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Abstract
Internet services run on multiple servers in different lo-
cations, serving clients that are often mobile and multi-
homed. This does not match well with today’s network
stack, designed for communication between fixed hosts
with topology-dependent addresses. As a result, on-
line service providers resort to clumsy and management-
intensive work-arounds—forfeiting the scalability of hi-
erarchical addressing to support virtual server migration,
directing all client traffic through dedicated load balancers,
restarting connections when hosts move, and so on.

In this paper, we revisit the design of the network stack
to meet the needs of online services. The centerpiece of
our Serval architecture is a new Service Access Layer
(SAL) that sits above an unmodified network layer, and
enables applications to communicate directly on service
names. The SAL provides a clean service-level con-
trol/data plane split, enabling policy, control, and in-stack
name-based routing that connects clients to services via
diverse discovery techniques. By tying active sockets
to the control plane, applications trigger updates to ser-
vice routing state upon invoking socket calls, ensuring
up-to-date service resolution. With Serval, end-points
can seamlessly change network addresses, migrate flows
across interfaces, or establish additional flows for effi-
cient and uninterrupted service access. Experiments with
our high-performance in-kernel prototype, and several
example applications, demonstrate the value of a unified
networking solution for online services.

1. Introduction
The Internet is increasingly a platform for accessing ser-
vices that run anywhere, from servers in the datacenter
and computers at home, to the mobile phone in one’s
pocket and a sensor in the field. An application can run on
multiple servers at different locations, and can launch at
or migrate to a new machine at any time. In addition, user
devices are often multi-homed (e.g., WiFi and 4G) and
mobile. In short, modern services operate under unprece-
dented multiplicity (in service replicas, host interfaces,
and network paths) and dynamism (due to replica failure
and recovery, service migration, and client mobility).

Yet, multiplicity and dynamism match poorly with to-
day’s host-centric TCP/IP-stack that binds connections
to fixed attachment points with topology-dependent ad-

dresses and conflates service, flow, and network identi-
fiers. This forces online services to rely on clumsy and
restrictive techniques that manipulate the network layer
and constrain how services are composed, managed, and
controlled. For example, today’s load balancers repurpose
IP addresses to refer to a group of (possibly changing)
service instances; unfortunately, this requires all client
traffic to traverse the load balancer. Techniques for hand-
ling mobility and migration are either limited to a single
layer-2 domain or introduce “triangle routing.” Hosts typ-
ically cannot spread a connection over multiple interfaces
or paths, and changing interfaces requires the initiation of
new connections. The list goes on and on.

To address these problems, we present the Serval archi-
tecture that runs on top of an unmodified network layer.
Serval provides a service-aware network stack, where ap-
plications communicate directly on service names instead
of addresses and ports. A service name corresponds to a
group of (possibly changing) processes offering the same
service. This elevates services to first-class network en-
tities (distinct from hosts or interfaces), and decouples
services from network and flow identifiers. Hence, ser-
vice names identify who one communicates with, flow
names identify what communication context to use, while
addresses tell where to direct the communication.

At the core of Serval is a new Service Access Layer
(SAL) that sits between the transport and network layers.
The SAL maps service names in packets to network ad-
dresses, based on rules in its service table (analogous to
how the network layer uses a forwarding table). Unlike
traditional “service layers,” which sit above the trans-
port layer, the SAL’s position below transport provides
a programmable service-level data plane that can adopt
diverse service discovery techniques. The SAL can be
programmed through a user-space control plane, acting
on service-level events triggered by active sockets (e.g.,
a service instance automatically registers on binding
a socket). This gives network programmers hooks for
ensuring service-resolution systems are up-to-date.

As such, Serval gives service providers more control
over service access, and clients more flexibility in resolv-
ing services. For instance, by forwarding the first packet
of a connection based on service name, the SAL can de-
fer binding a service until the packet reaches the part of
the network with fine-grain, up-to-date information. This



ensures more efficient load balancing and faster failover.
The rest of the traffic flows directly between end-points ac-
cording to network-layer forwarding. The SAL performs
signaling between end-points to establish additional flows
(over different interfaces or paths) and can migrate them
over time. In doing so, the SAL provides a transport-
agnostic solution for interface failover, host mobility, and
virtual-machine migration.

Although previous works consider some of the prob-
lems we address, none provides a comprehensive solution
for service access, control, dynamicity, and multiplicity.
HIP [21], DOA [30], LISP [8], LNA [5], HAIR [9] and
i3 [27] decouple a host’s identity from its location, but
do not provide service abstractions. DONA [15] provides
late binding but lacks a service-level data plane with sepa-
rate control. TCP Migrate [26] supports host mobility, and
MPTCP [10, 31] supports multiple paths, but both are tied
to TCP and are not service-aware. Existing “backwards
compatible” techniques (e.g., DNS redirection, IP anycast,
load balancers, VLANs, mobile IP, ARP spoofing, etc.)
are point solutions suffering from poor performance or
limited applicability. In contrast, Serval provides a coher-
ent solution for service-centric networking that a simple
composition of previous solutions cannot achieve.

In the next section, we rethink how the network stack
should support online services, and survey related work.
Then, in §3, we discuss the new abstractions offered
by Serval’s separation of names and roles in the net-
work stack. Next, §4 presents our main contribution—a
service-aware stack that provides a clean service-level
control/data plane split. Our design draws heavily on our
experiences building prototypes, as discussed in §5. Our
prototype, running in the Linux kernel, already supports
ten applications and offers throughput comparable to to-
day’s TCP/IP stack. In §6, we evaluate the performance of
Serval-supporting replicated web services and distributed
back-end storage services in datacenters. In §7, we dis-
cuss how Serval supports unmodified clients and servers
for incremental deployability. The paper concludes in §8.

2. Rethinking the Network Stack
Today’s stack overloads the meaning of addresses (to iden-
tify interfaces, demultiplex packets, and identify sockets)
and port numbers (to demultiplex packets, differentiate
service end-points, and identify application protocols).
In contrast, Serval cleanly separates the roles of the ser-
vice name (to identify a service), flow identifiers (to iden-
tify each flow associated with a socket), and network
addresses (to identify each host interface). Figure 1 illus-
trates this comparison. Serval introduces a new Service
Access Layer (SAL), above the network layer, that gives
a group-based service abstraction, and shields applica-
tions and transport protocols from the multiplicity and
dynamism inherent in today’s online services. In this sec-
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Figure 1: Identifiers and example operations on them
in the TCP/IP stack versus Serval.

tion, we discuss how today’s stack makes it difficult to
support online services, and review previous research on
fixing individual aspects of this problem, before briefly
summarizing how Serval addresses these issues.

2.1 Application Layer
TCP/IP: Today’s applications operate on two low-level
identifiers (IP address and TCP/UDP port) that only im-
plicitly name services. As such, clients must “early bind”
to these identifiers using out-of-band lookup mechanisms
(e.g., DNS) or a priori knowledge (e.g., Web is on port
80) before initiating communication, and servers must
rely on out-of-band mechanisms to register a new ser-
vice instance (e.g., a DNS update protocol). Applications
cache addresses instead of re-resolving service names,
leading to slow failover, clumsy load balancing, and con-
strained mobility. A connected socket is tied to a single
host interface with an address that cannot change during
the socket’s lifetime. Furthermore, a host cannot run mul-
tiple services with the same application-layer protocol,
without exposing alternate port numbers to users (e.g.,
“http://example.com:8080”) or burying names in applica-
tion headers (e.g., “Host: example.com” in HTTP).

Other work: Several prior works introduce new nam-
ing layers that replace IP addresses in applications with
persistent, global identifiers (e.g., host/end-point identi-
fiers [8, 21, 30], data/object names [15, 27], or service
identifiers [5]), in order to simplify the handling of repli-
cated services or mobile hosts. However, these proposals
retain ports in both the stack and the API, thus not fully
addressing identifier overloading. Although LNA [5],
i3 [27], and DONA [15] make strong arguments for new
name layers, the design of the network stack is left under-
specified. A number of libraries and high-level program-
ming languages also hide IP addresses from applications
through name-based network APIs, but these merely pro-
vide programming convenience through a “traditional”
application-level service layer. Such APIs do not solve
the fundamental problems with identifier overloading, nor
do they support late binding. Similarly, SoNS [25] can dy-
namically connect to services based on high-level service
descriptions, but otherwise does not change the stack.



Host identifiers (as used in [5, 8, 21, 30]) still “a pri-
ori” bind to specific machines, rather than “late bind” to
dynamic instances, as needed to efficiently handle churn.
These host identifiers can be cached in applications (much
like IP addresses), thus reducing the efficiency of load
balancers. Data names in DONA [15] can late bind to
hosts, but port numbers are still bound a priori. A position
paper by Day et al. [7] argues for networking as inter-
process communication, including late binding on names,
but understandably does not present a detailed solution.

In Serval, applications communicate over active
sockets using service names. Serval’s serviceIDs offer a
group abstraction that eschews host identifiers (with Ser-
val, a host instead becomes a singleton group), enabling
late binding to a service instance. Unlike application-
level service layers [5], the SAL’s position below the
transport layer allows the address of a service instance to
be resolved as part of connection establishment: the first
packet is anycast-forwarded based on its serviceID. This
further obviates the need for NAT-based load balancers
that also touch the subsequent data packets. Applica-
tions automatically register with load balancers or wide-
area resolution systems when they invoke active sockets,
which tie application-level operations (e.g., bind and
connect) directly to Serval’s control plane. Yet, Ser-
val’s socket API resembles existing name-based APIs that
have proven popular with programmers; such a familiar
abstraction makes porting existing applications easier.

2.2 Transport Layer
TCP/IP: Today’s stack uses a five-tuple 〈remote IP, re-
mote port, local IP, local port, protocol〉 to demultiplex an
incoming packet to a socket. As a result, the interface ad-
dresses cannot change without disrupting ongoing connec-
tions; this is a well-known source of the TCP/IP stack’s
inability to support mobility without resorting to overlay
indirection schemes [22, 32]. Further, today’s transport
layer does not support reuse of functionality [11], leading
to significant duplication across different protocols. In
particular, retrofitting support for migration [26] or mul-
tiple paths [31] remains a challenge that each transport
protocol must undertake on its own.

Other work: Proposals like HIP [21], LNA [5],
LISP [8] and DONA [15] replace addresses in the five-
tuple with host or data identifiers. However, these pro-
posals do not make any changes to the transport layer to
enable reuse of functionality. TCP Migrate [26] retrofits
migration support into TCP by allowing addresses in the
five-tuple to change dynamically, but does not support
other transport protocols. MPTCP [11, 31] extends TCP
to split traffic over multiple paths, but cannot migrate
the resulting flows to different addresses or interfaces.
Similarly, SCTP [20] provides failover to a secondary
interface, but the multi-homing support is specific to its

reliable message protocol. Other recent work [11] makes
a compelling case for refactoring the transport layer for
a better separation of concerns (and reusable functional-
ity), but the design does not support end-point mobility
or service-centric abstractions.

In Serval, transport protocols deal only with data
delivery across one or more flows, including retrans-
mission and congestion control. Because the transport
layer does not demultiplex packets, network addresses
can change freely. Instead, the SAL demultiplexes pack-
ets based on ephemeral flow identifiers (flowIDs), which
uniquely identify each flow locally on a host. By relegat-
ing the control of flows (e.g., flow creation and migration)
to the SAL, Serval allows reuse of this functionality across
different transport protocols.

2.3 Network Layer
TCP/IP: Today’s network layer uses hierarchical IP ad-
dressing to efficiently deliver packets. However, the hi-
erarchical scalability of the network layer is challenged
by the need for end-host mobility in a stack where upper-
layer protocols fail when addresses change.

Other work: Recently, researchers and standards bod-
ies have investigated scalable ways to support mobility
while keeping network addresses fixed. This has led to
numerous proposals for scalable flat addressing in enter-
prise and datacenter networks [2, 13, 14, 18, 19, 23]. The
proposed scaling techniques, while promising, come at
a cost, such as control-plane overhead to disseminate ad-
dresses [2, 23], large directory services (to map interface
addresses to network attachment points) [13, 14], redirec-
tion of some data traffic over longer paths [14], network
address translation to enable address aggregation [19], or
continued use of spanning trees [18].

In Serval, the network layer simply delivers pack-
ets between end-points based on hierarchical, location-
dependent addresses, just as the original design of IP
envisioned. By handling flow mobility and migration
above the network layer (i.e., in the SAL), Serval allows
addresses to change dynamically as hosts move.

3. Serval Abstractions
In this section, we discuss how communication on ser-
vice names raises the level of abstraction in the network
stack, and reduces the overloading of identifiers within
and across layers.

3.1 Group-Based Service Naming
A Serval service name, called a serviceID, corresponds
to a group of one or more (possibly changing) processes
offering the same service. ServiceIDs are carried in net-
work packets, as illustrated in Figure 2. This allows for
service-level routing and forwarding, enables late binding,
and reduces the need for deep-packet inspection in load



balancers and other middleboxes. A service instance lis-
tens on a serviceID for accepting incoming connections,
without exposing addresses and ports to applications. This
efficiently solves issues of mobility and virtual hosting.
We now discuss how serviceIDs offer considerable flexi-
bility and extensibility in service naming.

Service granularity: Service names do not dictate the
granularity of service offered by the named group of pro-
cesses. A serviceID could name a single SSH daemon, a
cluster of printers on a LAN, a set of peers distributing a
common file, a replicated partition in a back-end storage
system, or an entire distributed web service. This group
abstraction hides the service granularity from clients and
gives service providers control over server selection. Indi-
vidual instances of a service group that must be referenced
directly should use a distinct serviceID (e.g., a sensor in
a particular location, or the leader of a Paxos consensus
group). This allows Serval to forgo host identifiers en-
tirely, avoiding an additional name space while still mak-
ing it possible to pass references to third parties. Service
instances also can be assigned multiple identifiers (as in
the Memcached example of §6.2, which uses hierarchical
naming for partitioning with automatic failover).

Format of serviceIDs: Ultimately, system designers
and operators decide what functionality to name and what
structure to encode into service names. For the federated
Internet, however, we imagine the need for a congruent
naming scheme. For flexibility, we suggest defining a
large 256-bit serviceID namespace, although other forms
are possible (e.g., reusing the IPv6 format could allow
reuse of its existing socket API). A large serviceID name-
space is attractive because a central issuing authority (e.g.,
IANA) could allocate blocks of serviceIDs to different ad-
ministrative entities, for scalable and authoritative service
resolution. The block allocation ensures that a service
provider can be identified by a serviceID prefix, allowing
aggregation and control over service resolution. The pre-
fix is followed by a number of bits that the delegatee can
further subdivide to build service-resolution hierarchies
or provide security features.

Although we advocate hierarchical service resolution
for the public Internet, some services or peer-to-peer ap-
plications may use alternative, flat resolution schemes,
such as those based on distributed hash tables (DHTs). In
such cases, serviceIDs can be automatically constructed
by combining an application-specific prefix with the hash
of an application-level service (or content) name. The
prefix can be omitted if the alternative resolution scheme
does not coexist with other resolution schemes.

Securing communication and registration: For se-
curity, a serviceID could optionally end with a large
(e.g., 160-bit) self-certifying bitstring [16] that is a cryp-
tographic hash of a service’s public key and the serviceID
prefix. Operating below the application layer (unlike
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Figure 2: New Serval identifiers visible in packets, be-
tween the network and transport headers. Some addi-
tional header fields (e.g., checksum, length, etc.) are
omitted for readability.

the Web’s use of SSL and certificate authorities), self-
certifying serviceIDs could help move the Internet to-
wards ubiquitous security, providing a basis for pervasive
encrypted and authenticated connections between clients
and servers. Self-certifying identifiers obviate the need
for a single public-key infrastructure, and they turn the au-
thentication problem into a secure bootstrapping one (i.e.,
whether the serviceID was learned via a trusted channel).

Services may also seek to secure the control path that
governs dynamic service registration, as otherwise an
unauthorized entity could register itself as hosting the
service. Even if peers authenticate one another during
connection establishment, faulty registrations could serve
as a denial-of-service attack. To prevent this form of
attack, the registering end-point should prove that it is
authorized to host the serviceID.

Serval does not dictate how serviceIDs are registered,
however. For example, inside a datacenter or enterprise
network, service operators may choose to secure registra-
tion through network isolation of the control channel, as
opposed to cryptographic security.

When advertising service prefixes for scalable wide-
area service resolution, self-certification alone is not
enough to secure the advertisements. A self-certifying
serviceID does not demonstrate that the originator of an
advertisement is allowed to advertise a specific prefix, or
that the service-level path is authorized by each interme-
diate hop. Such advertisements need to be secured via
other means, e.g., in a way similar to BGPSEC [1].

Learning service names: Serval does not dictate how
serviceIDs are learned. We envision that serviceIDs are
sent or copied between applications, much like URIs. We
purposefully do not specify how to map human-readable
names to serviceIDs, to avoid the legal tussle over nam-
ing [6, 29]. Users may, based on their own trust rela-
tionships, turn to directory services (e.g., DNS), search
engines, or social networks to resolve higher-level or
human-readable names to serviceIDs, and services may
advertise their serviceIDs via many such avenues.

3.2 Explicit Host-Local Flow Naming
Serval provides explicit host-local flow naming through
flowIDs that are assigned and exchanged during connec-
tion setup. This allows the SAL to directly demultiplex
established flows based on the destination flowID in pack-



ets, as opposed to the traditional five-tuple. Figure 2
shows the location of flowIDs in the SAL header.

Network-layer oblivious: By forgoing the traditional
five-tuple, Serval can identify flows without knowing the
network-layer addressing scheme. This allows Serval to
transparently support both IPv4 and IPv6, without the
need to expose alternative APIs for each address family.

Mobility and multiple paths: FlowIDs help identify
flows across a variety of dynamic events. Such events
include flows being directed to alternate interfaces or the
change of an interface’s address (even from IPv4 to IPv6,
or vice versa), which may occur to either flow end-point.
Serval can also associate multiple flows with each socket
in order to stripe connections across multiple paths.

Middleboxes and NAT: FlowIDs help when interact-
ing with middleboxes. For instance, a Serval-aware
network-address translator (NAT) rewrites the local
sender’s network address and flowID. But because the re-
mote destination identifies a flow solely based on its own
flowID, the Serval sender can migrate between NAT’d
networks (or vice versa), and the destination host can still
correctly demultiplex packets.

No transport port numbers: Unlike port numbers,
flowIDs do not encode the application protocol; instead,
application protocols are optionally specified in trans-
port headers. This identifier particularly aids third-party
networks and service-oblivious middleboxes, such as di-
recting HTTP traffic to transparent web caches unfamiliar
with the serviceID, while avoiding on-path deep-packet
inspection. Application end-points are free to elide or
misrepresent this identifier, however.

Format and security: By randomizing flowIDs, a host
could potentially protect against off-path attacks that try
to hijack or disrupt connections. However, this requires
long flowIDs (e.g., 64 bits) for sufficient security, which
would inflate the overhead of the SAL header. Therefore,
we propose short (32-bit) flowIDs supplemented by long
nonces that are exchanged only during connection setup
and migrations (§4.4).

4. The Serval Network Stack
We now introduce the Serval network stack, shown in Fig-
ure 3. The stack offers a clean service-level control/data
plane split: the user-space service controller can manage
service resolution based on policies, listen for service-
related events, monitor service performance, and commu-
nicate with other controllers; the Service Access Layer
(SAL) provides a service-level data plane responsible for
connecting to services through forwarding over service
tables. Once connected, the SAL maps the new flow to its
socket in the flow table, ensuring incoming packets can
be demultiplexed. Using in-band signaling, additional
flows can be added to a connection and connectivity can
be maintained across physical mobility and virtual mi-
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Figure 3: Serval network stack with service-level con-
trol/data plane split.

grations. Applications interact with the stack via active
sockets that tie socket calls (e.g., bind and connect) di-
rectly to service-related events in the stack. These events
cause updates to data-plane state and are also passed up
to the control plane (which subsequently may use them to
update resolution and registration systems).

In the rest of this section, we first describe how applica-
tions interact with the stack through active sockets (§4.1),
and then continue with detailing the SAL (§4.2) and how
its associated control plane enables extensible service dis-
covery (§4.3). We end the section with describing the
SAL’s in-band signaling protocols (§4.4).

4.1 Active Sockets
By communicating directly on serviceIDs, Serval in-
creases the visibility into (and control over) services in
the end-host stack. Through active sockets, stack events
that influence service availability can be tied to a control
framework that reconfigures the forwarding state, while
retaining a familiar application interface.

Active sockets retain the standard BSD socket inter-
face, and simply define a new sockaddr address family,
as shown in Table 1. More importantly, Serval gener-
ates service-related events when applications invoke API
calls. A serviceID is automatically registered on a call to
bind, and unregistered on close, process termination,
or timeout. Although such hooks could be added to to-
day’s network stack, they would make little sense because
the stack cannot distinguish one service from another. Be-
cause servers can bind on serviceID prefixes, they need
not listen on multiple sockets when they provide multi-
ple services or serve content items named from a common
prefix. While a new address family does require minimal
changes to applications, porting applications is straight-
forward (§5.3), and a transport-level Serval translator can
support unmodified applications (§7).

On a local service registration event, the stack up-
dates the local service table and notifies the service con-



PF INET PF SERVAL

s = socket(PF INET) s = socket(PF SERVAL)
bind(s,locIP:port) bind(s,locSrvID)

// Datagram: // Unconnected datagram:
sendto(s,IP:port,data) sendto(s,srvID,data)

// Stream: // Connection:
connect(s,IP:port) connect(s,srvID)
accept(s,&IP:port) accept(s,&srvID)
send(s,data) send(s,data)

Table 1: Comparison of BSD socket protocol families:
INET sockets (e.g., TCP/IP) use both IP address and
port number, while Serval simply uses a serviceID.

troller, which may, in turn, notify upstream service con-
trollers. Similarly, a local unregistration event triggers
the removal of local rules and notification of the service
controller. This eliminates the need for manual updates
to name-resolution systems or load balancers, enabling
faster failover. On the client, resolving a serviceID to
network addresses is delegated to the SAL—applications
just call the socket interface using serviceIDs and never
see network addresses. This allows the stack to “late
bind” to an address on a connect or sendto call, en-
suring resolution is based on up-to-date information about
the instances providing the service. By hiding addresses
from applications, the stack can freely change addresses
when either end-point moves, without disrupting ongoing
connectivity.

4.2 A Service-Level Data Plane
The SAL is responsible for late binding connections to
services and maintaining them across changes in network
addresses. Packets enter the SAL via the network layer,
or as part of traffic generated by an application. The first
packet of a new connection (or an unconnected datagram)
includes a serviceID, as shown in the header in Figure 2.
The stack performs longest prefix matching (LPM) on the
serviceID to select a rule from the service table. Serv-
iceID prefixes allow an online service provider to host
multiple services (each with its own serviceID) with more
scalable service discovery, or even use a prefix to repre-
sent different parts of the same service (e.g., as in our
Memcached application in §6.2). More generally, the
use of prefixes reduces the state and frequency of service
routing updates towards the core of the network.

Each service table rule has one of the following four
types of actions currently defined for Serval:

FORWARD rules include an associated set of one or
more IP addresses (both unicast and broadcast); our imple-
mentation includes a flag that either selects all addresses
or uses weighted sampling to select one of the addresses.
For each selected destination, the stack passes a packet
to the network layer for delivery. The FORWARD rule is
used both by the source (to forward a packet to a next SAL
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Figure 4: Serval forwarding between two end-points
through an intermediate service router (SR).

hop) and by on-path devices (that forward, or resolve, a
packet on behalf of another host). Such an on-path for-
warder effectively becomes a service router (SR); this
service forwarding functionality may be implemented
efficiently in either software or hardware.

DEMUX rules are used by recipients to deliver a re-
ceived packet to a local socket, when an application is
listening on the serviceID. An active socket’s bind event
adds a new DEMUX rule mapping the serviceID (or pre-
fix) to the socket. Similarly, a close event triggers the
removal of the DEMUX rule.

DELAY rules cause the stack to queue the packet and
notify the service controller of the serviceID. While the
controller can respond to this notification in a variety of
ways, a common use would be for delayed resolution, e.g.,
allowing a rule to be installed “on-demand” (§4.3).

DROP rules simply discard unwanted packets. This
might be necessary to avoid matching on a default rule.

Events at the service controller, or interface up/down
events, trigger changes in FORWARD, DELAY, or DROP
rules. A “default” FORWARD rule, which matches any
serviceID, is automatically installed when an interface
comes up on a host (and removed when it goes down),
pointing to the interface’s broadcast address. This rule
can be used for “ad hoc” service communication on the
local segment or for bootstrapping into a wider resolution
network (e.g., by finding a local SR).

Figure 4 shows the use of the service table during con-
nection establishment or connection-less datagram com-
munication. A client application initiates communication
on serviceID X, which is matched in the client’s service
table to a next-hop destination address. The address could
be a local broadcast address (for ad hoc communication)
or a unicast address (either the final destination or the
next-hop SR, as illustrated). Upon receiving a packet, the
SR looks up the serviceID in its own service table; given a
FORWARD rule, it readdresses the packet to the selected
address. At the ultimate destination, a DEMUX rule de-
livers the packet to the socket of the listening application.

Service-level anycast forwarding: Figure 5 shows a
more elaborate connection establishment example that il-
lustrates the SAL’s indirection support, allowing efficient,
late-binding, and stateless load balancing, touching only
the first packet of a connection. In the example, one client



IP 

SAL 

b X 
a 1 SRC 

DST 

a b 
c 

d 

e 

f 

g 

e X 
a 1 

X 

X * e 
X f,g 
* b 

SYN 

g X 
a 1 

SYN 

Transp. 

a 1 
g 2 

sX 

2  3  4 

5 

SYN 

1 

X sX 

* e 

App 

* b 

SRC 
DST 

Figure 5: Establishing a Serval connection by for-
warding the SYN in the SAL based on its serviceID.
Client a seeks to communicate with service X on hosts
f and g; devices b and e act as service routers. The
default rule in service tables is shown by an “*”.

again aims to access a service X, now available at two
servers. The figure also shows service tables (present in
end-points and intermediate SRs), and the SAL and net-
work headers of the first two packets of a new connection.

When client a attempts to connect to service X, the
client’s SAL assigns a local flowID and random nonce
to the socket, and then adds an entry in its flow table.
A SYN packet is generated with the serviceID from the
connect call, along with the new flowID and nonce.
The nonce protects future SAL signaling against off-path
attacks. The SAL then looks up the requested serviceID
in its service table, but with no local listening service
(DEMUX rule) or known destination for X, the request is
sent to the IP address b of the default FORWARD rule (as
shown by the figure’s Step 1).

Finding no more specific matches, SR b again matches
on its default FORWARD rule, and directs the packet to
the next hop SR e (Step 2) by rewriting the IP destina-
tion in the packet.1 This forwarding continues recursively
through e (Step 3), until reaching a listening service end-
point sx on host g (Step 4), which then creates a respond-
ing socket with a new flowID, also updating its flow table.
End-host g’s SYN-ACK response (Step 5) includes its
own address, flowID, and nonce. The SYN-ACK and
all subsequent traffic in both directions travel directly be-
tween the end-points, bypassing SRs b and e. After the
first packet, all remaining packets can be demultiplexed
by the flow table based on destination flowIDs, without
requiring the SAL extension header.

The indirection of the SYN may increase its delay,
although data packets are unaffected. In comparison,
the lack of indirection support in today’s stack requires
putting load balancers on data paths, or tunneling all pack-
ets from the one location to another when hosts move.

1The SR also may rewrite the source IP (saving the original
in a SAL extension header) to comply with ingress filtering.

4.3 A Service Control Plane for Extensible
Service Discovery

To handle a wide range of services and deployment scenar-
ios, Serval supports diverse ways to register and resolve
services. The service-level control/data plane split is cen-
tral to this ability; the controller disseminates serviceID
prefixes to build service resolution networks, while the
SAL applies rules to packets, sending them onward—if
necessary, through service routers deeper in the network—
to a remote service instance. The SAL does not control
which forwarding rules are in the service table, when they
are installed, or how they propagate to other hosts. Instead,
the local service controller (i) manages the state in the
service table and (ii) potentially propagates it to other ser-
vice controllers. Depending on which rules the controller
installs, when it installs them (reactively or proactively),
and what technique it uses to propagate them, Serval can
support different deployment scenarios.

Wide-area service routing and resolution. Service
prefix dissemination can be performed similarly to ex-
isting inter/intra-domain routing protocols (much like
LISP-ALT uses BGP [12]). A server’s controller can
“announce” a new service instance to an upstream service
controller that, in turn, disseminates reachability infor-
mation to a larger network of controllers. This approach
enables enterprise-level or even wide-area service resolu-
tion. Correspondingly, serviceIDs can be aggregated by
administrative entities for scalability and resolution con-
trol. For example, a large organization like Google could
announce coarse-grained prefixes for top-level services
like Search, Gmail, or Documents, and only further refine
its service naming within its backbone and datacenters.
This prefix allocation gives organizations control over
their authoritative service resolvers, reduces resolution
stretch, and minimizes churn. On the client, the service ta-
ble would have FORWARD rules to direct a SYN packet
to its local service router, which in turn directs the request
up the service router hierarchy to reach a service instance.

Peer-to-peer service resolution: As mentioned in
§3.1, peer-to-peer applications may resolve through alter-
native resolution networks, such as DHT-based ones. In
such cases, a hash-based serviceID is forwarded through
service tables, ultimately registering or resolving with
a node responsible for the serviceID. This DHT-based
resolution can coexist with an IANA-controlled resolu-
tion hierarchy, however, as both simply map to different
rules in the same service table. Yet, DHTs generally limit
control over service routers’ serviceID responsibilities
and increase routing stretch, so are less appropriate as the
primary resolution mechanism for the federated Internet.

Ad hoc service access: Without infrastructure, Serval
can perform service discovery via broadcast flooding. Us-
ing a “default” rule, the stack broadcasts a service request



(SYN) and awaits a response from (at least) one service
instance. Any listening instances on the local segment
may respond, and the client can select one from the re-
sponses (typically the first). On the server side, on a local
registration event, the controller can either (i) be satisfied
with the DEMUX rule installed locally (which causes
the SAL to listen for future requests) or (ii) flood the new
mapping to other controllers (causing them to install FOR-
WARD rules and thus prepopulate the service tables of
prospective clients). Similarly, on an unregistration event,
(i) the local DEMUX rule is deleted and (ii) the controller
can flood a message to instruct others to delete their spe-
cific FORWARD mapping. Ad hoc mode can operate
without a name-resolution infrastructure (at the cost of
flooding), and can also be used for bootstrapping (i.e., to
discover a service router). It also extends to multihop ad
hoc routing protocols, such as OLSR or DYMO; flooding
a request/solicitation for a (well-known) serviceID makes
more sense than using an address, since ad hoc nodes
typically do not know the address of a service.

Lookup with name-resolution servers: A controller
can also install service table rules “on demand” by lever-
aging directory services. A controller installs a DELAY
rule (either a default “catch-all” rule or one covering a cer-
tain prefix), and matching packets are buffered while the
controller resolves their serviceIDs. This design allows
the controller to adopt different query/response protocols
for resolution, including legacy DNS. A returned map-
ping is installed as a FORWARD rule and the controller
signals the stack to re-match the delayed packets. The
resolution can similarly be performed by an in-network
lookup server; the client’s service table may FORWARD
the SYN to the lookup server, which itself DELAYs, re-
solves, and subsequently FORWARDs the packet towards
the service destination. Upon registration or unregistra-
tion events, a service controller sends update messages to
the lookup system, similar to dynamic DNS updates [28].

In addition to these high-level approaches, various hy-
brid solutions are possible. For instance, a host could
broadcast to reach a local service router, which may hi-
erarchically route to a network egress, which in turn can
perform a lookup to identify a remote datacenter service
router. This authoritative service router can then direct
the SYN packet to a particular service instance or sub-
network. These mechanisms can coexist simultaneously—
much like the flexibility afforded by today’s inter- and
intra-domain routing protocols—they simply are different
service rules that are installed when (and where) appro-
priate for a given scenario.

4.4 End-Host Signaling for Multiple Flows
and Migration

To support multiplicity and dynamism, the SAL can es-
tablish multiple flows (over different interfaces or paths)
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Figure 6: Schematic showing relationship between
sockets, flowIDs, interfaces, addresses, and paths.

to a remote end-point, and seamlessly migrate flows
over time. The SAL’s signaling protocols are similar
to MPTCP [10, 31] and TCP Migrate [26], with some
high-level differences. First, control messages (e.g., for
creating and tearing down flows) are separate from the
data stream with their own sequence numbers. Second,
by managing flows in a separate layer, Serval can support
transport protocols other than TCP. Third, our solution
supports both multiple flows and migration.

Multi-homing and multi-pathing: Serval can split a
socket’s data stream across multiple flows established
and maintained by the SAL on different paths. Consider
the example in Figure 6, where two multi-homed hosts
have a socket that consists of two flows. The first flow,
created when the client C first connects to the server S ,
uses local interface a1 and flowID fC1 (and interface a3
and flowID fS 1 on S ). On any packet, either host can
piggyback a list of other available interfaces (e.g., a2 for
C, and a4 for S ) in a SAL extension header, to enable
the other host to create additional flows using a similar
three-way handshake. For example, if S ’s SYN-ACK
packet piggybacks information about interface address
a4, C could initiate a second flow from a2 to a4.

Connection affinity across migration: Since the
transport layer is unaware of flow identifiers and inter-
face addresses, the SAL can freely migrate a flow from
one address, interface, or path to another. This allows
Serval to support client mobility, interface failover, and
virtual machine migration with a single simple flow-
resynchronization primitive. Obviously, these changes
would affect the round-trip time and available bandwidth
between the two end-points, which, in turn, affect conges-
tion control. Yet, this is no different to TCP than any other
sudden change in path properties. Further, the SAL can
notify transport protocols on migration events to ensure
quick recovery, e.g., by temporarily freezing timers.

Returning to Figure 6, suppose the interface with ad-
dress a3 at server S fails. Then, then server’s stack can
move the ongoing flow to another interface (e.g., the in-
terface with address a4). To migrate the flow, S sends
C an RSYN packet (for “resynchronize”) with flowIDs
〈 fS 1, fC1〉 and the new address a4. The client returns an
RSYN-ACK, while waiting for a final acknowledgment
to confirm the change. Sequence numbers in the resyn-
chronization messages ensure that the remote end-points
track changes in the identifiers correctly across multiple



changes, even if RSYN and RSYN-ACK messages arrive
out of order. To ensure correctness, we formally veri-
fied our resynchronization protocol using the Promela
language and SPIN verification tool [4].

In the rare case that both end-points move at the same
time, neither end-point would receive the other’s RSYN
packet. To handle simultaneous migration, we envision di-
recting an RSYN through a mobile end-point’s old service
router to reestablish communication. Similar to Mobile
IP [22], the service router acts as a “home agent,” but only
temporarily to ensure successful resynchronization.

The signaling protocol has good security and
backwards-compatibility properties. Random flow nonces
protect against off-path attacks that try to hijack or disrupt
connections. Off-path attackers would have to brute-force
guess these nonces, which is impractical. This solution
does not mitigate on-path attacks, but this is no less secure
than existing, non-cryptographic protocols. The signaling
protocol can also operate correctly behind NATs. Much
like legacy NATs can translate ports, a Serval NAT trans-
lates both flowIDs and addresses. Optional UDP encapsu-
lation also ensures operation behind legacy NATs.

5. Serval Prototype
An architecture like Serval would be incomplete with-
out implementation insights. Our prototyping effort was
instrumental in refining the design, leading to numer-
ous revisions as our implementation matured. Through
prototyping, we have (i) learned valuable lessons about
our design, its performance, and scalability, (ii) explored
incremental-deployment strategies, and (iii) ported appli-
cations to study how Serval abstractions benefit them. In
this section, we describe our Serval prototype and expand
on these three aspects.

5.1 Lessons From the Serval Prototype
Our Serval stack consists of about 28,000 lines of C code,
excluding support libraries, test applications, and dae-
mons. The stack runs natively in the Linux kernel as a
module, which can be loaded into an unmodified and run-
ning kernel. The module also runs on Android, enabling
mobile devices to migrate connections between WiFi and
cellular interfaces. An abstraction layer allows the stack
to optionally run as a user-space daemon on top of raw IP
sockets. This allows the stack to run on other platforms
(such as BSD) and to be deployed on testbeds (like Plan-
etLab) that do not allow kernel modules. The user-mode
capability of the stack also helps with debugging.

The prototype supports most features—migration, SAL
forwarding, etc.—with the notable exception of multi-
path, which we plan to add in the future. The SAL imple-
ments the service table (with FORWARD and DEMUX
rules), service resolution, and end-point signaling. The
service controller interacts with the stack via a Netlink

socket, installing service table rules and reacting on socket
calls (bind, connect, etc.). The stack supports TCP
and UDP equivalents, where UDP can operate in both
connected mode (with service instance affinity) and un-
connected mode (with every packet routed through the
service table).

Interestingly, our initial design did not have a full SAL
and service table, and instead implemented much of the
service controller functionality directly in the stack (e.g.,
sending (un)registration messages). The stack forwarded
the first packet of each connection to a “default” service
router (like a default gateway). However, this design led
to two distinct entities with different functionality: the
end-host and the service router, leaving end-hosts with
little control and flexibility. For example, hosts could not
communicate “ad hoc” on the same segment without a ser-
vice router, and could not adopt other service-discovery
techniques. The service router, which implemented most
of its functionality in user space, also had obvious perfor-
mance issues—especially when dealing with unconnected
datagrams that all pass through the service router. This
made us realize the need for a clean service-level con-
trol/data plane split that could cater to both end-hosts and
routers. In fact, including the SAL, service table, and
control interface in our design allowed us to unify the
implementations of service routers and end-hosts, with
only the policy defining their distinct roles.

The presence of a service table also simplified the hand-
ling of “listening” sockets, as it eventually evolved into a
general rule-matching table, which allows demultiplexing
to sockets as well as forwarding. The ability to demulti-
plex packets to sockets using LPM enables new types of
services (e.g., ones that serve content sharing one prefix).

The introduction of the SAL inevitably had implica-
tions for the transport layer, as a goal was to be able to late
bind connections to services. Although we could have
modified each transport protocol separately, providing a
standard solution in the SAL made more sense. Further,
since today’s transport protocols need to read network-
layer addresses for demultiplexing purposes, changes are
necessary to fully support migration and mobility. An-
other limitation of today’s transport layer is the limited
signaling they allow. TCP extensions (e.g., MPTCP and
TCP Migrate) typically implement their signaling proto-
cols in TCP options for compatibility reasons. However,
these options are protocol specific, can only be piggy-
backed on packets in the data stream, and cannot consume
sequence space themselves. Options are also unreliable,
since they can be stripped or packets resegmented by mid-
dleboxes. To side-step these difficulties, the SAL uses its
own sequence numbers for control messages.

We were presented with two approaches for rewiring
the stack: using UDP as a base for the SAL (as advocated
in [11]), or using our own “layer-3.5” protocol headers.



TCP Mean Stdev UDP Tput Pkts Loss

Stack Mbit/s Mbit/s Router Mbit/s Kpkt/s Loss %

TCP/IP 934.5 2.6 IP Forwarding 957 388.4 0.79
Serval 933.8 0.03 Serval 872 142.8 0.40
Translator 932.1 1.5

Table 2: TCP throughput of the native TCP/IP
stack, the Serval stack, and the two stacks connected
through a translator. UDP routing throughput of na-
tive IP forwarding and the Serval stack.

The former approach would make our changes more trans-
parent to middleboxes and allow reuse of an established
header format (e.g., port fields would hold flowIDs). How-
ever, this solution requires “tricks” to be able to demul-
tiplex both legacy UDP packets and SAL packets when
both look the same. Defining our own SAL headers there-
fore presented us with a cleaner approach, with optional
UDP encapsulation for traversing legacy NATs and other
middleboxes. Recording addresses in a SAL extension
headers also helps comply with ingress filtering (§7).

In Serval, the transport layer does not perform con-
nection establishment, management, and demultiplexing.
Despite this seemingly radical change, we could adapt
the Linux TCP code with few changes. Serval only uses
the TCP functionality that corresponds to the ESTAB-
LISHED state, which fortunately is mostly independent
from the connection handling. In the Serval stack, pack-
ets in an established data stream are simply passed up
from the SAL to a largely unmodified transport layer. If
anything, transport protocols are less complex in Serval,
by having shared connection logic in the SAL. Our stack
coexists with the standard TCP/IP stack, which can be
accessed simultaneously via PF INET sockets.

5.2 Performance Microbenchmarks
The first part of Table 2 compares the TCP performance
of our Serval prototype to the regular Linux TCP/IP stack.
The numbers reflect the average of ten 10-second TCP
transfers using iperf between two nodes, each with two
2.4 GHz Intel E5620 quad-core CPUs and GigE interfaces,
running Ubuntu 11.04. Serval TCP is very close to regular
TCP performance and the difference is likely explained
by our implementation’s lack of some optimizations. For
instance, we do not support hardware checksumming and
segmentation offloading due to the new SAL headers.
Furthermore, we omitted several features, such as SACK,
FACK, DSACK, and timestamps, to simplify the porting
of TCP. We plan to add these features in the future. We
speculate that the lack of optimizations may also explain
Serval’s lower stdev, since the system does not drive the
link to very high utilization, where even modest variations
in cross traffic would lead to packet loss and delay. The
table also includes numbers for our translator (§7), which
allows legacy hosts to communicate with Serval hosts.
The translator (in this case running on a third intermediate

Application Vers. Codebase Changes

Iperf 2.0.0 5,934 240
TFTP 5.0 3,452 90

PowerDNS 2.9.17 36,225 160
Wget 1.12 87,164 207

Elinks browser 0.11.7 115,224 234
Firefox browser 3.6.9 4,615,324 70

Mongoose webserver 2.10 8,831 425
Memcached server 1.4.5 8,329 159
Memcached client 0.40 12,503 184

Apache Bench / APR 1.4.2 55,609 244

Table 3: Applications currently ported to Serval.

host) uses Linux’s splice system call to zero-copy data
between a legacy TCP socket and a Serval TCP socket,
achieving high performance. As such, the overhead of
translation is minimal.

The second part of Table 2 depicts the relative perfor-
mance of a Serval service router versus native IP forward-
ing. Here, two hosts run iperf in unconnected UDP
mode, with all packets forwarded over an intermediate
host through either the SAL or just plain IP. Throughput
was measured using full MSS packets, while packet rate
was tested with 48-byte payloads (equating to a Serval
SYN header) to represent resolution throughput. Serval
achieves decent throughput (91% of IP), but suffers sig-
nificant degradation in its packet rate due to the overhead
of its service table lookups. Our current implementation
uses a bitwise trie structure for LPM. With further opti-
mizations, like a full level-compressed trie and caching
(or even TCAMs in dedicated service routers), we expect
to bridge the performance gap considerably.

5.3 Application Portability
We have added Serval support to a range of network ap-
plications to demonstrate the ease of adoption. Mod-
ifications typically involve adding support for a new
sockaddr sv socket address to be passed to BSD
socket calls. Most applications already have abstractions
for multiple address types (e.g., IPv4/v6), which makes
adding another one straightforward.

Table 3 overviews the applications we have ported and
the lines of code changed. Running the stack in user-space
mode necessitates renaming API functions (e.g., bind
becomes bind sv). Therefore, our modifications are
larger than strictly necessary for kernel-only operation. In
our experience, adding Serval support typically takes a
few hours to a day, depending on application complexity.

6. Experimental Case Studies
To demonstrate how Serval enables diverse services, we
built several example systems that illustrate its use in man-
aging a large, multi-tier web service. A typical configura-
tion of such a service places customer-facing webservers—
all offering identical functionality—in a datacenter. Using



Serval, clients would identify the entire web service by a
single serviceID (instead of a single IP address per site or
load balancer, for example).

The front-end servers typically store durable customer
state in a partitioned back-end distributed storage system.
Each partition handles only a subset of the data, and the
webservers find the appropriate storage server using a
static and manually configured mapping (as in the Mem-
cached system [17]). Using Serval, this mapping can
be made dynamic, and partitions redistributed as storage
servers are added, removed, or fail.

Other forms of load balancing can also achieve higher
performance or resource utilization. Today’s commodity
servers typically have 2–4 network interfaces; balancing
traffic across interfaces can lead to higher server through-
put and lower path-level congestion in the datacenter net-
work. Yet, connections are traditionally fixed to an inter-
face once established; using Serval, this mapping can be
made dynamic and driven either by local measurements
or externally by a centralized controller [3].

In a cloud setting, webservers may run in virtual ma-
chines that can be migrated between hosts to distribute
load. This is particularly attractive to “public” cloud
providers, such as Amazon (EC2) or Rackspace (Mosso),
which do not have visibility into or control over service
internals. Traditionally, however, VMs can be migrated
only within a layer-2 subnet, of which large datacenters
have many, since network connections are bound to fixed
IP addresses and migration relies on ARP tricks.

The section is organized around example systems we
built for each of these tasks: a replicated front-end web
service that provides dynamic load balancing between
servers (§6.1), a back-end storage system that uses par-
titioning for scalability (§6.2), and servers that migrate
individual connections between interfaces or entire virtual
machines, to achieve higher utilization (§6.3).

6.1 Replicated Web Services
To demonstrate Serval’s use for dynamic service scaling
through anycast service resolution, we ran an experiment
representative of a front-end web cluster. Four clients
running the Apache benchmark generate requests to a
Serval web service with an evolving set of Mongoose
service instances. For load balancing, a single service
router receives service updates and resolves requests. As
in §5.2, all hosts are connected to the same ToR switch
via GigE links. To illustrate the load-balancing effect on
throughput and request rate, each client requests a 3MB
file and maintains an open window of 20 HTTP requests,
which is enough demand to fully saturate their GigE link.

Figure 7 shows the total throughput and request rate
achieved by the Serval web service. Initially, from time 0
to 60 seconds, two Mongoose webserver instances serve
a total of 80 req/s, peaking around 1800 Mbps, effectively
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Figure 7: Total request rate and throughput for a
replicated web service as servers join and leave (every
60 seconds). Request rate and throughput are propor-
tional to the number of active service instances, with
each server saturating its 1 GigE link.

saturating the server bandwidth. At time 60, two new
service instances start, register with the service router—
simply by binding to the appropriate serviceID, as the
stack and local controller take care of the rest—and im-
mediately begin to serve new requests. The total system
request rate at this point reaches 160 req/s and 3600 Mbps.
At time 120, we force the first two servers to gracefully
shut down, which causes them to close their listening
socket (and hence unregister with the service router), fin-
ish ongoing transfers, then exit. The total request rate
and throughput drops back to the original levels without
further degradation in service. Finally, we start another
server at time 180, which elevates the system request rate
to 120 req/s and 2700 Mbps.

Serval is able to maintain a request rate and through-
put proportional to the number of servers, without an
expensive, dedicated load balancer. Moreover, Serval dis-
tributes client load evenly across each instance, allowing
the system to reach full saturation.

By acting on service registration and unregistration
events generated by the Serval stack, the service router
can respond instantly to changes in service capacity and
availability. An application-level resolution service (e.g.,
DNS, LDAP, etc) would require additional machinery
to monitor service liveness and have to contend with ei-
ther the extra RTT of an early-binding resolution or stale
caches. Alternatively, using an on-path layer-7 switch
or VIP/DIP load balancer would require aggregate band-
width commensurate to the number of clients and servers
(8 Gbps in this case). A half-NAT solution would remove
the bottleneck for response traffic, which would be highly
effective for web (HTTP GET) workloads. However, it
still constrains incoming request traffic, which can hinder
cloud services with high bidirectional traffic (e.g., Drop-
box backup or online gaming).

In contrast, the service router is simply another node
on the rack with the same GigE interface to the top-of-
rack switch. After all, it is only involved with connection
establishment, not actual data transfer. Although each



server has a unique IP in this scenario, even in the case
where servers share a virtual IP (either to conserve address
space or mask datacenter size), Serval simplifies the task
of NAT boxes by offloading the burden of load balancing
and server monitoring to the service routers.

6.2 Back-End Distributed Storage
To illustrate Serval’s use in a partitioned storage system,
we implemented a dynamic Memcached system. Mem-
cached provides a simple key-value GET/SET caching
service, where “keyspace” partitions are spread over a
number of servers for load balancing. Clients map keys to
partitions using a static resolution algorithm (e.g., consis-
tent hashing), and send their request to a server according
to a static list that maps partitions to a corresponding
server. However, this static mapping complicates reparti-
tioning when servers are added, removed, or fail.

With Serval, the partition mapping can be made dy-
namic, by allowing clients to issue request directly to
a serviceID constructed from a “common” Memcached
prefix, followed by the content key. The SAL then maps
the serviceID to a partition using LPM in the service
table, and ultimately forwards the request to a responsi-
ble server that listens on the common prefix. Response
packets travel directly to the client, bypassing the ser-
vice router. A potential downside of this SAL forward-
ing is that clients cannot easily aggregate requests on a
per-server basis, having no knowledge of partition assign-
ments. Instead, aggregation could be handled by a service
router, at the cost of increased latency.

When Memcached servers register and unregister with
the network (or are overloaded), the control plane re-
assigns partition(s) by simply changing rules in service
tables. For reliability and ease of management, service ta-
bles can cover several partitions by a single prefix, giving
the option of having “fallback” rules when more specific
rules are evicted from the table (e.g., due to failures). This
reduces both the strain on the registration system and the
number of cache misses during partition changes.

It is common that clients use TCP for SETs (for relia-
bility and requests larger than one datagram) and UDP for
GETs (for reduced delay and higher throughput). SAL
forwarding makes more sense in combination with UDP,
however, as TCP uses a persistent connection per server
and thus still requires management of these connections
by the application. Reliability can be implemented on top
of UDP with a simple acknowledgment/retry scheme.2

Figure 8 illustrates the behavior of Memcached on
Serval using one client, four servers, and an intermedi-
ate service router. The service router and client run on
the same spec machines as our microbenchmarks (§5.2),
while the Memcached servers run on machines with two

2In fact, many large-scale services avoid the overhead of
TCP by implementing application-level flow control for UDP.
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Figure 8: As Memcached instances join or leave (ev-
ery 10 seconds in the experiment), Serval transpar-
ently redistributes the data partitions over the avail-
able servers.

2.4 GHz AMD Opteron 2376 quad-core CPUs, also with
GigE interfaces. The service router assigns each server
four partitions (i.e., it uses the last 4-bits of the serviceID
prefix to assign a total of 16 partitions) and reassigns them
as servers join or leave. The client issues SET requests
(each with a data object of 1024 bytes) with random keys
at a rate of 100,000 requests per second. In the beginning,
all four Memcached servers are operating. Around the
10-second mark, one server is removed, and the service
router distributes the server’s four partitions among the
three remaining servers (giving two partitions to one of
them, as visible in the graph). Another server is removed
at the 20-second mark, evenly distributing the partitions
(and load) on the remaining two servers. The two failed
servers join the cluster again at the 30-second and 40-
second marks, respectively, offloading partitions from the
other servers. Although simple, this experiment effec-
tively shows the dynamicity that back-end services can
support with Serval. Naturally, more elaborate hierarchi-
cal prefix schemes can be devised, in combination with
distributed service table states, to scale services further.

6.3 Interface Load Balancing and Virtual
Machine Migration

Modern commodity servers have multiple physical inter-
faces. With Serval, a server can accept a connection on
one interface, and then migrate it to a different interface
(possibly on a different layer-3 subnet) without breaking
connectivity. To demonstrate this functionality, we ran an
iperf server on a host with two GigE interfaces. Two
iperf clients then connected to the server and began
transfers to measure maximum throughput, as shown in
Figure 9. Given TCP’s congestion control, each connec-
tion achieves a throughput of approximately 500 Mbps
when connected to the same server interface. Six seconds
into the experiment, the server’s service controller signals
the SAL to migrate one flow to its second interface. TCP’s
congestion control adapts to this change in capacity, and
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Figure 9: A Serval server migrates one of the flows
sharing a GigE interface to a second interface, yield-
ing higher throughput for both.
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Figure 10: A VM migrates across subnets, causing a
short interruption in the data flow.

both connections quickly rise to their full link capacity
approaching 1 Gbps.

Cloud providers can also use Serval’s migration ca-
pabilities to migrate virtual machines across layer-3 do-
mains. Figure 10 illustrates such a live VM migration
that maintains a data flow across a migration from one
physical host to another, each on a different subnet. After
the VM migration completes, TCP stalls for a short pe-
riod, during which the VM is assigned a new address and
performs an RSYN handshake.

7. Incremental Deployment
This section discusses how Serval can be used by unmod-
ified clients and servers through the use of TCP-to-Serval
(or Serval-to-TCP) translators. While Section 4.3 dis-
cussed backwards-compatible approaches for simplifying
network infrastructure deployment (e.g., by leveraging
DNS), we now address supporting unmodified applica-
tions and/or end-hosts. For both, the application uses
a standard PF INET socket, and we map legacy IP ad-
dresses and ports to serviceIDs and flowIDs.

Supporting unmodified applications: If the end-host
installs a Serval stack, translation between legacy and
Serval packets can be done on-the-fly without terminating
a connection: A virtual network interface can capture
legacy packets to particular address blocks, then translate
the legacy IP addresses and ports to Serval identifiers.

Supporting unmodified end-hosts: A TCP-to-Serval
translator can translate legacy connections from unmodi-
fied end-hosts to Serval connections. To accomplish this
on the client-side, the translator needs to (i) know which
service a client desires to access and (ii) receive the pack-
ets of all associated flows. Several different deployment
scenarios can be supported.

To deploy this translator as a client-side middlebox,
one approach has the client use domain names for ser-
vice names, which the translator will then transparently
map to a private IP address, as a surrogate for the serv-
iceID. In particular, to address (i), the translator in-
serts itself as a recursive DNS resolver in between the
client and an upstream resolver (by static configuration
in /etc/resolv.conf or by DHCP). Non-Serval-
related DNS queries and replies are handled as normal.
If a DNS response holds a Serval record, however, the
serviceID and FORWARD rule are cached in a table along-
side a new private IP address. The translator allocates this
private address as a local traffic sink for (ii)—hence sub-
sequently responding to ARP requests for it—and returns
it to the client as an A record.

Alternatively, large service providers like Google or
Yahoo!, spanning many datacenters, could deploy transla-
tors in their many Points-of-Presence (PoP). This would
place service-side translators nearer to clients—similar
to the practice of deploying TCP normalization and
HTTP caching. The translators could identify each of
the provider’s services with a unique public IP:port. The
client could resolve the appropriate public IP address (and
thus translator) through DNS.

As mentioned in §5.2, we implemented such a service-
side TCP-to-Serval translator [24]. When receiving a new
client connection, the translator looks up the appropriate
serviceID, and initiates a new Serval connection. It then
transfers data back-and-forth between each socket, much
like a TCP proxy. As shown in our benchmarks, the
translator has very little overhead.

A Serval-to-TCP/UDP translator for unmodified
servers looks similar, where the translator converts a Ser-
val connection into a legacy transport connection with the
server’s legacy stack. A separate liveness monitor can
poll the server for service (un)registration events.

In fact, both translators can be employed simultane-
ously, e.g., to allow smartphones to transparently migrate
the connections of legacy applications between cellular
and WiFi networks. On an Android device, iptables
rules can direct the traffic to any specified TCP port to
a locally-running TCP-to-Serval translator, which con-
nects to a remote Serval-to-TCP translator,3 which in turn
communicates with the original, unmodified destination.

3In our current implementation of such two-sided proxying,
the client’s destination is inserted at the beginning of the Serval
TCP stream and parsed by the remote translator.



Handling legacy middleboxes: Legacy middleboxes
can drop packets with headers they do not recognize, thus
frustrating the deployment of Serval. To conform to mid-
dlebox processing, Serval encapsulates SAL headers in
shim UDP headers, as described in §5. The SAL records
the addresses of traversed hosts in a “source” extension of
the first packet, allowing subsequent (response) packets
to traverse middleboxes in the reverse order, if necessary.

8. Conclusions
Accessing diverse services—whether large-scale, dis-
tributed, ad hoc, or mobile—is a hallmark of today’s
Internet. Yet, today’s network stack and layering model
still retain the static, host-centric abstractions of the early
Internet. This paper presents a new end-host stack and
layering model, and the larger Serval architecture for ser-
vice discovery, that provides the right abstractions and
protocols to more naturally support service-centric net-
working. We believe that Serval is a promising approach
that makes services easier to deploy and scale, more ro-
bust to churn, and more adaptable to diverse deployment
scenarios. More information and source code are avail-
able at www.serval-arch.org.
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