focused on application-specific Internet anonymity, only a few
systems attempted to achieve anonymity for low-level, real-time communication.

The Onion Routing system [25, 26] creates a mixnet for TCP/IP connections. A sender creates
a mix path by successively encrypting a control packet, or onion, with the public keys of several
mix servers. These servers will store symmetric-key state information to handle normal data pack-
ets in the system. When a user places a message into the system, an onion proxy determines a
route through the anonymous network and layer encrypts the message accordingly with the pre-
established symmetric keys. This design motivates Tarzan’s separation of tunnel establishment and
packet forwarding.

Zero-Knowledge Systems (ZKS) developed the first commercial anonymous-communication
system, known as the Freedom network [12]. The Freedom network was a series of nodes de-
ployed by ZKS at various ISPs to route traffic between them, using the standard layered encryption
mechanism over UDP. ZKS shut down the network in mid-2001.

Application integration is achieved in Onion Routing using separate application proxies; they
propose at least sixteen such proxies for the second-generation system. Additionally, a TCP-based
anonymizer is less-suited for UDP-based protocols such as DNS that provide retransmission at the
application-layer. Freedom supports only a few protocols and ties client-side integration closely
to the operating system. Operating transparently at the network level by diverting packets using
standard firewall rules, Tarzan can anonymize any client traffic.

Onion Routing uses a fixed set of onion routers with static public keys. The Freedom network
consists of commercially-run nodes deployed at various ISPs to route traffic between them. Freedom

centrally manages and provisions the network, building a PKI for router authentication. Tarzan’s

48

peer-to-peer architecture requires no cental management or control. Nodes can join and leave the
network dynamically; we place no requirements on authentication to provide anonymity.

Freedom ties the network into a centrally-managed pseudonym system for authentication and
access control. Tarzan does not place such barriers at the network level and instead provides a
library that would allow one to build custom server-side applications for access-control or other
higher-level considerations.

Tarzan’s peer-to-peer architecture removes any notion of entry-point into the anonymizing layer,
allowing us to provide cover traffic mechanisms that are both practical and powerful: Tarzan offers
sender and recipient anonymity in addition to the relationship anonymity provided by Onion Rout-
ing and Freedom.

Both Onion Routing and Freedom expose router selection to the end user. Tarzan automates
randomized relay selection and tunnel construction. Furthermore, Tarzan can route around failures
for ongoing connections.

The Onion Routing system further proposes a means whereby users can supply reply onions
similar to Mixmaster reply blocks, with which users can send recipient-anonymous messages. This
mechanism is static, slow, and more vulnerable to node failure, brute force decryption, and even
subpoena attacks. Tarzan’s IP forwarding architecture allows anonymous servers to interact trans-
parently with clients by performing dynamic pseudonymous network address translation and port

forwarding. This design is fast, flexible, and forward anonymous.

49

Chapter 9

Conclusion

Tarzan provides a flexible layer for sender, recipient, and relationship anonymity, even when operat-
ing in real-time. It sustains its anonymity properties in hostile environments, against both malicious
participants and global eavesdroppers.

Tarzan operates transparently at the IP level, so it works with any Internet application. Its peer-
to-peer design makes it decentralized, highly scalable, and easy to manage. Additionally, this lack of
any network core increases its fault-tolerance to individual relay failure, benefitting both anonymity
and availability.

We show that Tarzan imposes minimal overhead over a corresponding non-anonymous overlay
route. Latency through Tarzan tunnels is completely dominated by transmission speed through the
Internet.

Tarzan’s ability to participate in multiple kinds of traffic furthers its usefulness and, hopefully,
adoption. We believe a free, open-source, and common infrastructure like this will help to make
Internet anonymization easier and more prevalent.

By providing privacy-enabling tools for anonymous communication, we hope to reinforce the

rights of freedom of speech and freedom of information as integral parts of everyday life.

50

Bibliography

[1]
(2]

(3]

[4]

(5]

[6]

[7]
(8]

9]

[10]

The Anonymizer. http://anonymizer .com.

Oliver Berthold, Hannes Federrath, and Stefan Kdspell. Web mixes: A system for anonymous

and unobservable internet access. In Federrath [11], pages 115-129.

David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Com-

munications of the ACM, 4(2), February 1982.

David Chaum. The dining cryptographers problem: Unconditional sender and recipient un-

traceability. Journal of Cryptology, 1:65-75, 1988.

lan Clarke, Oscar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In Federrath [11], pages 46-66. http:/

/freenet_sourceforge._net.

Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and lon Stoica. Wide-area
cooperative storage with CFS. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01), Banff, Canada, October 2001.

Wei Dai. Pipenet. http://www._eskimo.com/~weidai/pipenet.txt.

Roger Dingledine, Michael J. Freedman, and David Molnar. The Free Haven Project:
Distributed anonymous storage service. In Federrath [11], pages 67-95. http://

freehaven.net.

John R. Douceur. The Sybil attack. In Proceedings of the 1st International Workshop on

Peer-to-Peer Systems (IPTPS02), Cambridge, MA, March 2002.

Electronic Frontiers Georgia (EFGA). Anonymous remailer information. http://

anon.efga.org/Remailers/.

51

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Hannes Federrath, editor. Designing Privacy Enhancing Technologies: International Work-
shop on Design Issues in Anonymity and Unobservability, volume 2009 of Lecture Notes in

Computer Science. Springer-Verlag, 2001.
lan Goldberg and Adam Shostack. Freedom network 1.0 architecture, November 1999.

lan Goldberg and David Wagner. TAZ servers and the Rewebber network: Enabling anony-

mous publishing on the World Wide Web. First Monday, 3(4), 1998.

Y. Guan, C. Li, D. Xuan, R. Bettati, and Wei Zhao. Preventing traffic analysis for real-time

communication networks. In Proceedings of Milcom *99, November 1999.

Mor Harchol-Balter, Tom Leighton, and Daniel Lewin. Resource discovery in distributed
networks. In Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC ’99), Atlanta, Georgia, 1999.

David Maziéres and M. Frans Kaashoek. The design, implementation and operation of an
email pseudonym server. In Proceedings of the 5th ACM Conference on Computer and Com-

munications Security (CCS-5), pages 27-36, San Francisco, California, November 1998.

David Maziéres, Michael Kaminsky, M. Frans Kaashoek, and Emmett Witchel. Separating
key management from file system security. In Proceedings of the 17th ACM Symposium on

Operating Systems Principles, pages 124-139, December 1999.
July 1993.

National Institute of Standards and Technology. Digital Signature Standard (DSS). Federal In-
formation Processing Standards Publication 186, U.S. Department of Commerce/NIST, 1994,

National Institute of Standards and Technology. Secure Hash Standard (SHS). Federal Infor-
mation Processing Standards Publication 180-1, U.S. Department of Commerce/NIST, 1995.

Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity for Web transactions. ACM
Transactions on Information and System Security, 1(1):66-92, 1998.

E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Architecture, January
2001. RFC 3031.

52

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

B. Schneier. Description of a new variable-length key, 64-bit block cipher (Blowfish). Lecture
Notes in Computer Science, 809:191-204, 1994,

lon Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proceedings of the ACM

SIGCOMM ’01 Conference, San Diego, California, August 2001.

Paul Syverson, D. M. Goldschlag, and M. G. Reed. Anonymous connections and onion rout-
ing. In Proceedings of the IEEE Symposium on Security and Privacy, pages 44-54, Oakland,
California, May 1997.

Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. Towards an analysis of onion

routing security. In Federrath [11], pages 96-114.

Marc Waldman and David Maziéres. Tangler: A censorship-resistant publishing system based
on document entanglements. In Proceedings of the 8th ACM Conference on Computer and

Communications Security, Philadelphia, Pennsylvania, November 2001.

Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cranor. Publius: A robust, tamper-evident,
censorship-resistant, web publishing system. In Proceedings of the 9th USENIX Security Sym-
posium, pages 59-72, August 2000.

Hugh C. Williams. A modification of the RSA public-key encryption procedure. IEEE Trans-
actions on Information Theory, 1T-26(6):726—-729, 1980.

Matthew Wright, Micah Adler, Brian N. Levine, and Clay Shields. An analysis of the degra-
dation of anonymous protocols. In Network and Distributed System Security Symposium,

February 2002. San Diego, CA.

53

