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Abstract
Metaverses are three-dimensional virtual worlds where
anyone can add and script new objects. Metaverses to-
day, such as Second Life, are dull, lifeless, and stag-
nant because users can see and interact with only a tiny
region around them, rather than a large and immersive
world. Current metaverses impose this distance restric-
tion on visibility and interaction in order to scale to large
worlds, as the restriction avoids appreciable shared state
in underlying distributed systems.

We present the design and implementation of the Siri-
kata metaverse server. The Sirikata server scales to sup-
port large, complex worlds, even as it allows users to see
and interact with the entire world. It achieves both goals
simultaneously by leveraging properties of the real world
and 3D environments in its core systems, such as a novel
distributed data structure for virtual object queries based
on visible size. We evaluate core services in isolation as
well as part of the entire system, demonstrating that these
novel designs do not sacrifice performance. Applications
developed by Sirikata users support our claim that re-
moving the distance restriction enables new, compelling
applications that are infeasible in today’s metaverses.

1. INTRODUCTION
Virtual worlds are three-dimensional graphical envi-

ronments where people can interact, engage in games,
and collaborate. This paper focuses on one particular
class of virtual worlds: “metaverses,” such as Second
Life, where anyone can add new objects to the world by
creating 3D models and writing scripts to control them.

Users of today’s metaverses miss out on a truly immer-
sive experience because they can see and interact with
only the tiny, local region around them. For example,
Second Life rendered completely is a fantastic and eye-
popping megalopolis, a fictional Shanghai. But users are
limited to their local surroundings because Second Life
only displays nearby objects and imposes a maximum
object interaction distance of ~100 meters. Imposing a
distance restriction allows a metaverse to scale easily be-
cause a server only shares state and communicates with

the servers that manage neighboring regions. But this
scalability comes at a cost of user experience. Today’s
metaverses are lonely and empty [26] and users cannot
see what awaits them beyond their interaction range. A
distant building in a virtual city should be able to attract
a user’s attention, and she should be able to select it and
send it messages to learn more about it. What is it? Who
owns it? Such a simple interaction is impossible in to-
day’s metaverses.

In contrast to metaverses, “games,” such as World of
Warcraft, avoid this problem because the game provider
is the centralized author of all world content and the sys-
tem is application-specific. Central control of content
allows the provider to design content around technical
limitations. For example, games can precompute scene
optimizations (e.g., binary space partition trees for vis-
ibility calcuations [31] and imposters for efficient ren-
dering [16]) because game worlds are mostly static. As
narrow, tailored applications, games can leverage game
mechanics for improved performance: Donnybrook, for
instance, showed how focusing updates around the flag
bearer in capture the flag leads to lower bandwidth de-
mand [5]. Application-specific optimizations commonly
permeate the designs of these systems. For example,
World of Warcraft scales to millions of users by divid-
ing users across hundreds of “realms,” or copies of the
world, and most game content occurs within “instances”
where a group interacts with the game privately.

Metaverses differ greatly from games and encounter
correspondingly different technical challenges. Instead
of static, centrally authored content serving a single ap-
plication, a metaverse presents a large continous world
populated by many user-generated applications whose
dynamic behavior, placement, and appearance are con-
trolled by their owners. The tricks used in games are not
sufficient in a metaverse: a user could add a skyscraper
using a new mesh with unknown behavior, which must
quickly be made visible to users and be able to interact
with other objects and avatars.

We believe that metaverse users should be able to view
and interact with the entire world. However, to support a
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world with billions of dynamic user-generated and user-
controlled objects, metaverses must somehow limit inter-
action. Without limits the system would quickly exceed
capacity: clients cannot render the entire world in full
detail, position updates for every object would saturate a
server’s outgoing capacity, and even sending a list of all
objects to a client would overload a server.

The research contribution of this paper is establishing
a novel principle for how to build scalable systems for
dynamic, user-extensible virtual environments. Scaling
these systems is challenging because the common ap-
proach in systems of share-nothing partitionings leads
to the very problems we observe in today’s metaverses,
restricting the view of the world and scope of interac-
tion. Simply removing these limitations leads to unscal-
able systems. For example, displaying the entire world
requires tracking distant objects and therefore requires
global queries for objects. Without additional constraints,
global queries would require all pairs of servers to ex-
change queries, limiting the world to just a few servers.

The graphics research community has not tackled this
problem in a significant way, typically focusing their sys-
tems only on a subset of the requirements of metaverses.
For example, render farms are distributed systems that
handle large datasets but work offline, and real-time ren-
dering is commonly applied to data that fit in memory on
a single host and permit precomputing acceleration data
structures. Many ideas from graphics research can be
borrowed, but different decisions must be made to work
in real-time, in a distributed system, and handle dynamic
user-generated content.

This paper presents the design and implementation of
a metaverse server that allows clients to see and inter-
act with a large and complex world, even as the sys-
tem grows to many servers. The key insight for achiev-
ing this scalability goal is that a virtual world, being a
3D, geometric environment, has many similarities to the
real world. By leveraging real-world-like constraints, the
server can simultaneously scale to a large world and pro-
vide a natural as well as intuitive experience.

Consider the server’s object discovery service, which
informs clients about objects in the world. Rather than
return the closest objects (which restricts visibility to a
small area) or all of the world’s billions of objects (which
does not scale), the Sirikata server returns objects that
have the largest solid angle. Solid angle is roughly equiv-
alent to how many pixels an object occupies on screen,
so Sirikata returns only objects which could be seen by
the user on screen. While this query is global (an avatar
can see a building that is many servers away), the number
of distant objects and associated network traffic is small.
Unlike a distance metric, solid angles neither hide dis-
tant, visually important buildings nor do they cause them
to suddenly and jarringly pop into existence.

This principle of leveraging real-world constraints un-
derlies all of the server’s core systems and is critical to
scalability. The server is part of the open-source Siri-
kata platform [33], already used in applications ranging
from virtual museums [3] to social spaces for cancer pa-
tients [19]. The paper describes four core components,
focusing on how each can scale by applying this princi-
ple:

• A server partitioning service that divides a world
into regions and maps regions to servers. Assum-
ing an object density distribution similar to the real
world leads to a design using a distributed, split-
axis kd-tree, with a highly replicated, stable upper
tree and distributed lower trees to spread load.

• An object discovery service that prioritizes objects
by visual importance, choosing objects with larger
solid angles, with a novel distributed data structure
and supporting query processor.

• A message routing table that maps object identi-
fiers to servers. Every server can forward to any
object in the world, but the routing table scales well
because, like the real world, most interactions are
local and most objects are stationary.

• A message forwarder that guarantees a minimum
throughput even as the number of communicating
objects grows very large, decaying smoothly over
distance.

We focus on the server partitioning and object discov-
ery services, providing a brief overview of the routing
table and forwarder for completeness. We evaluate the
first two services in isolation as well as the entire Si-
rikata server, finding it can scale to large, visually rich
worlds with many applications. We also report on our
experiences with users developing applications in Siri-
kata, including some which are difficult or impossible in
existing metaverses due to their use of a distance limi-
tation. Finally, while this paper focuses on metaverses,
we believe its principles can be applied more generally
to systems that bridge physical and virtual environments,
such as augmented reality and ubiquitous computing.

2. METAVERSES TODAY: SECOND LIFE
A metaverse is a virtual world that users can extend

by adding objects and scripting them to provide interest-
ing applications. This user-extensibility contrasts with
games, where all content originates from a central author.
A metaverse provides a few basic services with which to
build applications:

• storing the location of objects and a reference to the
graphical models of objects,

• updating location and model state based on script
commands and physics simulation,



• executing object scripts and generating script events,
such as timers and inter-object communication,

• telling objects and clients what objects they can see
and interact with.

Second Life, today’s most popular metaverse, supports
over 1 million monthly active users [37]. Its design is
representative of how current metaverses decompose in-
ternal systems and support applications. Second Life
statically partitions land into 256m × 256m regions called
“sims,” each managed by a different server. A sim’s
server is responsible for all activity within the sim, in-
cluding the above services.

Second Life uses distance to control object discovery
and inter-object communication. Servers prioritize ob-
jects for clients based on multiple factors, but generally
clients cannot see objects farther than 100 meters away.
Scripted objects (applications) cannot detect objects far-
ther than 15 meters away. The basic communication prim-
itive is a geometric broadcast to all objects within 10, 20,
or 100 meters. Second Life also provides a very limited
form of unicast which is unsuitable for interactive appli-
cations due to its low throughput and high latency.

These restrictions are critical for Second Life to be
able scale to its current size. They allow the simulation
to be nearly shared nothing: servers only coordinate with
their geometric neighbors. Because the region-to-server
mapping is static in Second Life, the system cannot re-
spond to variations in load and most sims can support
only a small number (40) of avatars. As a result, most of
the world lies empty [26].

Relaxing these restrictions may enable virtual worlds
to move closer to their imagined potential. Users will be
able to view sweeping vistas, and the applications they
interact with will be able to span the world. Users will
be able to serendipitously discover events throughout the
world; players in a game will be able to monitor and
aid distant allies; and real-world data will take on new
meaning when overlaid onto a virtual replica of Earth.
Enabling this vision, however, requires novel distributed
systems principles and techniques.

3. SIRIKATA SERVERS
Sirikata servers allow users to see and interact with a

large virtual world that runs distributed over many hosts.
It breaks the tension between scale and scope by leverag-
ing constraints and restrictions similar to the real world
throughout its systems. This section describes the inter-
nals of a Sirikata server, as well as its role as one part of
a complete metaverse system.

3.1 Sirikata Applications and Overview
Sirikata has a very different application model than

Second Life because it allows interaction with distant
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Figure 1: Sirikata server internals

objects. Sirikata’s model greatly resembles the web of
today: application objects send code and data to user
objects. For example, when an avatar activates a chess
board, the board sends the avatar a UI, which exchanges
application messages with the board object. This appli-
cation model makes long-range inter-object communica-
tion a key system service. Applications are written in
the Emerson language, a JavaScript dialect we developed
that introduces mechanisms to address many of the secu-
rity problems web applications have exposed [25].

Sirikata splits the implementation of a virtual world
into three components. Object hosts run the object scripts
that implement user-defined applications. Scripted ob-
jects populate and move through the world, sending and
receiving application-level messages. A content distri-
bution network (CDN) stores and delivers large pieces
of data, such as graphical models and textures. Space
servers (or just “servers”), the subject of this paper, are
responsible for the virtual world itself. They are author-
itative on the presence and positions of objects in the
world, simulate physics, inform observers of other rel-
evant objects and keep them up-to-date on those objects’
positions. Finally, servers are responsible for routing the
application-level messages between scripted objects.

3.2 Server Internals
Figure 1 shows the interaction of object hosts with

servers and the internal decomposition of a Sirikata server
into its major services. Each server is responsible for a
subset of the geometric area of the world. Object hosts
connect to the servers which manage the regions occu-
pied by their objects. As shown, a single object host
may connect to many servers, and many object hosts may
connect to each server. Eliding some ancillary services,
such as login/authentication, for brevity, the major ser-
vices are as follows:
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Figure 2: Avatar connection and messaging example. Service positions and colors are consistent with Figure 1.

• The geometric server partitioning service main-
tains a distributed data structure for controlling and
querying the partitioning of the world across servers
(Section 4).

• The location table stores the position, orientation,
and motion of objects, which the physics engine
(based on Bullet [12]) updates. Because this is a
traditional component and not novel, this paper does
not discuss it in depth.

• The geometric object discovery service handles
queries to discover other objects, streaming back
object identifiers and subscribing the querier for lo-
cation updates (Section 5).

• The application message routing table maintains
a durable, consistent, distributed mapping from an
object identifier to the space server responsible for
it (Section 6.1).

• The application message forwarder forwards inter-
object (application) messages, using the routing ta-
ble to determine the next hop. It responds to con-
gestion by giving greater weight to traffic between
closer and larger objects (Section 6.2).

Each of these services leverages some property of the
physical world in order to scale. For example, the ge-
ometric partitioning service leverages the fact that most
objects in the world are stationary, such that most changes
to its data structure are small and local. As a second ex-
ample, the message router weights inter-object message
flows similarly to the inverse-square falloff of electro-
magnetic radiation intensity over distance. This weight-
ing provides a natural and intuitive experience: larger
and closer objects have greater communication capac-
ity than small and distant ones. Furthermore, the sum
of weights for objects in a fixed region converges to a
constant, so Sirikata can guarantee that nearby objects
cannot be drowned out.

3.3 Example Execution
To explain how Sirikata’s services create a working

virtual world system, we use the example from Section 1
of a user logging into a world, seeing an interesting build-
ing, and selecting it to learn more about it. Figure 2 il-
lustrates what happens.

To log in, the object host running the user’s avatar con-
nects to any server and requests an initial position. The
space server, SS X, looks up this location with the parti-
tioning service and redirects the avatar to the server man-
aging that region (Figure 2(a)). The avatar connects to
and authenticates with the new server, SS A. The server
enters the avatar state into the location table and adds en-
tries in the routing table and query processor (Figure 2(b)).
To display the world, the avatar registers an object dis-
covery query (Figure 2(c)). The discovery service streams
object identifiers and important data, such as position and
a URL for each object’s graphical model. One such ob-
ject is the distant, interesting building with object identi-
fier buildID.

Figure 2(d) shows how the avatar sends an application-
level message to the building object when the user selects
it. The message takes three hops. First, the avatar’s ob-
ject host sends it to the server. The server consults its
routing table to determine which server is responsible for
the building and passes the message to the forwarder. Fi-
nally, the destination server forwards it to the building’s
object host. The building sends a message in reply, con-
taining a web page of information, which an in-world
web browser displays.

The next four sections follow the steps of this example
and describe the design and implementation of each of
the server’s core services.

4. SERVER PARTITIONING
As shown in Figure 2(a), when an avatar joins the world,

it queries a known server’s partitioning service to deter-
mine which space server is currently authoritative for its
future position. This is necessary because, to support
changes in load, Sirikata’s mapping of geometric regions
to space servers is dynamic.

The geometric server partitioning service manages this
mapping with two abstractions. Given a bounding re-
gion, it identifies the space servers that manage the re-
gion, and given a space server identifier, it returns the
bounding region managed by that server. It also chooses
when to merge and split regions to balance load across
servers, notifying the servers that they should change the
region they manage and migrate objects.

The key challenge in implementing the partitioning ser-
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vice is designing a scalable, distributed space-partitioning
data structure to efficiently answer bounding-box queries.
This data structure should support Earth-scale worlds,
make splitting and merging regions for load balancing
efficient and simple, and not require major restructuring
as objects move, appear, and disappear.

The partitioning service uses a split-axis kd-tree as its
basic data structure. Well-known to the graphics com-
munity, kd-trees are binary trees that recursively split a
region using axis-aligned splitting planes [4]. The par-
titioning service uses a split-axis kd-tree, which always
splits regions in equal halves, using the same axis for all
splits at a given level of the tree. The split-axis kd-tree
cycles between the x- and y- axes to select the splitting
planes at successive levels of the tree. Splitting contin-
ues as long as the resulting regions (the leaves of the tree)
contain more than n objects. Figure 3 shows an example
of this process. Split-axis kd-trees are simpler to build
and maintain than ones which optimize the placement of
split-planes because the plane is not affected by object
motion or object distribution. The drawback is that they
are deeper than optimally-constructed kd-trees, which re-
duces their performance for spatial queries.

An experiment quantifies this tradeoff. Using histori-
cal and projected real-world population data from 1990–
2015 that partitions Earth into ~29 million cells [10], we
construct a split-axis kd-tree with at most 40 people per
leaf node. The maximum depth of this kd-tree is never
more than 50% larger than the optimal kd-tree and the
average depth increases by only 20%. As performance
evaluations in Section 7.2 later show, this additional tree
traversal time is negligible compared to a query’s net-
work latency.

4.1 Distributing the Partitioning Service
Although the entire kd-tree of an Earth-sized world can

fit in-memory on a single server, the partitioning ser-
vice must distribute the kd-tree across many hosts for
availability, fault-tolerance, and to support high query
and update rates. A straw man approach with strongly-
consistent replicas of the full kd-tree becomes too costly
as regions split and merge for load balancing. The tree
has 29 million leaves, and avatar movement can cause

Depth: 10 12 14 16 18 20

World Pop 6.0 40.0 238.0 966.0 4642.0 22,140.0
Zipf 0.0 0.0 0.0 0.0 1240.4 290,000.0

Table 1: Number of changes in the partitioning ser-
vice’s upper tree with different choices of cut depth.

frequent splits and merges: large movements of avatars
could easily overwhelm a single data structure’s ability
to process strongly consistent updates.

Instead, the partitioning service divides the kd-tree into
two parts at a fixed cut depth (Figure 3): an upper tree
and a set of lower trees. The upper tree is replicated
across all partitioning servers. The lower trees are man-
aged by individual partitioning servers. Each upper tree
leaf specifies the domain name of the partitioning server
that stores the lower tree rooted at that leaf. Any par-
titioning service node can answer bounding box queries
by traversing the replicated upper tree and forwarding the
query to servers managing the relevant lower trees.

This design is effective because the split-axis kd-tree
makes the upper tree very stable. Table 1 demonstrates
upper tree stability, showing the number of changes in
the upper tree for different upper tree depths. Two dis-
tributions are tested. The first uses the world popula-
tion data discussed in this section to count the number of
changes in the upper tree as world population increased
from 1990–2015. The second is Zipfian, a distribution
observed in multiplayer games [6], and uses the same
world population cells, assigning each a density of D

i

randomly, where D = 120, 000 objects
km2 and i = 1, 2, . . .

The table shows changes averaged over ten different Zipf
distributions to demonstrate the stability of the upper tree
as the densest parts of the world shift around. A suffi-
ciently high cut mostly avoids changes to the upper tree:
at a depth of 10 there no changes for the Zipf distribution
and only 6 changes over 25 years for the world popu-
lation data. Even at a depth of 16 there are fewer than
1000 changes — less than 2% of nodes at or above that
depth. This low write rate makes it feasible to replicate
the upper tree across all partitioning servers.

4.2 Load Balancing
The partitioning service dynamically splits and merges

regions to balance server load. It currently uses an ad-
hoc strategy: split a region in two when the number of
objects inside it exceeds a threshold, and merge two sib-
ling regions if both have fewer objects than 1

4 the thresh-
old. This approach can create a logarithmic number of
lightly-loaded servers if a hotspot occurs within a region
that was previously empty. Multiple space server pro-
cesses can be co-located on the same host to avoid under-
utilization.



(a) Planar angle (b) Solid angle

Figure 4: Solid angle is the extension of a planar angle
to three dimensions. It is defined as the area of an
object projected onto a unit sphere centered at the
observer.

5. GEOMETRIC OBJECT DISCOVERY
Once connected to the space, an object queries the ge-

ometric object discovery service to learn about other ob-
jects (Figure 2(c)). Due to memory, network, and display
constraints of clients, the server can only return a limited
subset of the world. Systems today commonly use dis-
tance queries, displaying objects within some distance d,
which not only limits what a user can see and interact
with, but also leads to jarring discontinuities.

Sirikata relies on two properties of the real world to
provide a better set of results than current systems:

Visual perspective: Sirikata uses solid angle queries to
prioritize objects that are visually more important. The
solid angle of an object is the surface area covered by the
object when it is projected onto the unit sphere centered
at the observer (Figure 4). It is a measure of how large an
object appears to an observer and is roughly equivalent
to the fraction of pixels the object would occupy if the
display rendered the world in all directions at once. Fig-
ure 5 shows the substantial difference between distance
and solid angle queries.

Object aggregation: Large collections of small objects,
e.g., distant trees, cannot be seen individually, but to-
gether contribute significantly to a scene. Sirikata gener-
ates simplified aggregate meshes to represent aggregate
objects that would otherwise be omitted and the query
processor returns these aggregates along with individual
objects.

Objects register a query with a simple message spec-
ifying the minimum solid angle, i.e., smallest apparent
size, of objects that the server includes in the results. The
query implicitly includes the querying object’s current
position. Because solid angle is affected by the querier
position and object position and size, query results change
due to querier movement, other objects moving or chang-
ing size, or objects entering or leaving the world.

Two challenges arise in implementing the solid angle
query processor. The first is adapting existing data struc-
tures so solid angle queries can be efficiently evaluated

(a) Distance

(b) Solid Angle

Figure 5: Solid angle queries returning the same
number of objects as a distance query give a more
complete view of the world.

on a single host. Section 5.1 presents a novel data struc-
ture, the LBVH, that extends Bounding Volume Hierar-
chies (BVH) by having internal nodes track the largest
objects in their subtrees. The second challenge is that
solid angle queries are global: they can return an object
from anywhere in the world if that object is large enough.
Section 5.2 presents a distributed query processor, which
addresses the computational and network costs of global
queries spanning multiple space servers.

5.1 Efficient Solid Angle Queries
Sirikata efficiently evaluates solid angle queries by ex-

tending bounding volume hierarchies, a data structure
commonly used in graphics systems for other geomet-
ric queries such as distance queries. This section de-
scribes this extension, how the same data structure han-
dles standing queries, and how aggregate objects are re-
turned in result queries when individual objects are too
small to be returned.



Figure 6: The LBVH tracks the largest leaf of each
internal node, allowing it to test query Q against a
much smaller virtual object B’ instead of Z.

5.1.1 Solid Angle Queries
Bounding volume hierarchies recursively enclose col-

lections of objects in bounding volumes. This enables ef-
ficient query evaluation because entire subtrees are culled
if their bounding volume does not satisfy the query [2].
They form a better basis for solid angle query processing
than spatial subdivisions (such as binary space partition-
ing [31] and kd-trees [4]) for three reasons. First, they
test each object at most once because each leaf stores
an object instead a list of objects overlapping the leaf’s
region. Second, insertions and removals are efficient re-
gardless of object size. Finally, BVHs support an inex-
pensive “refit” [23] operation for when objects move: the
topology of the tree remains fixed, but the bounding vol-
umes of internal nodes are updated to account for the
moving objects.

A bounding sphere hierarchy is a natural starting point
because computing the solid angle for spheres is fast and
easy. However, bounding sphere hierarchies are ineffi-
cient for solid angle queries because they are so con-
servative: a parent bounding sphere can be much, much
larger than its children if those children are distant from
one another. In Figure 6, for example, the bounding
sphere X is much larger than either A or B. In a simple
test using objects collected from Second Life regions, for
example, we found evaluating solid angle queries with a
BVH visited up to 86% of the tree even when fewer than
20% of leaves were in the result.

Sirikata improves the efficiency of solid angle queries
through a new data structure, called the Largest Bound-
ing Volume Hierarchy (LBVH). Each LBVH node in-
cludes a reference to the largest leaf in the corresponding
subtree, as shown in Figure 6. When evaluating whether
to traverse a subtree, the query processor tests whether
the largest object in that subtree, placed as close to the
querier as possible within the bounding volume, would
satisfy the query. This test represents the worst case ob-
ject in the subtree, however, Figure 6 shows that this test
is much less conservative (e.g., B’ is much smaller than
Z). Using an LBVH reduces the cost of a query by 75–
90% compared to a BVH.

An LBVH degrades in quality over time as objects
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Figure 7: Most objects in a 4 km2 region of Second
Life were not moving. Outlying object speeds are due
to objects teleporting.

grouped in a subtree move apart. To prevent this degra-
dation (and need for possible full LBVH recomputation)
the query processor exploits the fact that, just as in the
real world, most objects are stationary. A metaverse filled
with constantly moving objects is overwhelming, dis-
tracting, and difficult to navigate. Data collected from
Second Life (Figure 7) show that over 95% of objects in a
4km2 region do not move over a one hour period. There-
fore, the server maintains two LBVHs, one for static and
one for dynamic objects. Objects that do not move for
one minute are static. The static LBVH rarely changes
and so remains efficient. Because so few objects are
dynamic, constant factors dominate, and a suboptimal
LBVH does not significantly harm performance. The
server rebuilds both trees infrequently, currently once an
hour.

5.1.2 Standing Queries
The LBVH reduces the cost of evaluating queries one

time, but most queries are standing: after an initial re-
sult, the discovery service sends updates when the result
set changes. Simple periodic re-evaluation is wasteful as
the same nodes must be re-evaluated even if they have
not changed. The query processor avoids this waste by
maintaining cuts in the LBVH tree. Each cut stores the
LBVH nodes where a query’s evaluation terminated. For
instance, a cut may store nodes A, B, and Y in Figure 6
if A and B satisfy the query but Y did not. Instead of
restarting the query at the root node, the query processor
updates the query by traversing its cut nodes. On each
update, it tests whether the children of a cut node now
appear large enough to satisfy the query or whether a cut
node itself now appears too small to satisfy the query,
updating the cut and sending notifications to the querier
in both cases.

5.1.3 Object Aggregation
Although solid angle queries select better objects, they

miss large collections of small objects. For example, Fig-
ure 5(b) is actually missing a forest full of trees which the
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solid angle query does not capture. To address this, Siri-
kata performs aggregation. The LBVH inherently clus-
ters objects: the server treats each internal LBVH node
as an aggregate. Each aggregate is assigned an object
identifier and its meshes are combined, simplified, and
stored on the CDN. By returning an entire cut instead of
only leaves, the querier always has a complete view of
the world, although possibly at reduced quality. Aggre-
gates are only visual placeholders; applications cannot
communicate with them.

5.2 Distributed Solid Angle Queries
The LBVH evaluates queries locally, but solid angle

queries are global. Objects on any server could satisfy
a query. Sirikata’s distributed query processor addresses
the computational and network costs of these distributed
global queries. It aggregates queries to reduce inter-server
communication and uses a geometric server discovery
service to reduce inter-server querying. Figure 8 shows
the query processor components of one server.

5.2.1 Aggregate Queries
Sirikata exploits the spatial locality of its queriers by

conservatively aggregating its local queries into a single
outgoing query. The aggregate query’s solid angle is the
minimum of every query issued to the space server. In-
stead of a single position, the querier is represented by a
bounding sphere of the individual querier positions. To
evaluate the aggregate query against an LBVH node, a
virtual querier is placed within the bounding sphere as
close as possible to the object being tested. Despite be-
ing conservative compared to the original queries, having
only a single outgoing query reduces computational load
on other servers as well as communication cost because
it returns only a single set of results.

Each server maintains two LBVHs: local and com-
bined. The local LBVH contains only local objects in
the server’s region. The combined LBVH includes both
local objects and the results of outgoing queries, repre-
senting the set of objects in the entire world that might

Combined LBVH

Local LBVH

Local LBVH

Space Server A

Space Server B

Space Server C

A B C D

Geometric Server

Discovery Service

Q1, Q2, Q3          Qagg

Query Aggregator

Qagg

Server

Results

Qagg

B's Results

Qagg

C's Results

Local Objects

Results: Q1  Q2  Q3

Figure 9: The geometric server discovery service de-
termines which servers must be queried and local LB-
VHs resolve aggregate queries. The combined LBVH
resolves individual object queries.

satisfy queries from objects within the server’s region.
The server resolves aggregate queries from other servers
with the local LBVH and queries from local objects with
the combined LBVH.

5.2.2 Geometric Server Discovery
Even with aggregate queries, N servers require N2

server pairs to communicate because queries are global.
However, due to distance and object demographics, most
servers will have no results for each other. To avoid the
waste of N2 connections, servers discover which other
servers to contact through a geometric server discovery
service. Figure 9 shows how a server interacts with this
service as part of issuing outgoing queries. The geomet-
ric server discovery service, like the object discovery ser-
vice, uses an LBVH. In this LBVH, each leaf points to
a space server that can further resolve the query, rather
than a single object. Space servers register their aggre-
gate query with the server discovery service and receive
a stream of updates specifying which servers to contact
whose objects can satisfy their queries.

To evaluate the benefits of server discovery, we simu-
late a world tiled with objects from Second Life traces.
The world grows up to 100km2 while maintaining con-
stant object density. It is partitioned as described in Sec-
tion 4 with up to 5000 objects per server and 100 ran-
domly placed queriers per server. Each server’s aggre-
gate query is evaluated against every other server’s ob-
jects to determine if the server must be contacted. Fig-
ure 10 shows the results for several query angles, speci-
fied in pixels occupied on a 1024x1024 screen with 60◦

field of view. The number of servers contacted grows
more slowly than the total number of servers, eventually
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Figure 10: Average number of servers contacted with
aggregate queries. Common query angles (1024 to
4096 pixels) require far fewer than the maximum.

reaching a maximum value since the world is growing
in size, but not density. Currently, the server discovery
service runs on a single host because a single host can
easily support thousands of space servers and regener-
ating its state in the case of failure takes at most a few
seconds.

5.3 Evaluation
Figure 11 evaluates the visual effect of using solid an-

gle queries, with a small town scene with 10,000 objects
— houses, streets, terrain, and trees. The figure shows
images with ~3,000 objects for distance queries and Siri-
kata’s queries as well as the full image (all 10,000). Dis-
tance queries miss important objects like the terrain. As
Figure 11(b) shows, solid angles with aggregates com-
plete the picture, including detail — such as the distant
forest — that is lost otherwise, allowing a client to see a
compelling approximation of the entire world.

6. ROUTING AND FORWARDING
Returning to Figure 2(d), after an avatar discovers the

building, it interacts with it through application messages.
Space servers are responsible for delivering these mes-
sages to the proper object host. This delivery has two
steps: routing, to determine which space server covers
the region the destination is in, and forwarding, deliv-
ering the message to that server. Section 6.1 describes
routing; Section 6.2 describes forwarding.

6.1 Application Message Routing
Two properties shape the application message routing

table’s design. First, any pair of objects should be able
to communicate, even distant ones. Unlike games, which
can be carefully engineered to use only local messaging,
metaverse applications may need to communicate over
long distances. Second, objects may move freely about
the world. Long-range object communication requires
that the routing table on any space server be able to an-
swer a query for any object in the world. Object mobility
suggests the use of a flat object identifier namespace.

(a) Distance (3,000 objects)

(b) Sirikata (3,000 objects)

(c) Ideal (10,000 objects)

Figure 11: Comparison of Sirikata (solid angles
w/aggregates), distance-based queries, and the ideal
scene. Sirikata’s combination of solid angle queries
and aggregation allows it to display the complete
world with a fraction of the objects.



A simple key-value lookup, mapping from object iden-
tifier to destination server, satisfies these requirements.
Sirikata stores routing records in a separate scalable, key-
value store [29]. This approach benefits from simplicity,
reusing existing software to maintain a single, globally
consistent routing record for each object.

To mitigate the cost of a round trip to the backend
store for each message, Sirikata heavily caches routing
records on each space server, relying on three factors.
First, each record is small, only 34 bytes, containing the
object’s identifier, the space server it is connected to, and
metadata the forwarder uses to weight flows. Millions of
records can be cached in only tens of megabytes. Sec-
ond, object mobilitiy is limited. Like in the real world,
few objects move in the virtual world (Figure 7). Corre-
spondingly, their routing records do not change. Finally,
by caching records when objects migrate, a server can
cheaply forward messages it receives due to stale rout-
ing entries. It also sends a control message back to the
source space server with the new routing record.

6.2 Application Message Forwarding
Once a server has the next hop for a message in its

routing table, the forwarder is responsible for deciding
when to send it. Under low load, forwarder behavior is
simple — forward all packets — but as demand exceeds
capacity, it must choose the order in which to forward
packets and which packets to drop. Unlike games, where
there is only one application that can be designed around
network limitations, Sirikata must support many concur-
rent applications with unknown traffic patterns.

Sirikata draws inspiration from the real world by weight-
ing inter-object flows using an equation similar to the
falloff of electromagnetic radiation. This gives closer
and larger object pairs a greater portion of bandwidth
even under heavy congestion. The challenge of this ap-
proach is that it requires distributed state spread across
many servers (objects’ positions and sizes) and traditional
techniques for enforcing these weights are too expensive
as the number of communicating object pairs grows.

As discussed and evaluated by Reiter-Horn [18], Siri-
kata uses heuristics to approximate object positions and
sizes and leverages ideas from Core Stateless Fair Queue-
ing to enforce weights it assigns between flows. Reiter-
Horn demonstrates that four properties of the Sirikata
forwarder provide a much more natural, intuitive expe-
rience for users. First, weights are always non-zero, so
objects are always able to communicate. Second, just
as two people step closer to hear more clearly, objects
can simply move closer for higher throughput because
weights fall off gradually with distance. Correspond-
ingly, throughput drops as objects separate, but never
drops suddenly. Third, through careful selection of the
weight function, a minimum quality of service is guar-

Latency

Space Server to Upper Tree Latency 1498 µs
Upper Tree Lookup 24 µs
Upper Tree to Lower Tree Latency 848 µs
Lower Tree Lookup 137 µs

Table 2: Latency breakdown for partitioning service
queries with a cut depth of 20 on a LAN.

anteed between a pair of fixed objects, even if all other
object pairs are trying to communicate at full capacity. A
close pair of objects cannot be drowned out. Finally, the
forwarder ensures high utilization: if there is only one
flow, it can use the full server capacity.

7. PERFORMANCE EVALUATION
Previous sections motivated and evaluated the design

decisions in each of the server’s services. This section
evaluates the performance of their implementations, as
well as the end-to-end performance of the entire server.
Evaluations were performed on a cluster with 2.4GHz
Xeon E5620 CPUs, 8GB RAM, and 1Gbps NICs.

7.1 Implementation
The core Sirikata system is currently ~102,000 lines of

code. The space server and services described in this pa-
per are ~22,000 lines of code. The object host, including
the graphical client and scripting libraries, are ~45,000
lines of code. The remaining ~35,000 lines of code are
in shared utilities. To leverage multicore processors, the
space server is highly multithreaded: the current imple-
mentation has eight active threads.

7.2 Partitioning Service Performance
The key metric for the partitioning service is latency:

how quickly can the system determine the servers re-
sponsible for a point or region? Table 2 shows the break-
down of latency for a query using the world population
data described in Section 4 and a cap of 40 objects per
server. The table separates the two network hops be-
cause the server used to query the upper tree is unlikely
to contain the lower tree covering the queried region. The
latency is ~2.5 ms, of which ~2.3 ms is two RTTs of net-
work latency.

7.3 Geometric Query Performance
Figure 12 shows the query update rate of Sirikata’s ge-

ometric object query processor, in queries per second, for
a world generated from measured Second Life data. The
scene contains 100,000 static objects and 1,000 queriers,
generated by tiling Second Life data at a higher density
to cover 1

4km2. All queriers use the same solid angle
parameter and follow measured avatar paths.

Cuts reuse query state from the previous iteration and
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Latency Max Rate Throughput

Local 324 µs 144,632 pps 384.18 Mbps
Remote 672 µs 71,074 pps 320.25 Mbps
Remote+Lookup 974 µs 38,775 pps 165.79 Mbps

Table 3: Space server forwarding performance. The
system can enforce fairness at fine granularity with-
out sacrificing performance.

substantially improve performance over periodically re-
evaluating full queries, updating about 20% more queries
per second. Aggregates improve performance further,
with 56% higher query throughput than full reevaluation.
Aggregates avoid many solid angle tests at leaves: once
one leaf is included in the cut, all its siblings must also
be included.

7.4 Routing and Forwarding Performance
We evaluate router and forwarder latency, forwarding

rate, and throughput with microbenchmarks between pairs
of objects. Latency measures the application-level ping
time for 64-byte messages with idle servers. Forwarding
rate measures how fast a server can forward 64-byte mes-
sages. Throughput measures the maximum inter-object
throughput using 1KB messages.

We measure three forwarding paths: local, remote, and
remote+lookup. The local path handles messages be-
tween objects connected to the same server. The remote
path handles messages between objects connected to dif-
ferent servers where the destination routing entry has been
cached, passing through inter-server queues and requir-
ing an additional network hop. The remote+lookup path
is like remote but also requires a routing table lookup.

Table 3 shows the results. For local messages, the
space server can process about 145,000 messages per
second and has a latency of about 325µs. A routing
service lookup triples message latency, cuts the forward-
ing rate by 75%, and reduces throughput by 57%. This
demonstrates the need for a routing table cache. These
demonstrate that the system can enforce fairness while
maintaining high performance.
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Figure 13: Egress capacity of the space as the number
of servers increases, using a uniform workload. Val-
ues are the median of a 5-minute period, with 99th
percentile error bars.

7.5 Scaling Performance
We examine how server performance scales when ex-

ercising all of the services under a simple, general work-
load. This workload consists of objects with a random
size, position, and solid-angle query parameter. 95% of
the objects are stationary and the rest periodically tele-
port to a random position and set a random velocity. All
objects send 150 30-byte messages per second to a ran-
dom object they can see. Each server covers a 10km
by 2km by 4km regions and servers are added linearly.
Object density remains uniform: more objects are added
with each additional server.

Figure 13 shows the results for up to space servers with
many more objects hosts generating traffic. As the size
of the world increases, the aggregate egress capacity of
the world increases roughly linearly. While objects in
this workload can and do interact with distant objects,
e.g., interesting buildings, most of their interactions are
with nearby objects, as one would expect. The small
drop from one to two servers is due to routing some traf-
fic across server boundaries. While this workload may
not exactly model a real-world scenario, it shows that
the server can scale up to larger spaces without limiting
either a client’s view of the world or its ability to com-
municate with distant objects.

8. APPLICATION EVALUATION
Performance and scalability are only useful if the abil-

ity to see and interact with the entire world leads to en-
gaging applications that are not possible in today’s sys-
tems. We hired 11 undergraduate computer science stu-
dents for the Summer of 2011 to develop applications in
Sirikata. In a few weeks, they created a variety of appli-
cations and systems, including:

Minimap - a top-down display of objects and events,

Wiki-world - embedded Wikipedia articles from object
metadata,

Escrow - secure object and virtual currency exchange,



Games, including a Pokemon-based RPG, a 3D Pacman
clone, 3D tower defense, and a Minecraft clone,

Procedural generators for both city road networks and
building layouts, and

Phys-lib, a library for customizable physics with an ex-
ample billiards application.

These applications demonstrate that Sirikata supports
a variety of metaverse applications running concurrently,
including some that would be very difficult or impossible
in current systems. We focus on two examples, Minimap
and Wiki-world.

8.1 Minimap
Minimap presents a 2D top-down view of objects and

events as thumbnails. Geometric queries seed the map
and it uses messaging with other objects to register events
and descriptions. Events may include code to be exe-
cuted by the avatar, for example to register it as a player
in a game. Users can also specify regions to aggregate
when zoomed out and share them with others, for ex-
ample assigning a neighborhood a name. Solid angle
queries and long-distance messaging make Minimap fea-
sible, allowing it to give a view of the world beyond
its immediate surroundings. In contrast, Second Life
requires a separate, centralized 2D map service, which
users cannot extend or improve.

8.2 Wiki-world
Wiki-world is similar to the application in Section 1:

users can click on objects to learn about them through
embedded Wikipedia articles. Executing within an avatar’s
script, Wiki-world collects search terms by messaging
the object and from user-specified tags on the CDN, and
presents search results in a 2D interface. The Sirikata
server enables Wiki-world for the entire world by allow-
ing discovery of, and communication with, large, distant
objects such as the building in Figure 2.

9. RELATED WORK
Sirikata builds on a combination of ideas from dis-

tributed systems, networking, and graphics. This section
compares Sirikata to existing metaverse systems and re-
views prior work that informs the design of its services.

9.1 Metaverses
Metaverses differ from most application-specific vir-

tual worlds, such as those for games and visualization,
because they present a single, contiguous world com-
prised of user-generated content. Scalability tricks used
in those systems do not translate directly to metaverses.
Most metaverses, including ActiveWorlds [1], Second
Life [30] (as well as its open source counterpart Open-
Sim [27]), and Blue Mars [7], have made the same com-

promises to enable scalability, choosing to limit visibil-
ity and interaction to a small distance in order to scale.
The distributed scene graph [22] improves the scalability
of OpenSim by running system services across multiple
hosts. However, the limits on visibility and interaction
are still present.

9.2 Partitioning Service
A few early virtual world games, such as Asheron’s

Call, dynamically partitioned the world across a cluster
of servers [28]. However, most systems use sharding or
precomputation to achieve scalability. World of Warcraft
divides users into hundreds of “realms,” or copies of the
world [39]. RING models the world as a large piece of
global state, but prunes object updates based on precom-
puted visibility within a static environment [15]. These
techniques do not apply to metaverses where there is a
single, contiguous world with dynamic, user-generated
content.

Liu et al. make design choices similar to Sirikata in ap-
plying binary space partitioning for managing load [24],
but no global data structure is maintained. Chen et al.
use fixed partitioning, but exploit and encourage local
communication by clustering neighboring regions onto
hosts [9].

9.3 Discovery Service
Practically all systems today limit object discovery by

distance, sometimes referred to as range queries or area
of interest (AOI) [6, 20]. Other systems use application-
level information [5], disjoint region splitting [21], per-
ceptual limitations [32], or visibility [36] to reduce load.
Chaudhuri et al. describe a system for rendering large
worlds, guaranteeing a fixed bandwidth cost, given a max-
imum velocity [8]. All these approaches assume either
local interaction or a static environment. Sirikata’s dis-
covery service builds on a long history of spatial data
structures. It extends the the well-understood bounding
volume hierarchy [11] and applies it in a distributed set-
ting to perform efficient, global, solid angle queries.

9.4 Routing and Forwarding
Routing and forwarding is a minor concern in most

current metaverse systems because local discovery limits
communication to local objects. Sirikata enables com-
munication between any pair of objects. Although most
services in Sirikata leverage geometry, routing uses a
flat namespace of object identifiers to break any depen-
dency on the assumption of stationary objects. Exist-
ing techniques [38], such as distributed hash tables [34,
13], are used to scale identifier lookups. Since object
changes often have many observers, many systems use
multicast to reduce network traffic [14, 17, 15]. Siri-
kata focuses on unicast application-level traffic, although



multicast could be applied for sending location table up-
dates. Sirikata’s forwarder builds on core stateless fair
queueing (CSFQ) [35] to manage weighted flow fairness
with minimal state [18].

10. CONCLUSION
This paper argues that metaverses have failed to meet

their imagined potential: rather than large, vibrant social
spaces, they are quiet, lifeless, and desolate. In order
to scale to support a large world, existing systems pre-
vent users from seeing that world, constraining them to a
small, local area.

The Sirikata metaverse server allows users to see and
interact with a large and dynamic virtual world. Prop-
erties of the real world inform its design and provide
constraints that enable scalability with intuitive impli-
cations: observers have limited resolution, objects are
mostly static, and object density is in a small, fixed range.
Sirikata enables applications that are very difficult to build
in existing systems without sacrificing performance.

The Sirikata metaverse server is one component of a
larger vision. Many challenges arise in the object host
and CDN described in Section 3, from load balancing
objects in a distributed object host to supporting progres-
sive loading of content from the CDN. We believe dis-
tributed graphical systems are an underexplored area of
research and significant work remains at the intersection
of the graphics and systems communities. As computing
increasingly moves into the physical world, in the form
of augmented reality, cyber-physical systems, and ubiq-
uitous computing, we believe the principles Sirikata has
begun to explore may inform the design and implemen-
tation of these increasingly important classes of systems.
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