
Introducing Tarzan, a Peer-to-Peer Anonymizing Network Layer

Michael J. Freedman, Emil Sit, Josh Cates, Robert Morris
MIT Laboratory for Computer Science

{mfreed,sit,cates,rtm}@pdos.lcs.mit.edu

Abstract

We introduce Tarzan, a peer-to-peer anonymous net-
work layer that provides generic IP forwarding. Un-
like prior anonymizing layers, Tarzan is flexible,
transparent, decentralized, and highly scalable.

Tarzan achieves these properties by building
anonymous IP tunnels between an open-ended set
of peers. Tarzan can provide anonymity to existing
applications, such as web browsing and file sharing,
without change to those applications. Performance
tests show that Tarzan imposes minimal overhead
over a corresponding non-anonymous overlay route.

1 Introduction

The ultimate goal of Internet anonymization is to al-
low a host to communicate with a non-participating
server in such a manner that nobody can deter-
mine his identity. Toward this goal, we envi-
sion an Internet-wide pool of nodes, numbered in
the millions, that relay each others’ traffic to gain
anonymity. This paper describes a design aimed at
realizing that vision. First, however, we discuss why
less ambitious approaches are not adequate.

In the simplest alternative to our vision, a host
connects to a server through a proxy, such as a
Anonymizer.com [1]. This system fails if the proxy
reveals a user’s identity or an adversary can observe
traffic on the proxy’s network. Furthermore, servers
can block these centralized proxies and adversaries
can prevent usage with denial-of-service attacks.

To overcome this single point of failure, a host can
connect to a server through a set of mix relays [2].
The anonymous remailer system [4], Onion Rout-
ing [9], and Zero-Knowledge’s Freedom [5] offer
such a model, relying on a small, fixed core set of re-
lays to provide service. Such reliance increases vul-

nerability to individual node failures, and still pro-
vides obvious targets for attacking or blocking. Fur-
thermore, a corrupt relay can perform network-edge
traffic analysis on such a system: if the relay receives
traffic from a non-core node, that node must be the
ultimate origin of the traffic. A corrupt entry relay
can conspire with a corrupt exit to determine both
source and destination, using timing analysis. An
external adversary capable of observing traffic that
enters and exits the set of core relays can make the
same analysis. This reduces the anonymizing power
of long mix paths.

Tarzan, the design presented in this paper, involves
sequences of mix relays chosen from a large pool
of volunteer participants. All participants are equal
peers; they are all potential originators of traffic, as
well as potential relays. This design overcomes the
edge-analysis weakness: a relay cannot tell if it is the
first hop in a mix path. This design is still vulnera-
ble if an adversary can observe traffic throughout the
Internet, but this attack seems unlikely.

Tarzan is composed of an open-ended set of par-
ticipating nodes, with no centralized component; as
in other peer-to-peer systems, this lowers the barri-
ers to participation. Tarzan allows client applications
on participating hosts to talk to non-participating
servers on the Internet. Tarzan is transparent to both
client applications and servers, though it must be in-
stalled and configured on the client node.

Tarzan routes packets through tunnels involving
a randomly chosen sequence of Tarzan peers using
mix-style layered encryption. The two ends of a tun-
nel are a Tarzan node running a client application and
a Tarzan node running a network address translator;
the latter forwards the client’s traffic to the ultimate
destination, an ordinary Internet server. These mech-
anisms provide anonymity in the face of malicious

1



relayd

relayd

relayd

relayd
relaydrelayd

IP IP

pnat Internetsrcrouter

Peer-to-Peer
Overlay

client
app

Figure 1: Tarzan Architecture Overview

Tarzan participants, inquisitive Internet servers, and
observers who can see traffic on a limited number of
network links.

The larger purpose of Tarzan is to support a
systems-engineering position: anonymity can be
built-in as an underlying transport layer, transparent
to most systems, trivial to incorporate, and with a tol-
erable loss of efficiency. The immediate effect of this
approach will be to reduce the effort required for ap-
plication writers to incorporate anonymity into exist-
ing designs, and for users to add anonymity without
changing applications. In the long term, the ability
for a single anonymizing relay to participate in mul-
tiple kinds of traffic may make it easier to achieve a
critical mass of anonymizing relays.

2 Architecture and design

This section describes Tarzan’s basic tunnel mech-
anism. Figure 1 shows a simple Tarzan overlay
network. All participating nodes run software that
1) discovers other participating nodes, 2) intercepts
packets generated by local applications that should
be anonymized, 3) manages tunnels through chains
of other participants to anonymize these packets, 4)
forwards packets to implement other nodes’ tunnels,
and 5) operates a NAT (network address translator) to
forward other participants’ packets onto the ordinary
Internet.

Typical use proceeds in three stages. First, a node
running an application that desires anonymity selects
a set of nodes to form a path through the overlay net-
work. Next, this source-routing node establishes a
tunnel using these nodes. Finally, it routes data pack-
ets through this tunnel. The exit point of the tunnel
is a NAT, which forwards the anonymized packets to

servers that are not aware of Tarzan.
Tarzan operates at the IP (Internet Protocol) level

and offers a best-effort delivery model. The burden
of providing functionality like reliability or authenti-
cation is left to the communicating end-hosts.

Tarzan uses layered encryption similar to Chau-
mian mixes [2]: each leg of the tunnel removes or
adds a layer of encryption, depending upon the di-
rection of traversal of the packet. IP headers are san-
itized at the tunnel entry-point.

The rest of this section first describes how Tarzan
nodes relay packets along existing tunnels; this clar-
ifies the necessary per-node tunnel state. Next, it
shows how this state is established during the tunnel
setup phase, which includes key distribution. Finally,
it describes how IP forwarding happens at the tunnel
endpoints.

2.1 Packet relay

A Tarzan tunnel passes two distinct types of mes-
sages between nodes: data packets, to be relayed
through existing tunnels, and control packets, con-
taining commands and responses that set up and
maintain tunnels. Tarzan encapsulates both packet
types inside UDP.

A flow tag (similar to MPLS) uniquely tags each
hop of each tunnel. A relay rapidly determines how
to route a packet based on its tag. Symmetric encryp-
tion protects data on a per-hop basis, with separate
keys being used in each direction of each hop.

In the forward path, the tunnel entry-point clears
each IP packet’s source address field, performs a
nested encryption per tunnel hop, and encapsulates
the result in a UDP packet. More precisely, if
the tunnel consists of a sequence of nodes T =

2



(h1, h2, . . . , hl) and the forward key for each node
is khi

, the originating node produces the encrypted
block {{· · · {{p}khl

}khl−1

· · ·}kh2

}kh1

from the in-
put packet p. The origin tags this block with the
first hop’s flow identifier and forwards it to h1. That
node’s relay will decrypt the data, i.e. strip off one
layer of encryption, retag the packet, and forward it
on to the next hop. This process continues until the
packet reaches the last hop, which strips off the in-
nermost layer of encryption, revealing the original
IP packet.

On the reverse path, each successive relay per-
forms a single encryption with its appropriate reverse
key, re-tags and forwards the packet back towards the
origin. This process wraps the packet in layers of en-
cryption, which the origin of the tunnel must unwrap
by performing l decryptions. Note that this design
places the bulk of the encryption workload on the
node seeking anonymity.

2.2 Tunnel setup

When forming a tunnel, Tarzan selects a series of
nodes uniformly at random from existing peers in the
network. Each relay publishes a public key that is
generated locally the first time it enters the network.
We rely on this relay being the only one that knows
the corresponding private key. Section 2.4 describes
how Tarzan selects tunnel nodes and acquires their
public keys.

Tunnels are established on an iterative hop-by-hop
basis. The tunnel entry-point is responsible for set-
ting up the entire tunnel, which consists mainly of
generating and distributing the symmetric encryption
keys.

Each hop is set up using the same procedure. An
establish request sent to node hi is relayed as a nor-
mal data packet from h1 through hi−1. Node hi can-
not distinguish whether the packet originated from
node hi−1 or from one of that node’s predecessors;
node hi−1 cannot distinguish successive establish re-
quests from ordinary tunneled data. The establish re-
quest contains the forward decryption key that hi−1

will use when sending packets to hi and the encryp-
tion key that should be used for sending packets re-
ceived from hi+1. Additionally, it establishes the
flow identifiers that will be used to tag packets going
in each direction. The initiating node uses the public

key of node hi to encrypt the initial forward session
key and then this session key to encrypt the subse-
quent reverse key, node addresses, and flow identi-
fiers. When hi has successfully stored the state for
this request, it responds to the origin for an end-to-
end check of correctness.

For path length l, this algorithm takes O(l) public-
key operations and O(l2) inter-hop messages to com-
plete. This overhead is sufficiently small for realistic
choices of l.

2.3 IP packet forwarding

Tarzan provides a client IP forwarder and a
server-side pseudonymous network address transla-
tor (PNAT) to create a generic anonymizing IP tun-
nel. The IP forwarder diverts certain packets from
the client’s network stack and ships them over a
Tarzan tunnel. The client NATs its own address to
a random address assigned by the PNAT from the re-
served private address space. The PNAT translates
this private address to one of its real addresses. Re-
mote hosts can communicate with PNAT normally,
as if it originated the traffic. Correspondingly, re-
sponse packets are deNAT’ed twice, once at each end
of the tunnel.

The IP forwarder only hides Internet Protocol ad-
dress, and origin port numbers for TCP and UDP
packets. For existing application-level protocols that
leak information (such as http), the client can
choose to run an application-level sanitizer.

The pseudonymous NAT can also offer port for-
warding to allow ordinary Internet hosts to connect
through Tarzan tunnels to servers. This mode of op-
eration provides anonymity to the server. For ex-
ample, a user can join a file-sharing network such
as Napster as an anonymous server by simply reg-
istering her PNAT’s address. To Napster, the PNAT
would appear to be the client. In fact, any two par-
ties can communicate anonymously by each creating
a tunnel to a different PNAT; a normal connection be-
tween these two PNATs will form a double-blinded
channel.

2.4 Peer selection

Tarzan requires that its peer selection mechanism
provide three functions: new peer discovery, scal-

3



ability, and random selection. Additionally, these
mechanisms should be robust against adversaries at-
tempting to bias the selection process.

Tarzan uses the Chord lookup algorithm [8] to
obtain this functionality, although and peer-to-peer
lookup system that provides these functions would
be suitable. Chord is a distributed peer-to-peer hash
function mapping flat keys to nodes. Each Chord
node has a unique 160-bit node identifier (ID) ob-
tained with a cryptographic hash of its IP address.

All Tarzan relays participate in a single Chord
ring. New relays join the ring by contacting an exist-
ing relay to discover its proper set of overlay neigh-
bors. We assume that an adversary may only imper-
sonate a limited address space, such as the subnet-
work from which he is connected. Therefore, he may
only join the network with a relatively small number
of Chord nodes, as he cannot respond to RPCs sent
to other IP addresses.

Keys are mapped in Chord into the 160-bit space
by a universal hash function. The successor of a key
is the node with the smallest ID greater than or equal
to that key (with wrap-around), much as in consis-
tent hashing [6]. The Chord operation, lookup(K),
discovers the IP address of the successor of K by it-
eratively sending RPCs to nodes around the Chord
ring until reaching the desired successor.

The system is highly scalable, as the expected
number of messages involved in a lookup is
O(log n), for network size n nodes. The iterative
lookup allows the peer to validate the existence of
every intermediate node.

A peer efficiently picks a random peer by generat-
ing a random lookup key and finding that key’s suc-
cessor. The successor responds with its IP address
and public key.

This lookup would reveal the tunnel initiator’s
identity if performed immediately before tunnel es-
tablishment. Therefore, every node occasionally per-
forms a random key lookup (say, once per minute)
and caches this information for later use. The fresh-
ness of the key-to-node mapping is not important; the
critical mapping is public key to IP address.

3 Policy issues

Anonymity policy decisions affect tunnel selection
and maintenance. While Tarzan provides easy and

efficient peer discovery, user concerns may direct the
actual choice of peers for a tunnel. For example, tun-
nel intra-hop latencies have a noticeable impact on
end-to-end performance. However, a user more con-
cerned with anonymity may sacrifice some latency to
ensure that packets are routed through certain points
– for example, nodes outside his government’s juris-
diction – or even desire hops that explicitly delay and
batch messages.

While each peer responds to lookup queries with
a set of its attributes, intra-hop latency is highly de-
pendent upon the underlay network path. Tarzan pro-
vides explicit ping meassages to measure per-hop la-
tency through our overlay network. These messages
are relayed as normal data packets in the tunnel until
reaching the specified node.

4 Security and anonymity analysis

This section explains how Tarzan provides adequate
security and anonymity against a limited active ad-
versary.

A limited active adversary cannot possibly sniff
and perform traffic analysis on all system partici-
pants. As all Tarzan users run relays, there are at
least as many relays as active participants. We imag-
ine several hundred nodes in early stages of deploy-
ment and possibly thousands or more in later stages.
Because tunnel setup selects its path randomly at
runtime (modulo any policies) from the large set of
peers, an adversary cannot consequently predict or
target nodes for attack.

Additionally, Tarzan confounds adversaries by
funneling all communication through each node’s re-
lay, regardless of whether the traffic originates lo-
cally or remotely. Tarzan achieves sender anonymity:
both passive sniffers and malicious participants can-
not distinguish whether a node initiates a message or
merely relays it.

This argument follows the Crowds analysis [7],
but differs in several important ways. First, Tarzan
rebuilds individual links following failures rather
than entire paths, minimizing the intersection attack
on linked flows. Second, adversaries cannot link
flows as easily. Tarzan layer-encrypts data in the
tunnel, while all nodes in a Crowds path see plain-
text. This encryption additionally protects against
message coding attacks (and provides data confiden-

4



tiality in the tunnel as a second-order effect). Third,
Tarzan chooses nodes independently. With c collud-
ing adversaries in a n-node network, the probabil-
ity of choosing a fully-compromised l-length route
is roughly

(

c

n

)l.
A peer-to-peer system also offers new challenges.

An adversary can pseudospoof the system and cre-
ate a multitude of identities: only the number of IP
addresses available limits the number of virtual iden-
tities usable by him. However, the user can specify
policies to avoid routes with similar IP prefixes.

5 Implementation

We have implemented Tarzan in C++ on Unix to val-
idate our approach. The core component of Tarzan
is a stand-alone relay server that performs the per-
hop packet relaying. This server can be run by un-
privileged users. Another component, the Tarzan li-
brary, communicates with the relay server to estab-
lish tunnels, to listen for connections, and to send
and receive data. The Tarzan library presents an API
modelled after standard Unix sockets, albeit asyn-
chronous, that is executable on a variety of BSD,
Linux, and Unix platforms.

Applications such as the IP forwarder and the
pseudonymous NAT are built on top of this library.
For IP forwarding, we take advantage of FreeBSD’s
divert sockets.

6 Performance

In this section, we present some preliminary perfor-
mance measurements running on a 1.2 GHz Athlon
PC with 128 MB of RAM running FreeBSD 4.3 con-
nected to a 100 Mbps switched ethernet.

Table 1 shows the average latency as the time
needed by the Tarzan relay to read a packet off the
network, decrypt and route it, and send it out to the
next relay. For large-enough packet, latency scales
linearly with packet size. Throughput also scales
roughly linearly.

Table 2 shows end-to-end latency required to setup
a tunnel. To differentiate Tarzan’s overhead from
the cost of Chord lookups, we provide two measure-
ments. Clients pre-fetch node information in one and
perform lookups on-demand in the second. On aver-
age, we incur a setup cost of 20 msec per hop. There-

Pkt size Latency Throughput
(bytes) (µ-sec) (pkts/s) (Mbits/s)

64 244 14000 7.2
512 376 8550 35.0

1024 601 7325 60.0

Table 1: Per-hop latency and forwarding rate

Tunnel Pre-fetch On-demand
length latency latency

1 30.19 29.51
2 46.54 59.77
3 68.37 106.70
4 91.55 146.37

Table 2: Tunnel setup latency in msec

fore, underlay network latency still dominates, even
during tunnel setup.

7 Related work

Prior work in this area falls into two categories:
systems that provide application-specific anonymity,
and systems that offer a more generic transport
framework.

The majority of application-specific anonymous
systems focus on email, web browsing, or file shar-
ing. For example, the mix networks proposed
by Chaum [2] were designed to achieve untrace-
able anonymous email. The Cypherpunk and Mix-
master remailers [4] incorporate these techniques.
Web systems range from centralized sanitizers [1]
to non-mix peer-to-peer systems [7] that lack self-
organization. Systems for anonymous publishing in-
clude Freenet [3]. In contrast to application-layer
solutions, Tarzan provides a single general-purpose
anonymizer that can be used transparently by many
applications.

Few systems attempt anonymity for low-level,
real-time communication. The Onion Routing sys-
tem [9] creates a mix-net over TCP connections. Ap-
plication integration is achieved using application
proxies that create paths in the system by succes-
sively encrypting a control packet, or onion. Zero-
Knowledge Systems developed the first commercial
mix-net system, known as the Freedom network [5].
The Freedom network consists of nodes deployed at

5



various ISPs to route traffic between them, using a
model similar to Onion Routing. Client-side inte-
gration is closely tied to the operating system and
Freedom’s pseudonym authentication system. Un-
fortunately, Freedom was shut down in mid-2001 for
financial reasons. Both of these systems only provide
plausible unlinkability of sender and recipient.

In comparison, Tarzan uses the same basic idea
to mix traffic, but achieves IP-level anonymity by
generic and transparent packet forwarding. Tarzan
offers sender anonymity in addition to the unlink-
ability of sender and recipient provided by Onion
Routing and Freedom. This is derived from its
peer-to-peer architecture, which removes any notion
of entry-point into the anonymizing layer. Tunnel
construction is client-driven, allowing users to find
more efficient paths by incrementally building tun-
nels. Tarzan’s IP forwarding architecture also al-
lows servers to interact transparently with anony-
mous clients by performing dynamic pseudonymous
network address translation; Onion Routing’s pro-
posed reply onions are static and thus more vulner-
able to node failure, brute force decryption, and even
subpoena attacks. Finally, we hope to provide an
anonymization tool that is free to use and plan on
making our source code available under the GNU
Public Licence.

8 Conclusion

Tarzan provides a flexible, transparent layer for
providing anonymity to generic IP connections.
Tarzan’s peer-to-peer design makes it decentralized,
highly scalable, and easy to manage.

We show that Tarzan imposes minimal overhead
over a corresponding non-anonymous overlay route.
Latency through Tarzan tunnels is completely domi-
nated by transmission speed through the Internet.

Tarzan’s ability as a single anonymizing relay to
participate in multiple kinds of traffic furthers its use-
fulness and, hopefully, adoption.

References

[1] The Anonymizer. http://anonymizer.com.

[2] David Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Communications of
the ACM, 4(2), February 1982.

[3] Ian Clarke, Oscar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A distributed anony-
mous information storage and retrieval system. In
Hannes Federrath, editor, Designing Privacy Enhanc-
ing Technologies: International Workshop on De-
sign Issues in Anonymity and Unobservability, vol-
ume 2009 of Lecture Notes in Computer Science,
pages 46–66. Springer-Verlag, 2001. http://
freenet.sourceforge.net.

[4] Electronic Frontiers Georgia (EFGA). Anony-
mous remailer information. http://
anon.efga.org/Remailers/.

[5] Ian Goldberg and Adam Shostack. Freedom network
1.0 architecture, November 1999.

[6] D. Karger, E. Lehman, T. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing and
random trees: Distributed caching protocols for re-
lieving hot spots on the world wide web. In Proceed-
ings of the 29th Annual ACM Symposium on Theory
of Com puting, pages 654–663, May 1997.

[7] Michael K. Reiter and Aviel D. Rubin. Crowds:
anonymity for Web transactions. ACM Transac-
tions on Information and System Security, 1(1):66–
92, 1998.

[8] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications.
In Proceedings of the ACM SIGCOMM ’01 Confer-
ence, San Diego, California, August 2001.

[9] Paul Syverson, D. M. Goldschlag, and M. G. Reed.
Anonymous connections and onion routing. In Pro-
ceedings of the IEEE Symposium on Security and Pri-
vacy, pages 44–54, Oakland, California, May 1997.

6


