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What is a Virtual World?

•  Three-dimensional, online environment
•  Users can communicate, shop, socialize, 

collaborate, and learn.
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Virtual World Types
Static
•  Fixed art

•  Artist-generated 
environment

•  Predictable

•  Restricted user ability

Dynamic
•  New art can be inserted

•  User-generated 
environment

•  Unpredictable

•  Open, free ability
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Virtual World Examples
•  World of Warcraft
– Online game
– 10 million players

•  Second Life
– Virtual world
– Explore, socialize, trade

•  EvE Online, Habbo Hotel, etc.
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Sirikata
•  Platform for seamless, scalable, and 

federated metaverses

5	  



3D Content
•  Mesh Representation
– Vertex coordinates
– Normal vectors
– Polygon indexes
– Textures
– Texture coordinates
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Importing Content
•  GPU limits for interactive frame rates
–  triangles (millions)
–  texture RAM (256MB – 2GB)
– batches / draw calls (thousands)

•  Static worlds
– Artist works closely with developers
– Pre-processed

•  Dynamic worlds
– Arbitrary, user-generated content
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Gathering Content
•  Summer 2011
•  15 students at Stanford and Princeton
•  Uploaded 3D models to website
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Draw Call Distribution
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Possible Solutions
•  Enforce limits on triangles, textures, and 

draw calls
– Decreases usability
– Reduces available content

•  We can do better!
– Automatically condition the content into 

efficient format
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Conditioning Goals
1.  Reduce Draw Calls
–  1 per object

2.  Reducing Texture Space
–  To fit more textures into RAM

3.  Simplify Mesh
–  Complex meshes can be drawn at lower resolution

4.  Progressive Transmission
–  Display low-resolution first, streaming more detail
–  Great for low-bandwidth links or distant observers
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Conditioning
•  Mesh Simplification
– Well studied area

•  Mesh Optimization [Hoppe ‘93]
•  Surface simplification using quadric error metrics [Garland ‘97]
•  Appearance preserving simplification [Cohen ’98]

–  Problems with progressive models

•  Retexturing + simplification
– Existing methods

•  Texture mapping progressive meshes [Sander ‘01]

–  Supervised algorithm, small testing set
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Conditioning Pipeline
1.  Cleaning and normalizing
2.  Chart creation
–  contribution: unsupervised

3.  Fair allocation of texture space to charts
–  novel technique

4.  Mesh simplification
5.  Progressive, streamable encoding
–  contribution: efficient format
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Cleaning and Normalizing
•  All polygons are converted to triangles
•  Missing vertex normals are generated
•  Extraneous data is deleted
•  Complex scene hierarchies and instanced 

geometry is flattened to a single mesh
•  Vertex data is scaled to a uniform size
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Creating Charts
•  Retexturing
– Creates new, single texture from model

•  Each triangle could be placed in texture
– Not great for simplification

•  Instead, partition mesh into flat regions
•  Starts with a chart for every triangle
•  Priority queue of chart merges
– Ordered by error term incorporating 

compactness and planarity
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•  Flat, disc-like regions
•  Compact
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Heuristic Examples
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Allocating Texture Space
•  Each chart is parameterized from 3D 

space to 2D texture space
•  Each chart is given a size in 2D space
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Allocating Texture Space
•  Original technique [Sander ‘01]
– L2(T) - root-mean-square stretch
– L∞(T) - maximum stretch

•  L2(T) is used because
– “unfortunately there are a few triangles for 

which the maximum stretch remains high”
•  With our larger set of models, so is L2!
•  A chart with high L2(T) can allocate too 

much space, leaving little room
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Allocating Texture Space


•  L2c - chart’s texture stretch
•  Ac - chart’s surface area in 3D
•  A’c - chart’s area in the original texture
•  ΣL2, ΣA, ΣA’ – sum across all charts
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Mesh Simplification
•  We use technique based on [Garland ‘97] 

and [Sander ’01] using quadric error and 
texture stretch

•  See paper for unsupervised stopping 
heuristic
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Ideal Progressive Encoding
1.  Simplified base mesh can be 

downloaded and displayed without 
downloading the rest

2.  Vertex data can be streamed, allowing a 
client to continuously increase mesh 
detail

3.  The mesh’s texture can be progressively 
streamed, allowing a client to increase 
texture detail
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File Format
•  Existing formats
– OBJ, STL, PLY, FBX (60 listed on Wikipedia)

•  COLLADA
– Open standards-based XML format (2006)
– Widely supported: SketchUp, Blender, 3DS 

Max, Maya, Autodesk, Google Earth
– pycollada maintainer

•  But there are no existing usable 
progressive formats
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Base Mesh & Refinements
•  Base mesh encoded as COLLADA
– backwards compatible, unmodified clients

•  Progressive vertex data is a list of 
refinements: vertex additions, triangle 
additions, index updates

25	  



Progressive Textures
•  No suitable progressive image formats

–  JPEG 2000, gif
•  Memory buffer requires O(full resolution) size

–  Microsoft DDS format
•  fixed-point only (like png)
•  not well supported

•  Full resolution is resized to multiple LODs
–  1x1, 2x2, 4x4, … 512x512, 1024x1024, …
–  Also called mipmaps, each encoded as JPEG
–  Concatenated together into TAR file

•  Achieves good compression
•  Allows client to index into file, e.g. HTTP Range request
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Evaluation
•  Render efficiency
– How much does batching help?

•  File Size
– How does conditioning affect file size?

•  Perceptual Error
– How much does conditioning change how 

models look?
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Render Efficiency
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File Size – Base Mesh
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Perceptual Error
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•  Delta E < 1 not noticeable by average human
•  Delta E of 3-6 are commonly-used tolerances 

for commercial printing 
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Conditioning Contributions
•  Unsupervised
•  Apportioning texture space fairly
•  Efficient progressive encoding
•  A complete, robust conversion framework
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Questions?

open3dhub.com
sirikata.com


�

@jterrace
jterrace@cs.princeton.edu
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