
UNSUPERVISED CONVERSION OF 3D MODELS FOR INTERACTIVE METAVERSES

Jeff Terrace1, Ewen Cheslack-Postava2, Philip Levis2, and Michael J. Freedman1

1Princeton University 2Stanford University

ABSTRACT

A virtual-world environment becomes a truly engaging plat-
form when users have the ability to insert 3D content into
the world. However, arbitrary 3D content is often not opti-
mized for real-time rendering, limiting the ability of clients
to display large scenes consisting of hundreds or thousands of
objects. We present the design and implementation of an au-
tomatic, unsupervised conversion process that transforms 3D
content into a format suitable for real-time rendering while
minimizing loss of quality. The resulting progressive format
includes a base mesh, allowing clients to quickly display the
model, and a progressive portion for streaming additional de-
tail as desired. Sirikata, an open virtual world platform, has
processed over 700 models using this method.

Index Terms— 3D Models, Content Conditioning, Tex-
ture Mapping, 3D Meshes, Metaverses, Virtual Worlds

1. INTRODUCTION

Virtual worlds are three-dimensional graphical environments
where people can interact, engage in games, and collaborate.
One class of virtual worlds is the “metaverse”, such as Sec-
ond Life, where anyone can add new objects to the world by
creating 3D models and writing scripts to control them.

Creating a truly engaging application in a metaverse re-
quires filling it with 3D content. That content can come from
a wide variety of sources: modeling packages like Blender or
Maya, content repositories such as Google’s 3D Warehouse or
NASA’s 3D Resources, or even less traditional sources such
as 3D scanning. Due to their disparate sources, these mod-
els have a wide array of characteristics, from million-triangle
and hundred-megabyte scanned models to detailed architec-
tural models referencing hundreds of materials and textures.
A metaverse platform that accepts arbitrary 3D content must
transform any model into a form to be rendered in real-time
as just one of thousands of models in a scene.

Metaverses cannot employ the same techniques that other
applications, such as games, use to condition and prepare con-
tent. Whereas game developers can work closely with artists
and filter content through a conditioning pipeline to ensure
real-time frame rates, metaverses must handle arbitrary user-
provided content. Additionally, game content is shipped to a
client before the application runs, but metaverse users expect

to drop in a new 3D model at any time (uploading it to vir-
tual world servers “in the cloud”) and use it in the world im-
mediately. The metaverse could reject unoptimized content,
but such narrow constraints drastically decrease the quantity
of readily available content and diminish the usability of the
system. Users should not need to care about the intricate,
technical details of 3D content.

To realize this vision for interactive metaverses, this pa-
per proposes an unsupervised content conditioning pipeline
for 3D content. Users can upload to a repository, which au-
tomatically transforms the content into a format that ensures
good performance in a real-time rendering environment. The
model is transformed to use a single material (permitting effi-
cient rendering), simplified to a level of detail appropriate for
single model in a scene, and converted to a progressive for-
mat to allow clients to quickly display a low resolution rep-
resentation, with additional detail streamed as desired. This
unsupervised transformation significantly lowers the bar for
user-generated virtual worlds. Users can contribute arbitrary
content, and the system ensures the content’s feasibility for
other, heterogeneous clients.

This work started primarily as an engineering task to build
the content conditioning and encoding pipeline needed for
large-scale, 3D, interactive metaverses. Our conversion pro-
cess leverages several known techniques, but in providing a
complete, robust, and unsupervised system for dynamic vir-
tual worlds, we have solved several problems that arose with
previous techniques. Our contributions include several algo-
rithms and novel heuristics for:

• A stopping point for existing supervised algorithms,
chosen to work well for a large collection of models;

• Apportioning constrained texture space to areas of a 3D
model, with the goal of minimizing loss in quality;

• A new progressive encoding for meshes and textures
that balances the trade-offs between efficient transmis-
sion and efficient display; and

• A complete, robust conversion framework.

In doing so, we present a framework for the unsupervised con-
version of 3D content for use in user-generated virtual worlds.
The conversion process produces models in a consistent for-
mat, increasing the number of models that can be rendered at
real-time frame rates and decreasing the amount of data that
needs to be downloaded to first display a model.



0 101 102 103 104 105 106

Number of Triangles

0
101
102
103
104
105
106
107
108

Te
xt

ur
e

R
A

M
(b

yt
es

)

Fig. 1. Number of triangles (x-axis), texture RAM (y-axis),
and number of draw calls (marker size) for 748 test models.

2. MOTIVATION AND GOALS

Beyond the scope of this paper, our goal is to build a platform
and architecture for scalable metaverses. To aid with the plat-
form’s design and development, a set of 15 users were asked
to create a set of sample applications. As part of this pro-
cess, they uploaded 3D models to a content distribution server
for use with the platform. Most content came from external
sources, while a small percentage were created by the users
themselves. Unfortunately, we quickly ran into problems.

Modern consumer graphics cards are only efficient for
models with specific properties. As a GPU can render a
few million triangles at interactive frame rates, an individual
model with hundreds of thousands of triangles does not leave
room for complex scenes. Excessively large textures are simi-
larly limiting. Further, a GPU is only efficient when geometry
is submitted in a batch, sharing the same set of vertices, tex-
tures, and material properties. Modern GPUs only support a
few thousand draw calls at real-time rates.

Figure 1 shows a graph of the number of triangles, texture
RAM (32 bits per pixel), and number of draw calls (marker
size) for the 748 models uploaded over a period of three
months. More than half the models uploaded by our users fail
to satisfy at least one of these properties required for efficient
rendering in a scene with thousands of models.

To enable users to add arbitrary content, we needed a way
to convert the models into a format for real-time rendering
The goals of the conversion process are as follows:

1. Reducing Draw Calls: A major bottleneck for large
scenes is the maximum draw calls per second the graph-
ics card supports. Our primary goal is to reduce the
number of draw calls to a small, constant number.

2. Simplifying Mesh: Clients might want to load a com-
plex mesh at lower resolution, e.g., if the object is far
in the distance or the client is running on a low-power
mobile device.

3. Reducing Texture Space: Since graphics cards have a
fixed amount of texture RAM (and for the same reason
a simplified mesh is desired), a client might want to
load a model’s texture(s) at lower resolution.

4. Progressive Transmission: A progressive encoding

allows a client to start rendering the model with only
a subset of the data. This is especially desirable when
connected via a low-bandwidth link or when a model
covers only a small part of the user’s field of view.

3. RELATED WORK

Early work on the simplification of polygonal models was fo-
cused on reducing the complexity of geometry alone [1, 2],
while later work also considered additional attributes such
as colors, normals, and texture coordinates [3, 4]. The first
progressive encoding [5] allowed for a model’s full resolu-
tion to be progressively reconstructed. However, textured
models that are simplified with this method produce poor re-
sults, which led to simplification algorithms based on texture
stretch [6, 7]. Our work closely follows Sander, et al. [7]
with a few modifications (see Section 4), most importantly to
allow the process to run unsupervised.

4. CONVERSION PROCESS

Our unsupervised conversion process turns any 3D model into
an efficient, progressive encoding for use within a real-time
rendering environment. The conversion process works by ex-
ecuting a series of steps:

1. Cleaning and normalizing the model (Section 4.1);
2. Breaking the model into charts, contiguous submeshes

used to map the mesh into a texture (Section 4.2);
3. Fairly allocating texture space to charts (Section 4.3);
4. Packing charts into a texture atlas (Section 4.4);
5. Simplifying the model (Section 4.5); and
6. Encoding the result into a progressive, streamable for-

mat (Section 4.6).

4.1. Cleaning and Normalizing

Before the conversion process, the system normalizes the
model by performing the following standard steps:

• Quads and polygons are converted to triangles. The
mesh simplification algorithms require triangles, and
clients would otherwise need to triangulate the model
for rendering.

• Missing vertex normals are generated, enabling consis-
tent client-side shading.

• Extraneous data is deleted, including unreferenced data
and duplicate triangles.

• Complex scene hierarchies and instanced geometry is
flattened to a single mesh. This can increase file size
but makes simplification and charting easier, as well as
simplifying client model parsing.

• Vertex data is scaled to a uniform size, in order to nor-
malize error values in subsequent steps.



(a) Rendering (b) Wireframe (c) All Merges (d) Heuristic

Fig. 2. Example model of a duck, showing its original render-
ing (a), wireframe (b), result of merging its charts completely
(c), and result of merging its charts when using the heuristic
in Formula 1 for determining when to stop (d).

4.2. Creating Charts

A model requires multiple draw calls to render it primarily
when it uses multiple materials and textures for submeshes.
To reduce the draw calls required (Goal 1), the model’s ma-
terials must be combined such that the mesh can be rendered
in a single batch.1 A naive approach would simply combine
all textures into a texture atlas [8]. The problem with this
approach is twofold. First, input models often waste texture
space by using only small subsets of large textures, e.g., a few
leaves from a photograph of a tree. Second, models that use
texture wrapping (i.e., use texture coordinates beyond the di-
mensions of the texture that must be wrapped) require dupli-
cating the texture many times so that these coordinates do not
wind up in neighboring textures. This duplication is wasteful
and can consume a large fraction of the texture budget.

Instead, the system copies only the referenced parts of tex-
tures into the atlas. To do so, the mesh is first partitioned into
charts, or contiguous groups of triangles in the mesh [7]. The
system creates a chart for each triangle and a greedy algo-
rithm merges adjacent charts that create the least additional
error using a priority queue. The process closely follows the
algorithm from Sander et al. [7] and Garland et al. [9], with
a few modifications. First, merging identical but opposite-
facing triangles is disallowed, so that double-sided geometry
does not result in charts that cannot be parameterized into tex-
ture space (see Section 4.3). Second, our algorithm only al-
lows merging two charts if they are both textured or both con-
tain the same color. This allows an entire color-based chart to
be trivially paramaterized to a small fixed-size region.

While prior work [7] required an operator to manually
choose when to stop the merge process, our algorithm must
determine this stopping point automatically. Figure 2(a)
demonstrates why selecting a stopping point is important. If
the merge process is left to run to completion, only four charts
remain (per Figure 2(c)). However, planarity is important
when paramaterizing the charts into 2D texture space, be-
cause texture stretch increases when planarity decreases. This
is the motivation behind using planarity and compactness in
the cost assigned to merge operations [9].

1For simplicity, our implementation currently only considers the diffuse
channel, but the same technique can be repeated for additional color channels,
e.g., normal maps, specular highlights, glow maps, etc.

0 1000 2000 3000 4000
Merge Step

103

104

105

106

107

E
rr

or
Va

lu
e

0 1000 2000 3000 4000
0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
eu

ri
st

ic
Va

lu
eHeuristic

Maximum
Current

Fig. 3. The current error term, maximum error term in the
priority queue, and a heuristic formula during each step of
an example chart-merging operation. The vertical line is the
chosen stopping point when using a threshold value of 0.9.

Ideally, the process should stop at a point that produces
disc-like, planar charts that can be paramaterized into texture
space with minimal error. Figure 3 plots the error term at
each step of the merging process for the model in Figure 2, as
well as the the maximum error term in the priority queue at
each step. The error term becomes doubly exponential (note
the log scale of the y-axis) around step 3800. The maximum
error also remains stable until this point.

Our algorithm stops the merging process around such a
point that corresponds to a phase change in the error rate. To
automatically detect it, we use the following heuristic, which
is also plotted in the figure:

log(1 + Ecurrent)

log(1 + Emax)
(1)

where Ecurrent and Emax are the current error term and the
maximum error term seen at each step, respectively. This
represents how close the current error term is to the maxi-
mum in a log scale. We use a threshold of 0.9, which coin-
cides with the error term becoming doubly exponential. Fig-
ure 2(d) shows the model’s charts when stopped according to
this heuristic metric. This heuristic and threshold work well in
practice across a range of models: the error during the merge
process for all models in the testing set are similar to that
shown in Figure 3.

4.3. Sizing Charts

Once the charts for the mesh have been defined, each chart is
paramaterized from 3D into 2D texture space, so that they can
be packed into an atlas. We paramaterize the charts using an
optimization algorithm based on texture stretch [7]. For charts
that are only a single color, however, this paramaterization is
trivial: we map all coordinates within the chart to a single
coordinate in texture space containing the color.

Each chart has to be given a size in texture space. Sander
et al. [7], on which our approach is based, define two texture
stretch norms over a triangle T : (i) L2(T ), the root-mean-



square stretch over all directions, and (ii) L∞(T ), the maxi-
mum singular value. The L2 norm is used because, as noted,
“unfortunately there are a few triangles for which the maxi-
mum stretch remains high.” However, we found that, with a
large sample of models, the L2 norm can also be too large for
some charts, leaving very little room for other charts. This is
particularly bad when a chart covering a small portion of the
mesh has high texture stretch.

Instead, we select a fixed target size for the texture, and
we allocate texture space fairly across all charts based on tex-
ture stretch, relative surface area in 3D, and relative area in
the original textures. The target texture size T is set as the
minimum of the total original texture area referenced by all
triangles and the maximum texture size for modern graphics
cards (we currently use 4096x4096). Each chart is assigned a
2D area equal to:

A
′′

c = 3

√
(

L2
c∑
L2

)(
Ac∑
A
)(

A′
c∑
A′ ) · T (2)

where L2
c is the chart’s texture stretch, Ac is the chart’s sur-

face area in 3D, A′
c is the chart’s area in the original tex-

ture space, and
∑

L2,
∑

A, and
∑

A′ are the sum across all
charts of texture stretch, 3D surface area, and original texture
area, respectively.

4.4. Packing Charts into Atlas

After each chart has been paramaterized, they must be com-
bined into a texture atlas. To enable an atlas to be resized into
lower resolutions (Goal 3), a chart must not cross a power-
of-two boundary of the atlas. Otherwise, it could bleed into
adjacent charts [8]. We developed an efficient chart-packing
algorithm to perform this encoding. The algorithm maintains
a tree-based data structure, with each node in the tree repre-
senting a region of the atlas. Each chart is inserted in decreas-
ing order by size, with the goal of finding a spot containing
enough room for the chart’s image without crossing a power-
of-two boundary. To choose a placement for each chart, the
tree is traversed recursively until a valid placement is found;
the chosen node is split into the placement and any remaining
free space. For all models in the testing set, this method suc-
cessfully packs charts into a texture atlas within a power of
two of the target size chosen in Section 4.3.

4.5. Simplification

While creating charts and mapping them to a single texture
addresses Goal 1, achieving Goal 2 requires reducing the
complexity of the model. As in Sander et al. [7], we use a
greedy edge-collapse algorithm based on a combined metric
of quadric error [2] and texture stretch. The algorithm gen-
erates a low resolution base mesh and a list of refinements
which can be applied to reconstruct the original mesh.

The mesh could be simplified until there are no longer
any valid edge collapses, but this often results in parts of the
mesh’s volume collapsing completely, e.g., an avatar’s fingers
disappear. We found that the combined error metric for mesh
simplification follows the same property as the error term for
merging charts. To avoid oversimplifying a model, therefore,
we apply Equation 1 from Section 4.2 and stop simplification
once the metric reaches a threshold of 0.9. This approach
works well for the models tested, simplifying the models to
reduce their complexity, but leaving the base mesh at an ap-
propriate level-of-detail so as to not lose too much volume.

Some models are not worth simplifying because the cost
of sending a batch of triangles to the GPU dominates the cost
of rendering the full mesh. For example, sending 10,000 tri-
angles often has no additional cost over sending 5,000 trian-
gles. Therefore, if a model is less than 10,000 triangles or if
the progressive stream is less than 10% of the size of the orig-
inal mesh, we revert the simplification process and encode the
base mesh as the full resolution model.

4.6. Progressive Encoding

The ideal progressive encoding (Goal 4) would satisfy the fol-
lowing three properties:

1. The simplified base mesh can be downloaded and dis-
played without downloading the rest of the data.

2. Progressive refinements can be streamed, allowing a
client to continuously increase detail.

3. The mesh’s texture can be progressively streamed, al-
lowing a client to increase texture detail.

While there are existing progressive mesh formats, to our
knowledge none support complex meshes with textures and
materials, and none are widely used. To provide such a pro-
gressive format, we start by encoding the base mesh using
COLLADA, as it is an open, widely-supported format for 3D
interchange. It allows for referencing complex materials and
textures, and since it is widely-adopted, existing platforms
can use the base mesh without modification.

Mesh data in COLLADA is encoded as indexed triangles.
A vertex in a triangle contains an index into a source array
for each attribute (e.g., positions, normals, and texture coor-
dinates). This per-attribute indexing allows for the efficient
deduplication of source data (i.e., eliminating redundancy),
which serves to reduce file size. When sending mesh data to
a graphics card, however, a client must create a single set of
indices, such that the source attributes are aligned in memory.

The progressive stream format for meshes must balance
these opposing requirements. It should be encoded efficiently
so as to require less bandwidth. But, it also should not require
a client to maintain both the original and converted data to
efficiently apply mesh updates, i.e., vertex additions, triangle
additions, and index updates.

Our progressive stream is encoded as a sequence of re-
finements, each comprising a list of individual updates to be



applied together. However, it is encoded assuming it will be
applied to the decoded base mesh where indices for vertex
data have been converted to a single index while deduplicat-
ing index tuples to minimize data size. Because it uses a sin-
gle index, the progressive stream is slightly larger but allows
a client to efficiently add progressive detail to a loaded mesh.

Unfortunately, there are also no existing widely-supported
progressive texture formats that meet our needs. We require
a format which provides good overall compression, allows a
client to download and load a low resolution version, and sup-
ports the progressive addition of detail. Decoding most pro-
gressive formats, such as JPEG or PNG, require a client to use
a full-resolution buffer regardless of how much of the image is
loaded. The DDS format encodes compressed mipmaps, but
it uses fixed-rate compression for hardware-accelerated tex-
ture mapping, resulting in poor compression. Additionally,
because it is not a common image format, some platforms
(e.g., web browsers) do not have decoders readily available.

Instead, our encoding resizes the full-resolution texture to
generate multiple levels of detail in the form of power-of-two
mipmaps, each encoded as a JPEG. The mipmaps are then
concatenated in a tar file. This approach has several practical
benefits: it achieves good compression, allows a client to di-
rectly index offsets into the file, e.g., using a simple HTTP
range request if content is served over the web, and sup-
ports multiple, contiguous resolutions being downloaded with
a single request. As with the progressive mesh format, this re-
quires downloading more data overall, but allows a client to
load low-resolution textures much more quickly. Critically,
the full resolution texture may never be required if an object
is far in the distance, a client is moving quickly through a
scene, or a client is rendering a scene at low resolution.

5. RESULTS AND ANALYSIS

As part of our Sirikata platform, we created a web ser-
vice where users upload 3D models in COLLADA format
which are converted using the process in Section 4. The
conversion is implemented in an open-source library, avail-
able at github.com/sirikata/sirikata-cdn, currently running at
open3dhub.com.

5.1. Render Efficiency

The primary goal of the conversion process is to improve the
rendering efficiency of models by reducing the number of
draw calls. Figure 4 shows the throughput, in frames per sec-
ond, attained when rendering each model using a Macbook
Pro with a 2.4 GHz P8600, 4GB RAM, and 256MB NVIDIA
GeForce 9400M graphics card. The original models span a
wide range, with many showing poor performance. Even af-
ter flattening the original model, an expensive operation that
a client might be able to perform, the models still span a large
range. The converted progressive base format both improves
performance and gives more consistent frame rates for the

0.0 0.2 0.4 0.6 0.8 1.0
Mesh

0
100
200
300
400
500
600
700

F
ra

m
es

Pe
r

Se
co

nd

Base Progressive
Full Progressive
Original Flattened
Original

Fig. 4. Render throughput of the original, flattened, base, and
full progressive format for each model in the testing set.

Texture Resolution
128 256 512 1024 2048

Pr
og

re
ss

iv
e 0% 0.53 0.63 0.81 1.03 1.35

25% 0.65 0.75 0.97 1.16 1.45
50% 0.74 0.85 1.02 1.26 1.58
75% 0.79 0.95 1.11 1.34 1.70

100% 0.88 0.99 1.20 1.44 1.82

Table 1. Mean size of progressive format as a fraction of
the original across all test models, shown as a function of the
progressive stream downloaded and texture resolution.

majority of models. The full version of the progressive for-
mat predictably has lower throughput for some large models.
About 10% of models always have low throughput, however.
These models are difficult to simplify because they are not
well-connected, e.g., trees. We plan to use other techniques,
such as image-based rendering, to handle these models.

5.2. File Size

The size of the converted mesh is also important for perfor-
mance, as metaverses stream content to clients on-demand.
Table 1 shows the mean file size of the progressive encoding
as a fraction of the original, across a range of texture resolu-
tions and fraction of the progressive stream downloaded, both
cumulative. The mean size for the lowest resolution is half
the original, so clients can begin displaying the model earlier.
The higher texture resolution is responsible for a large frac-
tion of the full download size, so clients that use lower texture
resolution receive a significant bandwidth savings. An exam-
ple model at multiple resolutions is shown in Figure 5.

Figure 6 plots the change in the number of kilobytes re-
quired to display each model. It compares the original against
the base mesh with textures no more than 128x128 pixels
(corresponding to the top-left cell of Table 1). For 80% of
models, the amount of data that has to be downloaded by a
client before being able to display the model decreases. The
majority of the rest only have a small increase in file size,
while a select few increase substantially. Some of the in-

https://github.com/sirikata/sirikata-cdn
http://open3dhub.com


(a) Base Mesh +
128x128 Texture (334

KB)

(b) Base Mesh + 25%
Stream + 256x256
Texture (568 KB)

(c) Base Mesh + 50%
Stream + 512x512
Texture (923 KB)

(d) Base Mesh + 75%
Stream + 1024x1024
Texture (1755 KB)

(e) Base Mesh +
100% Stream +

2048x2048 Texture
(4385 KB)

(f) Original Mesh
(913 KB)

Fig. 5. Example of a teddy bear model at different resolutions
of the progressive format (1 draw call) and its original format
(16 draw calls). The size in KB assumes downloading pro-
gressively, e.g., 5(e)’s size includes lower-resolution textures.

0.0 0.2 0.4 0.6 0.8 1.0
Mesh

−104
−103
−102
−101

0
101
102
103
104

C
ha

ng
e

in
K

B

Fig. 6. The change in download size between original models
and base converted models at 128x128 texture size.

crease can be attributed to adding extra information to the
model that was not present before (e.g., normals and texture
coordinates), but the majority is due to flattening instanced
models. For heavily instanced models (e.g., trees and grass),
this can result in a significant increase in file size, although it
still preserves the ability the use a single draw call. As pre-
viously mentioned, we are exploring other techniques such as
image-based rendering to handle these models.

5.3. Perceptual Error

Besides improving performance, the conversion process
should not compromise the appearance of models. We eval-
uate the visual fidelity by comparing screenshots of the pro-
gressive mesh to a screenshot of the original. We start with

0 10 20 30 40 50 60 70 80 90 100
Progressive Stream

0
2
4
6
8

10
12

D
el

ta
E

Mean
Median

Fig. 7. The perceptual error between original model and con-
verted model as a function of the percentage of progressive
stream downloaded. Texture size at x = 0 starts at 128x128,
increasing by a power of two for each 10%.

the base mesh with 128x128 textures and then, at each step
of the experiment, increase the mesh quality of the progres-
sive stream by 10% and the texture quality by a power of two.
We compare screenshots using the CIEDE2000 [10] (Delta
E) color comparison metric, disregarding background pix-
els. A CIEDE2000 delta of less than 1 is not noticeable by
the average human observer, while deltas between 3 and 6
are commonly-used tolerances for commercial printing. As
shown in Figure 7, the perceptual error declines quickly, with
the majority of the error becoming indistinguishable once
40% of the progressive stream is loaded.

6. CONCLUSION

In this paper, we describe and evaluate a content-conditioning
process that transforms arbitrary 3D content into an effi-
cient representation. Our analysis shows that the resulting
format can be efficiently displayed in a real-time rendering
environment, while staying faithful in quality to the orig-
inal format. This conversion process is currently running
at open3dhub.com, automatically processing user-submitted
content uploads for the Sirikata virtual world.

References
[1] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and

Werner Stuetzle, “Mesh optimization,” in Proc. SIGGRAPH ’93, 1993.
[2] Michael Garland and Paul S. Heckbert, “Surface simplification using

quadric error metrics,” in Proc. SIGGRAPH ’97, 1997.
[3] Michael Garland and Paul S. Heckbert, “Simplifying surfaces with

color and texture using quadric error metrics,” in Proc. VIS ’98, 1998.
[4] Hugues Hoppe, “New quadric metric for simplifying meshes with ap-

pearance attributes,” in Proc. VIS ’99, 1999.
[5] Hugues Hoppe, “Progressive meshes,” in Proc. SIGGRAPH ’96, 1996.
[6] Jonathan Cohen, Marc Olano, and Dinesh Manocha, “Appearance-

preserving simplification,” in Proc. SIGGRAPH ’98, 1998.
[7] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe,

“Texture mapping progressive meshes,” in Proc. SIGGRAPH ’01, 2001.
[8] NVIDIA, “Sdk white paper: Improve batching using texture atlases,”

2004.
[9] Michael Garland, Andrew Willmott, and Paul S. Heckbert, “Hierarchi-

cal face clustering on polygonal surfaces,” in Proc. I3D ’01, 2001.
[10] G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference

formula: implementation notes, supplementary test data, and mathe-
matical observations,” Color research and application, , no. 1, pp.
21–30, 2005.

http://open3dhub.com

	 Introduction
	 Motivation and Goals
	 Related Work
	 Conversion Process
	 Cleaning and Normalizing
	 Creating Charts
	 Sizing Charts
	 Packing Charts into Atlas
	 Simplification
	 Progressive Encoding

	 Results and Analysis
	 Render Efficiency
	 File Size
	 Perceptual Error

	 Conclusion

