
From Feast to Famine:
Managing mobile network resources across

environments and preferences

Robert Kiefer, Erik Nordström, and Michael J. Freedman
Princeton University

Abstract
Mobile devices regularly move between feast and

famine—environments that differ greatly in the capacity
and cost of available network resources. Managing these
resources effectively is an important aspect of a user’s
mobile experience. However, preferences for resource
management vary across users, time, and operating con-
ditions, and user and application interests may not align.
Furthermore, today’s mobile OS mechanisms are typi-
cally coarse-grained, inflexible, and scattered across sys-
tem and application settings. Users must adopt a “one
size fits all” solution or micro-manage their devices.

This paper introduces Tango, a platform for managing
network resource usage through a programmatic model
that expresses user and app interests (“policies”). Tango
centralizes policy expression and enforcement in a con-
troller process that monitors device state and adjusts net-
work usage according to a user’s (potentially dynamic)
interests. To align interests and leverage app-specific
knowledge, Tango uses a constraint model that informs
apps of network limitations so they can optimize their us-
age. We evaluate how to design policies that account for
data limits, user experience, and battery life. We demon-
strate how Tango improves individual network-intensive
apps like music streaming, as well as conditions when
multiple apps compete for limited resources.

1 Introduction
Even though resource management is a principle task

of operating systems, mobile OSes have been slow to
tackle the unique resource challenges facing mobile de-
vices. Devices are restricted by myriad factors, includ-
ing energy, computing, and network data limits. Utiliz-
ing the network tends to trade off these (usually) lim-
ited resources. Some of these—such as battery life or
monthly network data limits—must be managed over
epochs many orders of magnitude greater than those rel-
evant to traditional packet scheduling. The mismanage-
ment of the network can be costly and undesirable.

Unfortunately, today’s mobile OSes offer only a lim-

ited set of mechanisms to manage resources across users,
operating conditions and longer time horizons, typically
in the form of hard limits. For example, to improve bat-
tery life, Apple iOS and Windows Phone limit which
apps can run in the background and their network usage.
Default Android supports setting simple hard data limits
on the device, and some manufacturers introduce power-
saving modes [1] that aggressively shut off background
tasks and network usage, even if it hurts app function-
ality. Finally, some apps include additional settings to
manage resource usage. These approaches lack sufficient
flexibility and ease-of-use, as they are either too restric-
tive or require users to constantly micro-manage their de-
vice. Indeed, Table 1 shows the myriad of app-specific
options users face to manage their network usage.

Even if third-party applications are well behaved and
expose options to manage network usage, an applica-
tion’s behavior may not always align with its user’s in-
terests. Apps commonly focus on high performance to
ensure a good user experience, rather than minimizing
network usage and without concern of their impact on
concurrently running apps. On the other hand, while
some apps allow users to disable cellular usage or down-
grade to lower bitrates, these degraded user experiences
may be unnecessary given a device’s current data usage.

To simplify and better align a user’s interests with
their device’s network management, this paper intro-
duces Tango, a system for managing network usage via a
flexible, programmatic policy model. Tango centralizes
network management in a controller process that moni-
tors device state and applies dynamically-generated rules
that incorporate both user and app-specific needs. This
controller both distills ad-hoc user configuration into a
single user policy and provides a means of resolving con-
flicts between user and app policies. Towards this end,
user interests trump app interests in Tango, and a con-
straint mechanism is used that enforces limits (even for
legacy or uncooperative apps) while encouraging apps to
align. The constraint system proactively deals with pol-
icy conflicts, informing apps of their limits so they can
adjust. Alternative reactive solutions, such as discarding

1

or changing outputs of conflicting policies, would leave
apps either uninformed if their policy was carried out or
unable to know what policies are acceptable in the first
place. Meanwhile, cooperative apps can leverage the
constraints and local knowledge (e.g., about buffers or
counters) to optimize their usage. Additionally, Tango al-
lows apps to “hint” about their needs (e.g., priority, data
rate) that become part of device state. These hints can be
incorporated by the user policy, allowing apps to provide
feedback while still maintaining user policy preference.

A Tango policy is a programmatic instantiation of
a user’s (or app’s) interests. Given the device state
and constraints, a policy outputs a list of actions to
take. Because mobile devices’ operating conditions are
quite dynamic, Tango collects information from a vari-
ety sources—including the kernel, network stack, and
battery—to be used as input to policies. For example,
a user may be interested in using WiFi over HSPA, ex-
cept when it provides unacceptable throughput. When
considering whether to use WiFi or HSPA, a policy can
consider the number of apps using the network, whether
there is any foreground activity, and the current traffic de-
mands on the network. This model is considerably richer
and more flexible that the options currently available.

To demonstrate Tango’s use, we apply it to the context
of both single apps and the concurrent use of network-
competing apps. For the former, we investigate WiFi
offloading for a music streaming app in areas of spotty
WiFi coverage, and find Tango can help achieve both per-
formance (i.e., seamless playback) and data savings for
the user (60-97%). For the latter, we show how policy
can be used to express fairness and prioritization across
apps. We demonstrate how user policy can provide per-
app fairness regardless of the number of flows in each
app, as well as how user policy can prioritize usage based
on changing operating and app conditions.

2 Motivation and Challenges
Today, music streaming services, like Pandora, Rdio,

Spotify, Google Play Music, and iTunes Radio, are popu-
lar alternatives to preloading devices with large music li-
braries. In fact, a recent study [22] points out that media
streaming (including music) is one of the major sources
of cellular data usage. Using music streaming as a mo-
tivating example, we next highlight some areas in which
current network management does not afford a good user
experience. We also discuss challenges in aligning the
interests of users, device vendors, and app developers.

2.1 Balancing Costs, Caps, and Battery
With unlimited data plans a thing of the past, the

increased flexibility of streaming comes with the risk
of inflating cellular data usage and power consumption.
Prefetching upcoming songs to provide a seamless play-

App class App name Settings

Social

Facebook Refresh rate: None / 30m / 1h / 2h / 4h
Sync photos: Any network / WiFi only

Google+

Sync photos: Any network / WiFi only
Sync videos: Any network / WiFi only
Sync while roaming: On / Off

Sync only while charging: On / Off

Audio
Streaming

Pandora High-quality on cell: On / Off

Conserve battery: On / Off

Google
Play Music

Cache during playback: Yes / No
Auto cache while charging+Wifi: Yes / No
Pin songs on WiFi only: Yes / No
Stream on WiFi only: Yes / No
Cell stream quality: Low / Normal / High

Video
Streaming

Youtube

HD on cell: Yes / No
Uploads: Any network / WiFi only
Preload WiFi+Charging:

None / Subscriptions / Watch Later / Both
Netflix Playback on WiFi only: Yes / No

Table 1: Some of the myriad application settings
available for managing resource usage.

back experience users expect inevitably leads to trade-
offs, where the data limited and power hungry cellular
link must be used.

Table 1 shows that apps try to address managing these
trade-offs by providing many knobs for the user to tune.
However, this forces the user to choose reduced function-
ality or constant micro-management. The level of control
exposed is left up to app developers, making it inconsis-
tent even across apps of the same class (e.g., Pandora vs.
Google Play Music). Further, some app settings assume
a certain level of understanding of the inner workings
of the app, and settings may come and go as the app is
updated. Finally, a user’s interests can change over the
course of a billing cycle depending on their data use, or
over the course of the day as their battery drains. Trying
to balance all these concerns, via numerous, redundant,
inconsistent settings and over an entire billing cycle, be-
comes an insurmountable problem for many users. With
Tango, many of these settings are distilled into policies
that are configurable from a single location via the user
policy. Still, Tango supports app-specific settings, but
may override them if they conflict with the user policy.

2.2 Ensuring Good User Experiences
Smartphones automatically switch between networks

(e.g., 4G and WiFi), but this can be disruptive to the user
experience. Network switching is done with little regard
to its effect on apps, which typically experience failed
TCP connections when IP addresses change. For stream-
ing music, this manifests as pauses in playback; other
apps can see broken webpages, disconnects from a game,
or other failures. While every app could deploy its own
failure handling, this leads to little economy of mecha-
nism and places an undue burden on developers. Fur-
ther, efficient recovery is not always supported by remote

2

servers (e.g., only about 39% of the top ten thousand
Alexa websites supports HTTP range requests [14]). In
the worst case, we found some popular streaming apps
that simply fail and tell the user to try again.

This problem is exacerbated by the aggressive WiFi
offloading performed by today’s smartphones, even when
performance on WiFi is worse than cellular. Exam-
ples of this include public hotspots that are overloaded
with too many users, networks with weak signal, or net-
works with a low-bandwidth backhaul link. Without a
way to seamlessly switch between networks and an ef-
fective policy for when to switch, the user is left to ei-
ther manually manage their connectivity, live with the
poor performance, or inflate cellular usage by never us-
ing WiFi. Tango improves the user experience by allow-
ing data streams (e.g., music playback) to continue seam-
lessly across network changes (by adopting MPTCP [21]
or Serval [12]) and having policies dynamically pick the
best network according to user interests.

2.3 Managing Conflicting Interests
Conflicting user and app interests are a further source

of tension on mobile devices. Apps typically focus
on ensuring they perform well, even at the expense of
wasted data usage. This is particularly a problem with
streaming apps, e.g., where prefetched content may be
discarded when the user skips songs, stops playing, or
reaches WiFi before it is needed.

Interest conflicts occur among concurrently running
apps. Some mobile OSes, like iOS or Windows Phone,
attempt to minimize these conflicts by limiting the types
of background apps (e.g., media streaming, location
tracking). Yet such coarse-grain policy inhibits non-
whitelisted apps, while still failing to provide suffi-
cient resource isolation. For example, streaming apps
will prefetch songs even if their need is not imminent,
slowing down interactive foreground tasks such as web
browsing. Also, because an app’s usage may be spread
over many flows—e.g., one for streaming media and an-
other for prefetching—traditional resource-management
policies like per-flow fairness may be insufficient. Fur-
ther, resource prioritization can be more nuanced than a
mere differentiation between foreground and background
apps. For instance, background music streaming’s data
usage is as important as the foreground task when its
buffer is low, but less important as the buffer fills up.

Tango supports the restriction and prioritization of re-
sources on a per-app basis. By considering apps rather
than flows, it prevents any “strength-in-numbers” at-
tempts by apps to gain an unwarranted portion of net-
work resources. User policy can dynamically prioritize
apps on their execution status, as well as consider hints
from apps about when to re-prioritize their usage (e.g.,
when a background music app signals the need for higher

	

Kernel

Measure Control

Gather plans

Execute

Controller

User
Policy

	

	

	
	

Apps

State

Plans

Figure 1: The Tango architecture

priority when its buffer fell below a low watermark).

3 Tango Design
This section details Tango’s design and how it man-

ages network usage. Figure 1 shows a high-level
overview of Tango’s architecture. At the heart of Tango
is a controller that runs as a privileged process, used to
centralize network control and to handle the dynamic na-
ture of mobile devices. The controller is responsible for
monitoring and packaging device state into a common
API to be used by policies. A policy in Tango refers to
a programmatic instantiation of a party’s interests. Poli-
cies use device state to derive a plan, a list of actions it
would like taken on its behalf. These plans are vetted
by the controller to make sure they are valid, including
that they obey constraints set by a higher-priority policy
(i.e., from the user). Constraints serve as a mechanism to
proactively resolve interest conflicts between a user and
an app (or between apps), providing limitations on us-
age by an app (e.g., “rate limit of 200 kbps on HSPA”).
In the rest of this section, we detail the responsibilities
and benefits of the controller, the role of user and app
policies, and look at policy in practice. Throughout this
section we include pseudocode examples to give a sense
of what policies look like and how simply many of these
concepts can be expressed in our framework. While we
use pseudocode here, the actual policies are very simi-
lar in terms of complexity and length; the pseudocode is
just more terse than the language in which are prototype
policies are written (Java, see §4).

3.1 The Controller and Policy Execution
The controller process is at the heart of Tango, de-

signed to be a central point for network management.
The controller’s control loop is presented in Pseu-
docode 1. This loop is run once per control epoch, which
is configurable and typically on the order of seconds. Al-
ternatively the loop could run in an event-based manner,

3

Pseudocode 1 Tango Control Loop
1: A: applications
2: for every epoch do
3: S←MeasureDeviceState
4: C← DetermineConstraints(S)
5: Enforce(C)
6: for a ∈ A do
7: SolicitPlan(a, C)
8: P← GatherPlans(A)
9: for p ∈ P do

10: if not Valid(p, C) then
11: p← GetDefaultPlan
12: Execute(p)

Network stack

Transport # retransmissions, RTTs, congestion window, etc.
Network (IP) addresses, routing rules, etc.
Physical link type, signal quality, bit errors, etc.

Other sensors

Battery plugged in, charge percent, current draw, etc.
GPS location, speed

Table 2: Device state sources and metrics.

responding to device state changes like new interfaces
becoming available, particular apps opening, etc.

Monitoring device state. The control loop starts with
the controller compiling a current view of the device
state, which it exposes as a high-level API to policies.
This provides apps with a common way to access de-
vice state, rather than leaving the implementation up to
each app. The device state is composed of metrics from
numerous sources including the OS, the network stack,
battery, apps, and optionally other available sensors, as
shown in Table 2. Reading some of these sources may re-
quire elevated privileges, so by centralizing this process
we also remove the need for apps to request additional
permissions. Further, Tango enforces information pro-
tection by only sharing relevant state with an app, e.g.,
the transport-layer statistics for its flows.

This device monitoring stage is important for han-
dling the dynamic environments in which mobile devices
are used, as it allows the controller to stay up-to-date
with operating conditions. While current network man-
agement mechanisms recognize the importance of cer-
tain state (e.g., WiFi signal strength), Tango increases
the scope of monitored state; bandwidth, latency, app
foreground status, etc., provide a more complete picture
of the current environment. For example, in the case
of overcrowded public hotspots, available bandwidth is
a much more important metric for quality than signal
strength. The information supplied by Tango allows for
more versatile and useful policies.

Enforcing constraints. One task of the user policy is
to specify constraints to the system. Constraints are lim-
its on system resources that are enforced on entities such

as interfaces and apps. For example, to reduce data us-
age, a user policy could constrain the HSPA interface to
500 kbps, which the controller applies using system tools
and APIs (§4). The controller rejects actions generated
by policies attempting to violate this, e.g., an app trying
to set its limit to 1Mbps. In this manner, a user’s interests
are enforced even in the presence of misbehaving apps.

Tango uses this constraint mechanism to proactively
resolve conflicts between competing interests. In Tango,
user interests trump those of apps, which is why the user
policy determines these constraints. Constraints are in-
tended to allow app policies to cooperate with user pol-
icy, but are also always enforced by the controller, even if
a malicious app policy tries to skirt them. By telling app
policies of constraints upfront, apps can optimize their
usage within those limits. For example, a user may rate
limit a streaming app to marginally above its playback
rate; the app adjusts by de-prioritizing non-critical flows
(i.e., prefetching) in favor of critical ones (i.e., stream-
ing). If a user’s constraints cause the app to perform
poorly, either the user policy needs to be refined to be
less restrictive, or the app’s interests are too divergent.
We imagine that frequently conflicting policies can hurt
an app’s online feedback, incentivizing apps to include
policies that work well across operating conditions.

We preferred this proactive approach, with its straight-
forward controller task of approving app plans, over at-
tempting to resolve conflicts after app policies had been
evaluated. To do that, conflicting plans would need to be
modified by the controller or use a feedback loop that in-
volves reevaluating app policies. The former leaves apps
optimizing for conditions that may not happen, while the
latter also need a constraint mechanism to avoid the re-
peating conflicts in subsequent rounds. Additionally, we
chose to make user policy trump app policy because the
device belongs to the user and they will ultimately “pay”
the consequences of resource mismanagment (e.g., data
overage costs, the battery dying before the end of the
day). From this standpoint, apps that fail to comply with
user policy can be thought of as violating correctness.
App hints and policies allow some room for compromise,
however, within the confines specified by the user pol-
icy’s constraints.

Policy conflicts also occur across different apps. In
such situations, constraints are useful for expressing pri-
oritization and how usage should be shared amongst the
conflicting apps. Since a constraint applies on a per-app
basis, rather than per-flow, it is not possible for apps to
game the system by a “strength in numbers” approach.
That is, creating multiple flows to gain more bandwidth
is futile. App priority can be specified by allocating
larger resource shares to high-priority apps, or by limit-
ing lower-priority apps while leaving others unrestricted.

4

Pseudocode 2 App policy with hints
1: PS: music player state
2: urgent: urgent need for data
3: function Evaluate(S, C)
4: P: plan
5: // Rest of policy elided for space.
6: P.hintPriority← NORMAL
7: if PS.getBufferTime() >30 then
8: urgent← false
9: else if PS.getBufferTime() <20 || urgent then

10: urgent← true
11: P.hintPriority← HIGH
12: return P

Pseudocode 3 User policy with app hints
1: function DetermineConstraints(S)
2: C: constraints
3: for A in S.apps() do
4: if AllowPriority(A, A.hintPriority) then
5: C← NewAppConstraint(A, A.hintPriority)
6: else
7: C← NewAppConstraint(A, NORMAL)
8: return C

Supporting app policies. Tango allows apps to spec-
ify their own policies. During each epoch (lines 6-8 in
Pseudocode 1), the controller disperses appropriate de-
vice state and constraints to apps registered with the con-
troller. The app policy responds with a plan, which the
controller validates (lines 9-12), ensuring the app only
manages its own flows or other approved resources and
obeys its given constraints. The user policy provides a
default plan for apps without one or an invalid one.

App policies allows apps to refine their network usage
based on local information that a user policy would not
know. For example, if a user policy restricts an app’s data
limit, the app policy can respond by asking the controller
to re-prioritize certain flows higher (e.g., those down-
loading a social network feed) than others (e.g., back-
ground syncs). In this way, apps are given more insight
into what is happening to their network usage and given
a way to respond in useful ways. Should an app not pro-
vide a policy, the typical default plan by user policies
would be a bare minimum approach. That is, enforce the
constraints on that app, but little else.

In addition to actions to take on its behalf, apps can
provide hints to the controller about its needs. For ex-
ample, when a music app’s playback buffer is low, it can
send a hint that it wants higher priority for its traffic. This
information is stored as part of the device state for the
next control epoch, which can be used by the user policy
as part of its constraint generation process. Pseudocode 3
and 2 are examples of user and app policies using app
hints. The app policy sets hintPriority in its plan. In
the next epoch, the user policy uses AllowPriority()
to decide if the app’s request is allowable, e.g., by match-
ing against a list of apps and their acceptable priority

levels. Apps therefore can provide feedback to the user
policy, which still has the final approval of what hints to
use. We look more at the usefulness of app hints when it
comes to app conflicts in §5.3.3.

3.2 A Programmatic Approach to Policy
Tango employs policy at two levels: the user (device)

and the application. User policies reflect the overall de-
sires of the device owner, which may reflect high-level
interests such as “preserve battery,” “minimize cellular
usage,” or “ensure high throughput for video.” Manage-
ment of a device’s interfaces, and how usage is shared
or prioritized across different (classes of) apps, are ex-
pressed by the user policy. User policies can naturally be
written with classes of apps (e.g., music streaming apps)
in mind; the class of each app can be prepopulated by the
policy writer, configured by the user in settings, or sug-
gested by the app developer. This allows common con-
straints and goals (e.g., reduce data usage) to be set once
for several apps, and reduces the complexity of policies
by not focusing on individual apps. There is only one
user policy running at a time, and it cannot be changed
by third-party apps.

We imagine there are a few ways for users to se-
lect a policy. Device manufacturers, or even tech-savvy
users themselves, could write user policies, which can
then be configured and activated in the device settings.
Policies could be shared by uploading them to a “pol-
icy store,” where other users could download and review
them. When a user loads a policy, it can expose configu-
ration options that users can tune to fit their needs (e.g.,
monthly data budget, desired music quality, etc.).

App policies, on the other hand, allow the system to re-
flect the needs to currently executing applications. They
may use information only visible or semantically mean-
ingful to the app, e.g., a streaming app’s policy exam-
ines the playback buffer when expressing “do not buffer
when above X seconds.” By soliciting plans from apps,
the controller can account for such app-specific informa-
tion in its control loop, provided it does not violate the
constraints set by the user policy. Apps can only specify
policy which affects their usage; they can not manipulate
usage of other apps or set the user policy. In our expe-
rience (§5), adding policy to apps was straightforward
and a matter of exposing the pertinent information (e.g.,
buffer levels) to the app policy via shared state. Also,
since the actions are handled by the controller, there were
less permissions and code needed for the app itself.

Implementing and expressing policies. Policies are
programs that implement a simple interface. This in-
terface consists of an evaluate() function that con-
structs a plan (a list of actions) given (1) the current
device state, e.g., network metrics, available interfaces,
battery life, (2) constraints such as bandwidth limits, and

5

Action Iface Flow Description

ENABLE X X Enable iface/subflow
RATELIMIT X X Limit bandwidth

LOG X X Write information to file
MANAGE X Change AP, queue size, etc
MIGRATE X Move flow to new interface

Table 3: Actions on interfaces and flows. App policy
can only perform flow actions and only on their flows.

Pseudocode 4 Avoid poor WiFi
1: sigs: list of WiFi signals
2: slowNets: map networks to time added
3: function Evaluate(S, C)
4: P: plan
5: wifi← GetWifiInterface(S)
6: cell← GetCellInterface(S)
7: if wifi.isAssociated() then
8: sigs.push(wifi.signal())
9: if BadSignal()then

10: P.add(MANAGE, DISCONNECT, wifi)
11: P.add(MANAGE, CONNECT, cell)
12: else if wifi.speed() <100000 then
13: slowNets.put(wifi.network(), S.now())
14: P.add(MANAGE, DISCONNECT, wifi)
15: P.add(MANAGE, CONNECT, cell)
16: // Other cases elided for space.
17: return P

(3) a list of controllables. Additionally, the user policy’s
determineConstraints() function returns interface
and app constraints based on the current device state.

A plan is a list of actions that a policy would like ex-
ecuted. Tango currently exposes two types of control-
lable entities: interfaces and flows. Actions on interfaces
include turning interfaces on and off, selecting access
points (APs), and setting queue and rate limits. Interface
actions are only available to the user policy, as they af-
fect all apps on the device. Actions on (sub)flows include
adding/removing flows and migrating them across inter-
faces. These actions are available to both user and app
policies, though app policies are restricted to acting only
on their own flows. Table 3 summarizes these actions.

Tango’s programmatic approach provides sufficient
flexibility. It allows for simple, rule-based approaches
(like current techniques), as well as more complicated
approaches that use past behavior to predict future us-
age. An example policy snippet for WiFi-connected de-
vices is given by Pseudocode 4. Two conditions cause
the policy to return a plan that fails over to HSPA: (1) if
BadSignal() return true or (2) if the measured speed of
WiFi is below 100 kbps. There are many possible imple-
mentations for BadSignal(), including tracking a list of
past signal readings to monitor trends instead of instan-
taneous readings (see §5.2). Condition (2) helps address
several scenarios mentioned earlier, such as overcrowded
hotspots. This is just one sample implementation; others
could integrate information about the mix of apps using
the network, location, battery life, and more.

3.3 Discussion: Policy in Practice
We now revisit the discussion of use cases from §2,

and expand on how policy improves usage in practice.

From incidental to intentional device behavior. To-
day’s mobile device network management, with settings
spread across apps, has at best an incidental effect on
resource usage. Users are not certain whether their com-
bination of settings will translate into what they want.
In contrast, Tango allows users to load and run policies
that have intentional effects on the way a device behaves.
Unlike today’s myriad settings, policies express what the
user wants, not how it is achieved. Tango allows control
of device behavior from a single location, and settings
are structured into global and class-specific ones. Global
settings apply to all classes, while class settings could
generate constraints for all apps of that class, such as a
slider for streaming quality on cellular for all media apps.
Apps may still have settings to further tune their usage,
but they are subject to global constraints ensuring they
are aligned with the user policy.

Improved user experience. Mobile OSes have many
sensors and control surfaces that govern device behav-
ior, but no effective way to translate that flexibility
into an improved user experience. For instance, OSes
that support seamless flow migration (e.g., iOS7 with
MPTCP [18]) have the ability to switch networks with-
out interrupting individual flows. However, as we have
pointed out, many available networks are overloaded or
experience weak signals. Unless flow migration is gov-
erned by an effective policy, this feature may have lim-
ited practical effect on user experience. Programmatic
policy allows for solutions like building profiles of net-
works and usage over extended periods, to later inform a
decision on whether to use a particular network.

Living within one’s means. Tango’s constraint mech-
anism is useful for reigning in cellular usage. For data-
heavy apps such as media streaming, the user policy
could restrict those (classes of) apps, either with a static
rate limit or by allotting them an amount of usage over
a time interval. A static rate limit is useful for curtailing
usage in the case of apps that do not have an app pol-
icy, but can cause poor performance if cellular service
disappears (depleting the buffer) or if the rate is set too
low. Assigning an allotment is similar to a rate limit, but
provides apps with greater flexibility to optimize their us-
age. For example, an app with a sufficient media buffer
can save its allotment until hitting a low watermark or for
unexpected future events that necessitate a fast response,
such as the user skipping the current song.

Prioritization and fair network usage. Tango makes
supporting priority and fairness in network usage
straightforward with constraints and the controller’s state

6

Pseudocode 5 Prioritize foreground app
1: function DetermineConstraints(S)
2: C: constraints
3: for A in S.apps() do
4: if A.isForeground() then
5: C← NewAppConstraint(A, HIGH)
6: return C

monitoring. A common example of network usage to pri-
oritize would be that of the foreground app (changes of
which are learned quickly by the controller). Achieving
this prioritization in Tango can done by implementing
the user policy’s DetermineConstraints() per Pseu-
docode 5. It also takes care of managing the kernel traffic
queues for the user and ensures it does not cause unin-
tended side effects with other settings. Since constraints
apply on a per-app basis, Tango can effectively reign
in greedy or buggy apps that would otherwise drain re-
sources, e.g., by having many open TCP connections.

4 Implementation
We have implemented a prototype of Tango that runs

on Android devices. The prototype is in Java and consists
of three parts: (i) the main library with code for gener-
ating device state and APIs for policies, constraints, and
actions; (ii) a client library for app policy communica-
tion to the controller; and (iii) a controller with most of
the previously described functionality.

Our prototype includes support for flow migration on
Linux via ECCP [2], as implemented in a loadable kernel
module through the Serval network stack [12]. Serval has
support for getting flow-level metrics from the transport
layer, such as RTT and congestion window. While we
chose this particular implementation of flow migration
to use with our prototype, Tango is not dependent on it.
Other methods for gathering flow-level metrics [19] and
flow migration [17, 21, 23] would work as well.

Our prototype leverages many resource management
mechanisms already available in Linux and Android, and
thus did not require any OS modifications. The tc tool
provides rate limit actions and constraints; we use the
hierarchical token bucket (HTB) queue extensively for
enforcing constraints. Each interface starts with an over-
all bucket which can be rate limited via constraints or
actions. Buckets are attached to interfaces when per-app
rate limiting or prioritization is needed. We use filtering
rules to put all of an app’s flows on an interface into the
appropriate bucket. Additional buckets can be attached
to these queues to do finer-grain QoS at the flow level.
Other functionality for managing networks are done with
standard Linux tools (e.g., ip, iptables, etc), or via
APIs in the Android SDK (e.g., WifiManager).

Along with Tango, we have implemented several user
policies and a few test apps that use our client library.
Our policies are written as Java classes that easily inter-

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700

W
iF

i
B

y
te

s
 (

M
B

)

Time (s)

Emulation
Real world

(a) CBR traffic

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700

W
iF

i
B

y
te

s
 (

M
B

)

Time (s)

Emulation
Real world

(b) TCP traffic

Figure 2: Emulations of a campus walk. Both CBR
traffic (a) and TCP traffic (b) show high fidelity.

face with our prototype and, in the case of app policies,
the apps they are for. In particular, we have implemented
a music streaming app that we use in our evaluation.
The app downloads MP3 files over HTTP using a na-
tive Serval socket,1 supporting near instantaneous play-
back of partially downloaded files. Playback starts with
30 seconds of content buffered and pauses if the buffer
runs out; play resumes when the buffer again reaches 30
seconds. This functionality matches the functionality of
many popular music streaming apps, such as Pandora and
Google Play Music.

5 Case Study Evaluation
In this section, we perform two case studies that aim

to address the following questions: First, how can Tango
help improve the experience of using a single phone
app? With music streaming as our example, we perform
comparative studies of both user- and app-level policies
in the face of changing environment conditions. Sec-
ond, how can Tango help provide a good user experience
across concurrently-running apps? In particular, we ex-
plore how policies enable us to provide dynamic fairness
and/or QoS based on changing device conditions.

5.1 Experimental Setup
We use a Galaxy Nexus (GSM) phone running An-

droid 4.3 for our case studies, with T-Mobile as our
HSPA data provider. We installed Tango, Serval [12],
and our music streaming app on the phone.

To evaluate music streaming, we wanted to use the
scenario of a student walking across campus, attempt-
ing to use WiFi to save data. However, as is typical

1Serval has a proxying solution that allow for unmodified apps to
be included in Tango’s planning.

7

with a wireless environment, our field measurements ob-
served highly variable coverage and quality, even on
back-to-back walks. Thus, to make meaningful com-
parisons across policies, we set up an emulation envi-
ronment created from traces of our walks and replayed
on our phone. This allowed for repeatable experiments
of different policies for the same walk. The traces we
use are from walks where Android chose WiFi over cel-
lular between 75-95% of the time; however, our results
show only about 20% of that time is the link able to carry
data. The trace covers roughly a mile across campus that
took 12 minutes to complete. We connected to the cam-
pus WiFi, which uses the same SSID across many access
points. Overall, WiFi coverage was mostly continuous
in the middle of the walk and more spotty towards the
ends. The traces were collected in the afternoon during
the school year, so congestion levels were typical.

Emulation environment. We implemented the emu-
lation using the standard Linux tc tool to recreate WiFi
network conditions vis-a-vis packet loss and delay. The
emulation leaves the portions of cellular connectivity in
our traces unregulated, as we generally had no problems
with cellular coverage.

To capture the variable WiFi network conditions dur-
ing real walks, we used a ping-like application send-
ing packets at a constant bit rate (CBR) to a server (one
packet every 20 ms) with packet sizes to emulate TCP
(1472-byte echo packets with 64-byte replies). We mea-
sured the received signal strength indicator (RSSI), up-
stream and downstream loss rates, and delay for every
second of the walk. During emulation, the loss rates and
delays were parameters for tc, while the RSSI readings
replaced the readings from the actual WiFi driver.

We validated the accuracy of our emulation with two
types of traffic: CBR and TCP. We used the CBR traffic
to assess the connectivity and drop rates and the results
are shown in Figure 2a. Since tc drops packets proba-
bilistically, we ran five emulations. There was low vari-
ance in the cumulative bytes downloaded on WiFi during
these emulations (one gray line per trial). The 6% differ-
ence between the real-world and the emulations are from
delays going from cellular to WiFi, i.e., DHCP and cel-
lular teardown.2 Most notably, the “shape” of the band-
width usage is consistent across trials.

To access the emulation’s accuracy involving TCP’s
congestion and flow control, we used our music stream-
ing app. The results are shown in Figure 2b, encompass-
ing 15 emulated trials. Due to TCP’s congestion control
and reliable transfer mechanism, there is much greater
variance in the results. Yet, the emulated trials still cap-
ture the overall “shape” of the connectivity well, i.e., they
mostly share the same increases (good WiFi) and flat ar-

2The emulator reacts to logged network switching events, which in
the real world are initiated 1-2 seconds prior to being logged.

Number Up Down
RSSI Intervals Time% Drop% Drop% Good%

(-90, -85] 54 3.88 63.56 56.97 11.11
(-85, -80] 283 20.36 55.85 55.57 9.19
(-80, -75] 367 26.40 45.00 45.67 15.80
(-75, -70] 267 19.21 33.05 31.90 34.08
(-70, -65] 180 12.95 21.06 22.68 47.22
(-65, -60] 155 11.15 10.91 10.50 75.48
(-60, -55] 60 4.32 2.54 1.12 95.00

>-55 24 1.73 2.29 0.83 100.00

Table 4: WiFi connectivity quality statistics across
many traces of the same path. “Good” signifies both
upstream and downstream had drop rates ≤10%.

eas (bad WiFi). One notable difference between trials
is around 350s where roughly half the trials download
a significant amount of data, while the others (and real
world) do not. The real world trace shows good signal
quality with low drop rates and delays in that period, but
long TCP timeouts started just before good connectivity
cause it to be missed during some emulations (which we
manually verified in our traces). Apart from some tri-
als having “luck” in how their TCP timers fire, all trials
otherwise experience similar behavior.

Network switching. The periods of poor WiFi con-
nectivity that cause long TCP timeouts highlight a prob-
lem with Android’s default network switching: it prior-
itizes WiFi too much. To this end, we developed a net-
work switching scheme to reduce the duration on unus-
able WiFi. Android uses WiFi whenever the RSSI is -100
or better. Rather than using an instantaneous measure,
our Tango user policy tracks the last 10 seconds worth
of RSSI values (one per second) and uses two heuris-
tics to determine if the signal is degrading sufficiently to
switch: (i) all 10 RSSI values have been below -75, and
(ii) whether the last five were all below -80. We chose
these heuristics after analyzing multiple traces at differ-
ent signal levels (see Table 4) and testing them around
campus. While heuristics help determine when to move
off WiFi, the move from cellular to WiFi relies on instan-
taneous readings based on regular WiFi scans. For this,
we chose an instantaneous RSSI of -70 or greater as our
threshold; -70 nearly doubles the amount of usable WiFi
(30.15% vs 17.20%) and has an acceptable drop rate.

Figure 3 shows a CDF of the duration of “poor con-
nectivity” zones on WiFi using the Android connectiv-
ity manager, our Tango switching based on the above
heuristics, and the CBR baseline. “Poor connectivity”
is any WiFi interval where the download rate was less
than the playback rate. The CBR traffic should repre-
sent the ideal distribution since it is not subject to TCP’s
timeout effects. Android’s switching has a very long tail,
showing the extremely long periods of no data transfer
caused by TCP timeouts. The bumps in the distribution
appear to roughly correspond with when TCP timeout re-

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256

C
D

F

Period of poor throughput (<320kbps) (secs)

Android (TCP)
Tango (TCP)

Android (UDP)

Figure 3: Distribution of durations of low TCP
throughput, Android versus Tango switching. CBR
UDP traffic serves as a baseline showing connectivity.

Tango switching Constraints App policy
Unl X
Rate X X
App X X X

Table 5: Evaluated policies.

tries would re-establish transfer. Conversely, Tango only
briefly diverges from CBR between 5 and 10s. This is
most likely due to its heuristic to switch off WiFi after
10 seconds of poor RSSI. Tango’s pre-emptive switching
prevents long TCP timeouts by moving the flow to cellu-
lar where it can continue transferring or at least respond
to probes. Aside for §5.2.1, our subsequent evaluation
will use Tango’s switching scheme.

Configurations and policies. In the case studies, we
use our emulator with the music streaming app playing
at 320 kbps. The trace we use typifies a walk through our
campus in terms of its connectivity and WiFi coverage.

To evaluate Tango’s use of multi-level policy, we com-
pare both user and app policies against a baseline that
allows unlimited data usage by apps, highlighting the ef-
fect of different levels of constraints and policies. The
policy configurations evaluated are summarized in Ta-
ble 5, where Unl allows unlimited rates (no constraints),
Rate applies a rate-limiting constraint of 640 kbps (dou-
ble playback rate), and App includes both user- and app-
level policy. With App, the user policy allows the appli-
cation to use some allotment of data over a given time
frame. This constraint allows for bursts of traffic (for ap-
plication buffering), rather than a constant limit. The app
performs flow control using high and low watermarks;
when the buffer goes below the low watermark, the app
downloads until above the high watermark.

5.2 Case Study 1: Music Streaming
As discussed in §2, music streaming on mobile de-

vices needs to balance data caps, costs, and battery life
against the ability to provide a seamless and high-quality
listening experience. WiFi offloading is a natural way
to reduce cellular usage and avoid hitting data caps. Yet
streaming has time requirements that do not always allow

network usage to be deferred (i.e., the user wants to lis-
ten now, not wait until a WiFi hotspot). Thus, users are
often confronted with an unfortunate trade-off between
user experience and economics.

In contrast, with Tango’s seamless migration of flows,
phones can switch networks when appropriate, as well
as defer downloading some content until when the con-
ditions are right on WiFi. This also works with apps that
do not have their own failure and recovery mechanisms.
Even with failure-handling apps, the ability to put con-
straints on cellular usage helps reduce costs for users,
and network load for wireless providers.

5.2.1 Effect of Aggressive WiFi Offloading

Although WiFi offloading is desirable, it does little good
unless governed by a policy that determines a good time
to switch interfaces. To illustrate the (negative) effect
of aggressive WiFi offloading, we first show results with
Android’s default network switching, but with added
flow-migration functionality. With this setup, flows are
seamlessly migrated to the active interface.

Figure 4a shows the app’s buffer size (in seconds) dur-
ing the emulated walk. While the app is able to play mu-
sic without pauses, it does so with excessive cell usage,
e.g., at time 527s. The buffers are well filled at this point,
but because there are no limits in place the app down-
loads indiscriminately. On this particular walk, we cal-
culated 12MB of excess data, which can add up quickly
(e.g., up to 500MB monthly if part of a twice daily walk
to the office). Moreover, there are long periods of poor
WiFi with no TCP progress (shaded in the graph). This is
worrisome for two reasons. First, apps that cannot buffer
as aggressively, such as live streaming, would likely fail
many times on this walk. Second, when there is clean
signal in the emulation, the client and server are on the
same network, which allows more buffering than in real
life over more congested wide-area links.3 Thus, with
Android’s default behavior, network usage is dispropor-
tional to need on cellular, and WiFi is used inefficiently.

Unfortunately, clinging to WiFi leaves little room for
reducing the cellular excess as the margin of error is
small. To illustrate this, we applied a rate limit to cel-
lular that should allow continuous playback of 640 kbps
(2X playback rate). Cellular usage is reduced by almost
15 MB—a median of 19.8 MB down to 5.0 MB—but
introduces playback pauses, as seen in Figure 4b. Be-
cause of these problems, for the rest of our experiments,
we use our heuristics-based switching scheme to signifi-
cantly reduce the times spent on poor-quality WiFi.

3We had the server and client on the same network for a more con-
trolled experience across emulations.

9

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700

B
u

ff
e

r
(s

e
c
s
)

Time (secs)

WiFi
Cell

(a) Android sticks to poor quality WiFi (shaded) for ex-
tended periods, yet also needlessly downloads on cellular
at times.

 0

 100

 200

 300

 0 100 200 300 400 500 600 700

B
u

ff
e

r
(s

e
c
s
)

Time (secs)

Pause

WiFi
Cell

(b) With lower cellular usage, even large buffers cannot
mitigate long periods of no connectivity, leading to mul-
tiple playback pauses.

Figure 4: Effect of aggressive WiFi offloading on playback buffers. Android’s tendency to persist on WiFi,
despite no TCP progress, leaves little room for policy to play a role in improving the application experience.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700 800

B
u
ff
e
r

(s
e
c
s
)

Time (secs)

WiFi
Cell

(a) Unl: Buffer increases at full rate,
irrespective of connectivity.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

B
u
ff
e
r

(s
e
c
s
)

Time (secs)

WiFi
Cell

(b) Rate: Buffer increases at full rate
on WiFi, slower rate on cellular.

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800

B
u
ff
e
r

(s
e
c
s
)

Time (secs)

WiFi
Cell

(c) App: Buffer increases only when
necessary according to app policy.

Figure 5: Buffer usage of different Tango policies. All avoid any pauses during playback.

5.2.2 Finding a Good Policy for Music Streaming

A good policy for music streaming identifies the right
“knobs” to turn, and to what extent they should be
turned, in order to accommodate three goals: (i) avoid
any pauses in playback, (ii) avoid needlessly using cellu-
lar bandwidth and instead use buffered content whenever
possible, and (iii) avoid a significant reduction in bat-
tery life. Our study shows that the key to achieving these
goals is making use of Tango’s support for multi-level
policy, i.e., using input from both user and app. Further,
constraints are particularly useful for reducing cellular
usage by protecting against “overeager” apps.

Data reductions on cellular. When evaluating our first
two goals, Unl serves as our baseline, while Rate and
App introduce user policy and multi-level policy, respec-
tively. We can compare the buffer graphs for these con-
figurations in Figure 5 with those for plain Android (Fig-
ure 4). These configurations all avoid any pauses, and
their buffer decreases on WiFi (red) are less frequent and
shorter, meaning that with this switching method data is
buffering when plain Android is blocked on non-working
WiFi. However, as Figure 6 shows, a consequence of
moving off WiFi is more cellular usage—up to 6-7x com-
pared to plain Android for this trace.

Better connectivity is in general a good thing, but it
is contrary to our goal of reducing cellular usage. Ap-

 0

 50

 100

 150

 200

 250

Unl Rate App

D
a
ta

 (
M

B
)

Policy

WiFi
Cell

Total

Figure 6: Network usage showing how Tango policies
(Rate and App) can drastically reduce cellular usage
compared to unlimited usage (Unl).

plying Rate and App policies drastically reduces cellular
usage while maintaining a pause-free playback. How-
ever, only App has the right combination of user-policy
constraints and app-policy knowledge to reduce cellular
usage to 30% of that of plain Android, which already has
“artificially” low cellular usage due to clinging to WiFi.

Battery usage. In light of our third goal for Tango
policies, we sought to understand how cellular-reducing
policies affect the smartphone’s battery life. To evaluate
this, we ran the music streaming app while our emula-
tion trace looped until the battery ran out, recording the
battery percentage at every second. Table 6 breaks down
the rates of decline and total life of each policy. With
25% of battery left, the drain rate appears to speed up,
possibly due to OS or the firmware attempting to avoid

10

First 75% batt. Last 25% batt. Batt. Life
drain (% / hr) drain (% / hr) Life (hrs)

Unl -12.6 -19.2 7.25
Rate -12.7 -19.5 7.21
App -9.5 -13.9 9.70

Table 6: Unl and Rate keep cellular active and drain
battery faster, while App is able to reduce the drain.

a complete drainage, so we segment the decline rates for
the first 75% and the last 25%. We see that Unl and Rate
experience similar battery life—about 7.2 hours—losing
just 13% an hour for the first 75% and about 19% for
the remainder. This suggests that battery life is depen-
dent on the amount of time the cellular network is active,
regardless of transmission rate.4 On the other hand, App
provides over 2 hours additional battery life, for a total
of 9.7 hours. App lets the cellular radio transition to a
low power idle state during times when the buffer is suf-
ficiently full, saving power over Unl and Rate.

5.3 Case Study 2: Policy Across Apps
We now consider how Tango can provide fairness and

prioritization across apps competing for resources.

5.3.1 App Fair Sharing

On mobile devices, apps that open up many flows can
gain a higher share of bandwidth because of TCP’s built-
in fairness. For example, an app downloading several
songs concurrently for later listening would drown out a
single-flow video stream. Since users typically think in
terms of apps rather than flows, app-level fair sharing can
be a more natural fit for expressing a user’s needs. This is
achieved in Tango with a user policy setting a constraint
on each app to be 1/N of the available bandwidth.

We implemented such a policy in a scenario with mul-
tiple networks available simultaneously—giving apps a
choice in which to use—but enforcing fair sharing on
each link. In our scenario, the user policy rate limits
the HSPA network to 640 kbps after 30 seconds to dis-
courage its use, but removing the constraint after 30 sec-
onds of idleness. We have two apps: a multi-flow app
(MFA) with five flows that always uses the 2 Mbps WiFi
link, and a single-flow app (SFA) with an app policy
to migrate to the network where it gets the best perfor-
mance. When simultaneous interface usage is accept-
able, Tango helps reduce costs and/or optimizes perfor-
mance by scheduling flows more intelligently.

Figure 7 shows these results. For the first 30 seconds,
SFA uses cellular as its measured speed is better than its
WiFi constraint (∼1 Mbps). When the user policy con-
strains cellular to 640 kbps, however, SFA migrates to
WiFi, equally sharing the WiFi bandwidth with MFA,

4We believe the higher drain for Rate is mostly noise due to exter-
nal factors, i.e., the load on the cell network.

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (secs)

Multi on WiFi
Single on cell

Multi on WiFi
Single on celllBoth on WiFi

Cell constraint: 640kbps

Multi-flow App
Single-flow App

Figure 7: App-level fair sharing at link level, while
app policy optimizing performance given constraints.

 0

 0.4

 0.8

 1.2

 1.6

 2

 0 10 20 30 40 50 60 70
T

h
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (secs)

Background App
Foreground App

Figure 8: Providing priority dynamically to fore-
ground traffic for better user experience.

despite the latter’s 5 flows. Once the constraint on cel-
lular is lifted, SFA moves back to cellular. Not only have
we achieved fairness when sharing a link, but app policy
enables the single app to achieve better performance by
responding to the constraints.

5.3.2 Dynamic App Prioritization

In some cases, prioritizing certain app network usage is
more desirable for a user than fairly sharing resources.
For example, congested or slower cellular links may not
have enough bandwidth for simultaneously syncing pho-
tographs with the cloud (background) and web brows-
ing (foreground). With Tango, a user policy can dynam-
ically prioritize an interface’s bandwidth, demonstrated
in Figure 8. At time 30s, the user opens an app in the
foreground. The policy strictly prioritizes the foreground
app, giving it the full link rate until the app closes at 60s.

5.3.3 Fairness, Priority, and App Hints

Tango allows app policies to send hints to the user policy,
which provides a powerful way to improve prioritization
across apps. In the previous example, the policy works
on the assumption that the foreground app is always more
important than the background app to the user. This is
not always true, however, e.g., music streaming in the
background. When the music app’s playback buffer gets
low, its network usage becomes important to prevent a
user from experiencing playback pauses. This is a prime
opportunity to use Tango’s app hints.

To demonstrate this, we combine the per-app fair-

11

ness and prioritization from the previous examples with
app hints. We have two apps competing for a 550
kbps WiFi link: a web app that continually down-
loads yahoo.com’s frontpage (including any embedded
or Javascript-initiated content) and our music streaming
app. Figure 9 shows how this situation performs on to-
day’s smartphones. The page load times, as measured
by Android’s WebView, are low until the music app be-
gins in the background. Once that happens, the page load
times and variability increase, while the music indiscrim-
inately adds to its playback buffer. The long-running
music app is able to fill kernel queues, preventing the
burstier web app from getting its fair share due to losses
in TCP slow start. This lack of resource isolation makes
using multiple apps on the phone a poor experience.

Tango can address this problem with its policy en-
forcement. We implemented a user policy that has two
priority classes—high and normal—and fair shares net-
work resources between apps of the same class. The web
app always runs at high priority to provide a low-delay
experience while browsing. The music app policy sends
a hint to the controller that it wants high priority when-
ever its buffer falls below 20s; once the buffer is above
30s, the app sends a hint for normal priority, as its net-
work needs are less urgent. The user policy uses these
hints to set the priority constraints for the music app.

Figure 10 shows the result of running both apps with
this policy. The white area is when the web app runs
alone, lightly shaded areas have both apps are running
at high priority, and darker shaded areas have the music
app is running at normal priority. When the browser runs
alone or the music app runs at normal priority, the page
load times remain low, as the browser is strictly priori-
tized over the music app. Page load times only increase
when the music app needs to replenish its buffer (and
hence increases its priority). But the load time increase
is more modest and less variable than in Figure 9, as
the fair sharing between the two high-priority apps gives
each their own queue, reducing losses in the browser’s
TCP slow start. Given the work-conserving nature of
the HTB setup, the music app also improves its down-
load rate when the web app stops at time 360. In short,
Tango’s hints allows apps to intelligently cooperate in or-
der to improve overall user experience.

These exemplify just a few policy decisions that are
useful across apps. Tango’s constraint mechanism al-
lows limits to be adjusted on a per-interface basis as
well, enabling users to set different management strate-
gies based on the network type. These techniques gen-
eralize: user policies can also deal with classes of apps
and foreground/background status. Further, apps can op-
timize in the presence of constraints that restrict their net-
work usage. Non-critical flows can be deferred or given
the lowest priority within the app, so that they only con-

 0

 2

 4

 6

 8

 0 20 40 60 80 100 120
 0

 10

 20

 30

 40

 50

P
a

g
e

 l
o

a
d

 t
im

e
 (

s
)

P
la

y
b

a
c
k
 b

u
ff

e
r

(s
)

Time (secs)

Music app
Web app

Figure 9: Today’s phones insufficient resource isola-
tion: background music reduces web performance.

 0

 2

 4

 6

 8

 0 50 100 150 200 250 300 350
 0

 10

 20

 30

 40

 50

P
a

g
e

 l
o

a
d

 t
im

e
 (

s
)

P
la

y
b

a
c
k
 b

u
ff

e
r

(s
)

Time (secs)

Music app
Web app

Figure 10: Providing dynamic priority between mu-
sic and web. The music app hints at its need for the
network to provide improved page load times when
its buffer is healthy (dark gray) and minimal disrup-
tion when its buffer needs replenishing (light gray).

sume network resources after other flows complete.

6 Related Work
The advent of mobile computing has led to the de-

velopment of several approaches to incorporating “con-
text” into programming for richer application models.
JCAF [4] is a context framework for Java applications
consisting of “entities” that both make up context and
respond to changes in other entities. It is not tailored
for mobile and does not focus on resource management,
but rather getting entities to respond in the presence of
other entities. Tango instead focuses on the mobile plat-
form and managing resources which can be quite scarce.
JCAF’s somewhat open-ended nature would be make it
difficult to handle things that Tango does, like the user
and app policy split and our constraint model. CASS [6]
is another context framework that uses nearby sensors
and a remote server to create a context view to supply
to apps. It abstracts away details to simplify policy writ-
ing (e.g., converting a temperature reading into a state
list of “cold,” “normal,” and “hot”). Tango is instead
completely local to the device, both in terms of sensing
data and compiling the resultant state. Tango also leaves
the level of abstraction up to policy writers by providing
mostly raw metrics. CARISMA [5] is a context frame-
work that attempts to resolve conflicts not only on-device
but also amongst multiple devices using the same app. It
uses utility functions and a sealed bid auction as its con-
flict resolution mechanism. Tango does not attempt to

12

coordinate policies amongst multiple devices, but instead
focuses on dealing with conflicts between policies on the
same device. Further, our constraint mechanism helps
deal with these conflicts proactively, rather than use util-
ity functions, which are hard to define for the potentially
large policy space.

Several earlier projects focus on selecting between
multiple wireless networks. Ormond et al. [13] uses a
utility-based approach to minimize costs when upload-
ing files by choosing between multiple networks with
varying costs and bandwidth, subject to time constraints.
Wilson et al. [20] uses a fuzzy-logic inference engine that
takes input from both user and apps and, based on pre-
defined QoS metrics and rules, decides on the preferred
network. Ylitalo et al. [24] presents an interface selection
framework where flows can be moved between several
networks. It requires some changes to the socket API and
uses a rule-based approach for selection. Tango’s flexi-
ble programmatic model supports these rule- and utility-
based approaches, as well as considerably richer policies.
Further, Tango’s app policy and hints allow for broader
app input, yet still avoids OS or socket API modifica-
tions. Finally, beyond network choice, Tango addresses
deeper control of the network by exposing management
control of traffic queues.

Other prior work focuses specifically on reducing
cellular usage through WiFi offloading. One body
of research has tried to generalize application-specific
prefetching strategies by providing middleware that
batches data for download during periods of WiFi con-
nectivity. Lee et al. [9] describes a simulated batch-
ing strategy that delays transfers in anticipation of future
WiFi connectivity. Wiffler [3] employs another batching
strategy that adds prediction of WiFi throughput to de-
termine whether transfers would complete within a WiFi
connectivity window. This requires prior knowledge of
data sizes and accurate WiFi prediction. IMP [8] also
performs batching on WiFi, but may also (pre)fetch on
cellular if allowed by budget constraints that take into ac-
count battery and data usage. BreadCrumbs [10] tracks
user mobility and network conditions to forecast network
connectivity, and the authors discuss its use to inform
prefetching and batching strategies. SALSA [16] em-
ploys similar forecasting, using an energy-delay trade-off

algorithm to select the energy-minimizing link for a data
transfer. These techniques are complementary to Tango’s
general framework, and similar batching strategies may
be adopted by specific delay-tolerant apps running on
Tango to optimize their resource usage.

In contrast to this prior work, Tango can continue
data transfers despite changing connectivity, relying on
ECCP [2] for migrating TCP connections. Although no
batching is done, the bulk of data transfers may be moved
to WiFi by rate limiting cellular links, in anticipation of

future WiFi connectivity. This ensures transparent sup-
port for interactive or latency-sensitive applications (e.g.,
live video streaming), even if initiated while on cellular.
Prefetching and excessive buffering on cellular is also
avoided, which could otherwise deplete a user’s data cap
or battery resources. Even so, the prior work on forecast-
ing and link estimation could help inform Tango polices
for more accurate rate limiting and migration decisions.

Recent work [14, 23, 2] has explored seamless use
of heterogeneous networks using migration techniques,
based on MPTCP [21] and OpenVSwitch. Tango could
adopt those or alternative migration techniques, includ-
ing Mobile IP [15], HIP [11], LISP [7], or TCP Mi-
grate [17]. Unlike such work, we use flow migration as
just one of many techniques that, in combination, enable
interesting control plane and policy control to better uti-
lize available networks, while simultaneously accounting
for device and user needs.

7 Conclusion
The unique challenges posed by mobile devices ne-

cessitates re-examining how they provide resource man-
agement. This paper argues for the adoption of a pro-
grammatic policy model, rather than ad-hoc and static
configuration settings, in order to better support the im-
portant, dynamic, and diverse interests of mobile users
and apps. Our resulting system, Tango, tackles some
challenging architecture and interface problems in how
to enable these parties to align their interests and opti-
mize their behavior. We examine several scenarios where
Tango could greatly improve mobile computing today.
Even so, our case studies provide only a small sample
from the vast space of tailored policy options that we be-
lieve are possible using such a framework.

References
[1] A. Aleryd. How Sony’s Battery STAMINA Mode

works. http://developer.sonymobile.com/
2013/04/03/how-sonys-battery-stamina-
mode-works/, Apr. 2014.

[2] M. Arye, E. Nordström, R. Kiefer, J. Rexford,
and M. J. Freedman. A Formally-Verified Migra-
tion Protocol For Mobile, Multi-Homed Hosts. In
ICNP, Oct. 2012.

[3] A. Balasubramanian, R. Mahajan, and
A. Venkataramani. Augmenting Mobile 3G
Using WiFi. In MobiSys, June 2010.

[4] J. E. Bardram. The Java Context Awareness Frame-
work (JCAF) - A service infrastructure and pro-
gramming framework for context-aware applica-
tions. In Pervasive Computing, May 2005.

[5] L. Capra, W. Emmerich, and C. Mascolo.
CARISMA: Context-aware reflective middleware

13

system for mobile applications. In IEEE Transac-
tions on Software Engineering, Oct. 2003.

[6] P. Fahy and S. Clarke. CASS - A middleware for
mobile context-aware applications. In Workshop on
Context Awareness at MobiSys, June 2004.

[7] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis.
Locator/ID separation protocol (LISP), draft-ietf-
lisp-22, Feb. 2012.

[8] B. Higgins, J. Flinn, T. Giuli, B. Noble, C. Peplin,
and D. Watson. Informed Mobile Prefetching. In
MobiSys, June 2012.

[9] K. Lee, I. Rhee, J. Lee, S. Chong, and Y. Yi. Mobile
Data Offloading: How Much Can WiFi Deliver? In
CoNEXT, Nov. 2010.

[10] A. J. Nicholson and B. D. Noble. BreadCrumbs:
Forecasting mobile connectivity. In MOBICOM,
Sept. 2008.

[11] P. Nikander, A. Gurtov, and T. R. Henderson.
Host Identity Protocol (HIP): Connectivity, Mobil-
ity, Multi-Homing, Security, and Privacy over IPv4
and IPv6 Networks. IEEE Comm. Surveys, 12(2),
Apr. 2010.

[12] E. Nordström, D. Shue, P. Gopalan, R. Kiefer,
M. Arye, S. Ko, J. Rexford, and M. J. Freedman.
Serval: An End-Host Stack for Service-Centric
Networking. In NSDI, Apr. 2012.

[13] O. Ormond, J. Murphy, and G.-M. Muntean.
Utility-based Intelligent Network Selection in Be-
yond 3G Systems. In IEEE ICC, June 2006.

[14] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and
O. Bonaventure. Exploring Mobile/WiFi Handover
with Multipath TCP. In CellNet, Aug. 2012.

[15] C. Perkins. IP Mobility Support for IPv4, Revised
(RFC 5944), Nov. 2010.

[16] M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan,
M. H. Krieger, and M. J. Neely. Energy-Delay
Tradeoffs in Smartphone Applications. In MobiSys,
June 2010.

[17] A. C. Snoeren and H. Balakrishnan. An end-to-
end approach to host mobility. In MOBICOM, Aug.
2000.

[18] I. van Beijnum. Multipath TCP lets Siri seam-
lessly switch between Wi-Fi and 3G/LTE.
http://arstechnica.com/apple/2013/09/
multipath-tcp-lets-siri-seamlessly-
switch-between-wi-fi-and-3glte/, Sept.
2013.

[19] Web10G. http://web10g.org/, Mar. 2013.

[20] A. L. Wilson, A. Lenaghan, and R. Malyan. Op-

timising Wireless Access Network Selection to
Maintain QoS in Heterogeneous Wireless Environ-
ments. In WPMC, Sept. 2005.

[21] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Han-
dley. Design, implementation and evaluation of
congestion control for multipath TCP. In NSDI,
Mar. 2011.

[22] Q. Xu, J. Erman, A. Gerber, Z. M. Mao, J. Pang,
and S. Venkataraman. Identifying Diverse Usage
Behaviors of Smartphone Apps. In IMC, Nov.
2011.

[23] K.-K. Yap, T.-Y. Huang, M. Kobayashi, Y. Yiak-
oumis, N. McKeown, S. Katti, and G. Parulkar.
Making Use of All the Networks Around Us: A
Case Study on Android. In CellNet, Aug. 2012.

[24] J. Ylitalo, T. Jokikyyny, T. Kauppinen, A. J. Tuomi-
nen, and J. Laine. Dynamic network interface se-
lection in multihomed mobile hosts. In HICSS, Jan.
2003.

14

