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ABSTRACT
The rapidly growing size of data and complexity of analytics

present new challenges for large-scale data processing sys-

tems. Modern systems keep data partitions in memory for

pipelined operators, and persist data across stages with wide

dependencies on disks for fault tolerance. While process-

ing can often scale well by splitting jobs into smaller tasks

for better parallelism, all-to-all data transfer—called shuffle
operations—become the scaling bottleneck when running

many small tasks in multi-stage data analytics jobs. Our key

observation is that this bottleneck is due to the superlinear

increase in disk I/O operations as data volume increases.

We present Riffle, an optimized shuffle service for big-data

analytics frameworks that significantly improves I/O effi-

ciency and scales to process petabytes of data. To do so, Riffle

efficiently merges fragmented intermediate shuffle files into

larger block files, and thus converts small, random disk I/O

requests into large, sequential ones. Riffle further improves

performance and fault tolerance by mixing both merged and

unmerged block files to minimize merge operation overhead.

Using Riffle, Facebook production jobs on Spark clusters with

over 1,000 executors experience up to a 10x reduction in the

number of shuffle I/O requests and 40% improvement in the

end-to-end job completion time.
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1 INTRODUCTION
Large-scale data analytics systems are widely used in many

companies holding and constantly generating big data. For

example, the Spark deployment at Facebook processes 10s

of PB newly-generated data every day, and a single job can

process 100s of TB of data. Efficiently analyzing massive

amounts of data requires underlying systems to be highly

scalable and cost effective.

Data analytics frameworks such as Spark [57], Hadoop [1],

and Dryad [31] commonly use a DAG of stages to repre-

sent data transformations and dependencies inside a job. A
stage is further broken down to tasks which process different

partitions of the data using one or more operations. Data

transformations for grouping and joining data require all-to-

all communication between map and reduce stages, called
a shuffle operation. For example, a reduceByKey operation in

Spark requires each task in the reduce stage to retrieve cor-

responding data blocks from all the map task outputs. Jobs

that execute shuffle are prevalent—over 50% of Spark data

analytics jobs executed daily at Facebook involve at least

one shuffle operation.

The amount of data processed by analytics jobs is growing

much faster than the memory available. At Facebook, data

can be 10x larger than the total memory resource allocated

to a job, and thus the shuffle intermediate data has to be

kept on disks for scalability and fault tolerance purposes.

The fast-growing data and complexity of analytics pose a

fundamental performance tension in big-data systems.

Research work highly encourages running a large
number of small tasks. Recent work [16, 32, 41–43] il-

lustrates the benefit of slicing jobs into small tasks: small

tasks improve the parallelism, reduce the straggler effect

https://doi.org/10.1145/3190508.3190534
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with speculative execution, and speed up end-to-end job

completion. Solutions have also been presented to minimize

task launch time [37] as well as scheduling overhead [44] for

a large number of small tasks.

However, engineering experience often argues against
running too many tasks. In fact, large jobs processing

real-world workloads observe significant performance degra-

dation because of excessive shuffle overhead [4, 5, 14]. While

the tiny tasks execution plan works well with single-stage

jobs, it introduces significant I/O overhead during shuffle

operations in multi-stage jobs. Engineers often execute jobs

with fewer bulky, slow tasks to mitigate shuffle overhead,

paying the price of stragglers and inefficient large tasks that

do not fit in memory.

We observe that the root cause of the slowdown is due

to the fact that the number of shuffle I/O requests between

map and reduce stages grows quadratically as the number

of tasks grows, and the average size per request actually

shrinks linearly. At Facebook, data is preserved on spinning

disks for fault tolerance, so a large amount of small, random

I/O requests (e.g., 10s or 100s of KB) during shuffle leads

to a significant slowdown of job completion and resource

inefficiency. Executing jobs with large numbers of tasks over

splits the I/O requests, further aggravating the problem. Thus,

neither approach for tuning the number of tasks provides

efficient performance at large scales.

We present Riffle, an optimized shuffle service for big-data

analytics frameworks that significantly improves I/O effi-

ciency and scales to processing PB-level data. Riffle boosts

shuffle performance and improves resource efficiency by con-

verting large amounts of small, random shuffle I/O requests

into much fewer large, sequential I/O requests. At its core,

Riffle consists of a centralized scheduler that keeps track of

intermediate shuffle files and dynamically coordinates merge

operations, and a shuffle merge service which runs on each

physical cluster node and efficiently merges the small files

into larger ones with little resource overhead.

Challenges and solutions. In designing Riffle, we had to

overcome several technical challenges.

First, Riffle has to be efficient in handling shuffle files

without using much computation or storage resources. Riffle

overlaps the merge operations with map tasks, and always

accesses large chunks of data sequentially with minimal disk

I/O overhead when performing merge operations. To reduce

the additional delay caused by stragglers, Riffle allows users

to set a best-effort merge threshold, so that reducers consume

some late-arriving intermediate outputs in unmerged form,

together with the majority of outputs in merged form.

Second, Riffle should be easy to configure to best fit dif-

ferent storage systems and hardware. While merging files

generally reduces the number of I/O requests, making the

block sizes too large leads to only marginal improvement

in I/O requests but slowdown in merge operations. Riffle

explores the inherent tradeoff between maximizing the gain

of large request sizes and minimizing the overhead of ag-

gressive merges, and supports merge policies with different

fan-ins and target block sizes, to get the best efficiency for

disk I/Os and merge operations.

Third, Riffle must tolerate failures during merge and shuf-

fle. Since failure is the norm at large scale, we must handle

failures without affecting correctness or incurring additional

slowdown in job execution. Riffle keeps track of intermediate

files in both merged and unmerged forms, and on failure falls

back to files in unmerged format within the scope of failure.

Finally, Riffle should not create prohibitive overhead. The

merge operations of Riffle come at the cost of reading and

writing more shuffle data for the merged intermediate files.

Riffle makes this tradeoff a performance win, by issuing

all merge requests as large, sequential requests, keeping the

overhead significantly less than the savings. In terms of space,

the intermediate files are soon garbage collected after job

completion, so they occupy disk space only temporarily.

We implemented the Riffle shuffle service within the

Apache Spark framework [3]. Riffle supports unmodified

Spark applications and SparkSQL queries [19]. This paper

presents the results of Riffle on a representative mix of Face-

book’s production jobs processing 100s of TB of data: Riffle

reduces disk I/O requests by up to 10x and the end-to-end

job completion time by up to 40%.

2 BACKGROUND AND MOTIVATION
The past several years has seen a rapid increase in the amount

of data that is being generated and analyzed every day.

Distributed data analytics engines, like Spark [57], MapRe-

duce [22], Dryad [31], are widely used for executing SQL

queries and user-defined functions (UDFs) on large datasets,

or preprocessing and postprocessing in machine learning

jobs. The key challenge in analyzing massive amounts of

data arises from the fact that the volume and complexity of

data processing is growing much faster than hardware speed

and capacity improvements. Riffle aims to solve the problem

at large scale by significantly improving the efficiency of

hardware resource usage.

This section motivates and provides background for Riffle.

§2.1 briefly reviews the DAG computation model commonly

used in big-data analytics frameworks. §2.2 discusses the

memory constraints of data processing, and the quadratic

relationship between data volume and disk I/O during shuffle.

§2.3 presents existing solutions to mitigate the problem, and

explains why they fall short in fundamentally solving the

problem at large scale.
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Figure 1: DAG representation of a Spark job, which
joins data processed from two tables and uses
groupByKey to aggregate the key-value items, then
filters the data to get the final results.

2.1 Shuffle: All-to-All Communications
Data analytics frameworks typically use a DAG to represent

the computation logic of a job, with stages as its vertices,

and the dependencies between stages as its edges. A stage is
further comprised of a set of tasks, each processing a partition

of the datasets. A task typically includes a pipeline of one or

more programmer specified operators that need to be applied

to transform a data partition from input to output. Tasks in

the first and last stages of a job are responsible to read in

data from external sources (e.g., file systems, table storage,

streams) and persist results, while tasks in the middle stages

take the output generated by tasks in the previous stage as

input, perform the transformation based on the specified

operators, and then generate data for tasks in the next stage.

Data dependencies thus can be classified in two types [57]:

narrow dependencies, where the partition of data processed

by a child task only depends on one parent task output, and

wide dependencies, where each child task processes outputs

from multiple or all parent tasks.

For example, Figure 1(a) is a logical view of a Spark job.

It applies transformations (map and filter) on data from two

separate tables, joins and aggregates the items over each key

(a certain field of items) using groupByKey. After filtering, it

stores the output data in the result table. Figure 1(b) shows

the Spark execution plan of this job. For narrow dependen-

cies (map and filter), Spark pipelines the transformations on

each partition and performs the operators in a single stage.

Internally, Spark tries to keep the intermediate data of a sin-

gle task in memory (unless the size of data cannot fit), so

the pipelined operators (a filter operator following a map

operator in Stage 1) can be performed efficiently.

Spark triggers an all-to-all data communication, called

shuffle, for the wide dependency between Stages 1 (map)

and 2 (reduce). Each map task reads from a data partition

(e.g., several rows of a large table), transforms the data into

the intermediate format with the map task operators, sorts

or aggregates the items by the partitioning function of the

reduce stage (e.g., key ranges) to produce blocks of items,

and saves the blocks to on-disk intermediate files. The map

task also writes a separate index file which shows the offsets

of blocks corresponding to each reduce task. To organize

reduce stage data with groupByKey, each reduce task brings

together the designated data blocks and performs reduce task

operators. By looking up the offsets in index files, each reduce

task issues fetch requests to the target blocks from all the

map output files. Thus, data that was originally partitioned

according to table rows are processed and shuffled to data

partitioned according to reduce key ranges.

The large amount of intermediate files, written by the map

tasks and read by the subsequent reduce tasks, are persisted

on disks in both Spark and MapReduce for fault tolerance

purposes. For large jobs, 10s to 100s of TB, or even PB of

data are generated during each shuffle. Between stages with

wide dependencies, each reduce task requires reading data

blocks from all the map task outputs. If the intermediate

shuffle files were not persisted, even a single reduce task

failure could lead to recomputing the entire map stage. In

fact, failure of tasks or even cluster nodes is the norm at large

scale deployment of big-data frameworks [30, 34, 52], so it

is crucial to persist shuffle data for strong fault tolerance.

As a result, shuffle is an extremely resource intensive op-

eration. Each block of data transferred from a map task to a

reduce task needs to go though data serialization, disk and

network I/O, and data deserialization. Yet shuffle is heavily

used in various types of jobs—those requiring data to be

repartitioned, grouped or reduced by key, or joined all in-

volve shuffle operations. At Facebook, we observe that over

50% of our daily batch analytics jobs have at least one shuffle

operations. A key approach to better completion time and re-

source efficiency of these jobs is improving the performance

of shuffle operations.

2.2 Efficient Storage of Intermediate Data
Even though there is a trend towards keeping data in mem-

ory wherever possible to improve resource efficiency [2, 21,

23, 35], in real-world settings the amount of data is growing

much faster than the available memory, which makes it infea-

sible to keep the data entirely in memory. For example, a job

at Facebook processes data that is over 10x larger than the al-

located resources. Instead intermediate data must be pushed

to permanent storage for scalability and fault tolerance.

At Facebook, the current generation of warehouse clus-

ters use HDDs for permanent storage. For large amount of

data, this is significantly more cost effective than SSDs given

current hardware [27, 33]. With spinning HDDs, the number

of IOPS (I/O Operations Per Second) available is a limiting

factor for the system throughput. While HDDs continue to

grow in capacity, the available IOPS will not increase accord-

ingly due to the physical limits of mechanical spin time [55].

Thus, we must be careful to use IOPS wisely for intermediate

data, both for disk spills and shuffles.
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Figure 2: When the number of tasks in each stage
grows, the shuffle time and the number of I/O requests
increase quadratically, and the average shuffle fetch
size in each request decreases.

Disk spill I/O. When the size of the data partition as-

signed to a task exceeds the memory limit, the task has to

spill intermediate data to permanent storage. Disk spills can

incur a significant amount of additional overhead because

of the increasing disk I/O and garbage collection.

For example, assume that a map task processes a parti-

tion of 4GB input data, and runs with 8GB memory.
1
Data

have to be decompressed and deserialized from disks to get

the in-memory objects. This process effectively enlarges the

original data, in practice, by about 4x. Thus, reading and pro-

cessing 2GB input data already consumes the entire memory.

The map task has to perform the operations and sort the

result items by keys according to the reduce partition func-

tion. To do so, it (1) reads in the first 2GB data, performs the

computation, and spills a temporary output file on disk; (2)

similarly, reads, processes, and spills the second 2GB data;

(3) merges the two temporary files into one using external

merge sort. The overhead of repeated disk I/O and serializa-

tion significantly slows down the task execution and harms

resource efficiency.

Shuffle I/O. To avoid disk spills, the task input size (S)
should be appropriate to fit in memory, and thus is deter-

mined by the underlying hardware. As the size of job data

increases, the number of map (M) and reduce (R) tasks has
to grow proportionally. Because each reduce task needs to

fetch from all map tasks, the number of shuffle I/O requests

M · R increases quadratically, and the average block size
S
R

for each fetch decreases linearly.
Figure 2 shows the job completion time when we keep

the task input size fixed at 512MB (incurring no disk spills),

and increase the number of tasks in both stages from 300

to 10, 000. We see that the shuffle time grows quadratically

from 100 to over 4, 000 seconds. This is because the number

1
In practice, only a portion of memory can be used to cache data and the

remaining is reserved by the runtime and program. The example ignores

this discussion for simplicity.
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Figure 3: Shuffle-spill tradeoff when varying num-
ber of map tasks (with fixed number of reduce tasks).
Bulky tasks (left) incur more spill overhead, while
tiny tasks (right) incur significant shuffle overhead.

of shuffle fetch requests increases rapidly (30K to 100M), as

the average size of each request shrinks (1.7MB to 50KB).

Since disks are especially inefficient in handling large

amounts of small, random I/O requests, jobs suffer a severe

slowdown at large scale. Our goal is to improve the efficiency

by reducing the IOPS requirement of the underlying storage

systems for large-scale data analytics.

2.3 Current Practices & Existing Solutions
Several solutions have been previously proposed to mitigate

the problem of large amounts of small, random I/O requests

during shuffle. We discuss the limitations of these solutions,

and explain why they fall short in fundamentally solving the

problem at large scale.

Reducing the number of tasks per stage. By tuning the

number of tasks in job execution plan, engineers look for the

optimal performance trading off between shuffle and spill I/O

efficiency [5]. Since the number of I/O requests is determined

by the corresponding map and reduce tasks, using fewer

tasks reduces the total number of shuffle fetches, and thus

improves the shuffle performance. However, this approach

inevitably enlarges the average size of input data and creates

very bulky, slow tasks with disk spilling overhead.

For example, Figure 3 shows how the shuffle and spill

runtime changes when varying the number of map tasks in a

job processing 3TB data. Towards the left, smaller number of

tasks implies larger task partition sizes, making the shuffle

operations more efficient. At the same time, larger tasks also

mean each task needs to spill more data, slowing down the

task completion time. In this case, at around 1,000 tasks the

job reaches its optimal value in terms of the total runtime of

shuffle and spill.

However, tuning the number of tasks is untenable to apply

across the thousands of jobs at Facebook. Each job has differ-

ent characteristics (e.g., distribution and skew of data), so it

is not possible to find the optimal point without tedious ex-

perimentation. In addition, data characteristics change over
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time, depending on outside factors such as Facebook user

behavior. Jobs are typically configured in favor of having

more tasks, which allows room for data growth.

More importantly, the effects of having a small number

of bulky tasks can be very detrimental for job execution in

production: such tasks run very slowly due to additional I/O

and garbage collection overhead [42]. In practice we see that

task number tuning could assign GBs of data to a single task,

causing the tasks to run over 60minutes. Bulky tasks amplify

the straggler problem, in that jobs get significantly delayed

if a few tasks become stragglers or retry after failure, and

speculative execution can only provide limited help in these

cases [16, 43].

Aggregation servers for reducers. Another solution is

to use separate aggregation processes in front of each re-

ducer to collect the fragmented shuffle blocks and batch the

disk I/O for shuffle data. The in-memory buffering in the

aggregators ensures sequential disk access when writing

shuffle data, which can later be read by reduce tasks all at

once. However, directly applying this approach to process

100s of TBs or PBs of data is still infeasible. One aggregator

instance per reduce task could consume a large amount of

computation (for task bookkeeping) and memory (for disk

I/O buffering) resources for large jobs, so the solutions can

only be applied at relatively small scale [47]. In addition,

because each reduce task collects data from all the map tasks,

even failure of a single aggregation process leads to data cor-

ruption and requires the entire map stage to be recomputed.

As jobs further scale in number of processes and runtime, the

frequency of aggregation process failures (due to machine

or network failures, etc.) increases. The high cost of failure

recovery makes the solution inadequate for deployment at

large scale.

To improve Hadoop shuffle performance, Sailfish [45]

leverages a new file system design to support multiple in-

sertion points to store aggregated intermediate files. Besides

the fact that it requires modification to file systems, the so-

lution also impairs the fault tolerance: to recover a single

corrupted aggregation file, a large number of map tasks need

to be re-executed. Compromising fault tolerance leads to fre-

quent re-computation and thus harms system performance

at Facebook scale.

Instead of trading fault tolerance for I/O efficiency, our

goals of designing an optimized shuffle service include highly

efficient shuffle I/O performance, little resource overhead to

the clusters, and no additional failures caused by the shuffle

optimization. Riffle provides its service as a long-running

process on each physical node, and requires much less mem-

ory space and almost no computation overhead compared to

existing solutions. Riffle operates on persisted disk files and

saves results as separate files, so the service failures will not

Worker NodeWorker NodeTaskTaskTasks Worker Machine

Task Task Task Task

File System

ExecutorExecutor

Riffle Shuffle Service

Driver

Job / Task 
Scheduler

Riffle 
Merge 

Scheduler

assign

report task
statuses

report merge
statuses

send merge 
requests

Figure 4: Riffle runs a shuffle merge scheduler as part
of the analytics framework driver, and a merger in-
stance per physical node. Since a physical node is typ-
ically sliced into a few executors, each running multi-
ple tasks, it’s common to have hundreds of tasks per
job executed on each node.

lead to any recomputation of stages or tasks. In the rest of the

paper, we will show how Riffle’s design and implementation

meet these design goals in detail.

3 SYSTEM OVERVIEW
Riffle is designed to work with multi-stage jobs running on

distributed data analytics frameworks that involve all-to-all

data shuffle between different stages. We describe how Riffle

works with cluster managers and data analytics frameworks,

as shown in Figure 4.

Shuffle merge scheduler. Tasks in data analytics frame-

works are assigned by a global driver program. As explained

in §2, the driver converts a data processing job to a DAG of

data transformations, with several stages separated by shuf-

fle operations. Tasks from the same stage can be executed in

parallel on the executors, while tasks in the following stage

typically need to be executed after the shuffle. The interme-

diate shuffle files are persisted on local or distributed file

systems (e.g., HDFS [49], GFS [25], and Warm Storage [8]).

Riffle includes a shuffle merge scheduler on the driver side,

which keeps track of task execution progress and schedules

merge operations based on configurable strategies and poli-

cies. In practice, it is common to have hundreds of tasks

assigned per physical node in processing large-scale jobs.

The Riffle scheduler collects the state and block sizes of in-

termediate files generated by all tasks, and issues merge

requests when the shuffle files meet the merge criteria (§4.1).

Shuffle service with merging. Data analytics frame-

works provide an external shuffle service [10, 12] to manage

the shuffle output files. A long-running shuffle service in-

stance is deployed on each worker node in order to serve the

shuffle files uninterruptedly, even if executors are killed or

reallocated to other jobs running concurrently on the clus-

ter with dynamic resource allocation policies [26, 29]. Riffle

runs a merger instance as part of the shuffle service on each
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Figure 5: Merging intermediate files with Riffle.

physical node, which performs merge operations on shuffle

output files.

The shuffle merge scheduler directly communicates with

all the registered merger instances where some of the job

tasks are executed, to send out merge requests and collect

results from the mergers. Figure 5 illustrates the shuffle ser-

vice side merger combining multiple intermediate shuffle

files into larger files. Each mapper outputs data such that

items are partitioned into the reducer it belongs to (indicated

here by color). Without Riffle, each reducer would read par-

titions from all map outputs, which can be on the order of

tens of thousands per reducer. Riffle merges the shuffle files

block by block to preserve the reducer partitioning. After

the merge operations, a reducer only needs to fetch a sig-

nificantly smaller number of large blocks from the merged

intermediate files instead. Note that these merge operations

are performed on compressed, serialized data files. This pro-

cess significantly improves the shuffle I/O efficiency without

incurring much resource overhead.

4 DESIGN
This section describes the mechanisms by which Riffle ad-

dresses its key challenges. We explain the merge strategies

and policies in the driver side scheduler, and the execution

of merge operations in the worker side merger in §4.1. We

discuss how Riffle minimizes the merge overhead with best-

effort merging (§4.2), handles merge failures (§4.3), and bal-

ances merge requests using power of choices in disaggre-

gated architecture (§4.4). We analyze Riffle’s performance

benefit in §4.5.
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Block 1
Block 2

Block R
…

Block 1
Block 2
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…
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Block R
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(a) Greedy N-way Merge.
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(b) Fixed Block Size Merge.

Figure 6: Riffle merge policies.

4.1 Merging Shuffle Intermediate Files
Riffle is designed to work with existing data analytics frame-

works by introducing shuffle merge operations in the shuffle

service instances coordinated by the driver. Specifically, Rif-

fle builds additional communication channels between the

scheduler and mergers, allowing the driver to issue requests

and coordinate mergers.

The merge scheduler starts merge operations immediately

as map outputs become available, according to merge poli-

cies (§4.1.1). This causes most merges to overlap with the

ongoing map stage, hiding their merge time if they finish

before the map stage. When the map stage finishes, out-

standing merge requests can incur additional delay, which

makes policy configuration and merger efficiency (§4.1.2)

important.

After themap tasks andmerge operations finish, the driver

launches reduce tasks in the subsequent stage, and broadcasts

the metadata (location, executor id, task id, etc.) of all the

map outputs to the executors hosting reduce tasks. With

Riffle, the driver sends out metatdata of the merged files

instead of the original map output files, so the reduce tasks

can fetch corresponding blocks from the merged files with

more efficient reads.

4.1.1 Merge Scheduling Policies
Merge with fixed number of files. Users can configure

Riffle to merge a fixed number of files. For N -way merge,

the scheduler sends a merge request to the merger whenever

there are N map output files available on that node (Fig-

ure 6(a)). The merger, upon receiving this request, performs

the merge by reading existing shuffle files, grouping blocks

based on reduce partitions, and generating a new pair of

shuffle output file and index file as the merge result.

Merge with fixed block size. In real-world settings, we

observe a large variance in block sizes of the shuffle output

files (Figure 6(b)). Some shuffle blocks themselves are large

enough, leading to few fragmented reads; some are very tiny
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Algorithm 1 Merging Intermediate Shuffle Files

– files: shuffle files to be merged in request

– index_files: accompanying index files, which has offsets of shuffle

file blocks corresponding to each reduce task

– out_file: merged shuffle file

– out_index: index file for the merged shuffle file

– offset: integer tracking offset of merged file

1: function MergeShuffleFiles(in_ids, out_id)
2: for all id in in_ids do
3: files[id] = OpenWithAsyncReadBuffer(id)
4: index_files[id] = CachedIndexFile(id)
5: out_file = OpenWithAsyncWriteBuffer(out_id)
6: out_index = NewIndexFile(out_id)
7: offset = 0

8: for p = 1.. number of reduce partitions do
9: for all id in in_ids do
10: start = index_files[id].GetOffset(p)
11: end = index_file[id].GetOffset(p + 1)
12: length = end − start
13: BufferedCopy(out_file, offset, files[id], start, length)
14: offset = offset + length
15: AppendIndex(out_index, offset)
16: FlushBufferAndClose(out_file)
17: PersistIndexFile(out_index)
18: return out_file, out_index

and we need to merge tens or hundreds of them to make

shuffle reads efficient. Riffle also supports fixed block size

merge. In this case, the driver sends out a merge request

when the accumulated average shuffle block size across all

partitions exceeds a configurable threshold. The Riffle sched-

uler avoids merging files that already have large blocks, and

merges more files with tiny blocks for better I/O efficiency.

Configuring the merge policy. While merging files gen-

erally leads to more efficient shuffle, merging too aggres-

sively can exacerbate the merge operation delay. Merge re-

quest processing is limited by the disk writing speed. For

example, Riffle mergers achieve nearly the sequential speed

at about 100MB/s when writing the merged files in our cur-

rent deployment. The larger the merged output file is, the

longer the merge operation will take. Riffle’s file and block

size based policies provide flexibility to trade off between

shuffle and merge efficiency on a per-job basis.

In addition, these policies allow Riffle to be applied to file

systems with different I/O characteristics. For example, if a

file system provides 2MB unit I/O size, larger requests will be

split into multiple 2MB chunk reads. Merging aggressively

to get gigantic block files only provides marginal benefits

for shuffle reads. In this case, Riffle’s merge policy can be

configured to a lesser number of files or smaller block size.

4.1.2 Efficient Worker-Side Merger
Upon receiving a merge request, the worker-side merger

performs the merge operation and generates new shuffle

files, as shown in Algorithm 1. A merge request includes
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Figure 7: Riffle mergers trigger only sequential disk
I/O for efficiency. The shadow sections of the input
and output files are asynchronously buffered in mem-
ory to ensure sequential I/O behavior.

a list of completed map task IDs. The merger locates the

shuffle files previously generated by those tasks, and their

accompanying index files which contain offsets of file blocks

corresponding to individual reduce tasks. For each shuffle file,

the merger allocates a buffer for asynchronously reads and

caches its index file (normally no larger than a few tens of

KB) in memory. The merger also allocates a separate buffer to

asynchronously write the merged output file. During merge,

it goes through each reduce partition, asynchronously copies

over the corresponding blocks from all specified files into

the merged file, and records the offsets in the merged index.

Riffle ensures the merge operation is efficient and light-

weight on the worker side. First, Riffle merges compressed,

serialized data files in their raw format on disks, incurring

minimal computation overhead during merge. Second, the

mergers prefetch data from original shuffle files, aggregate

the blocks belonging to same reducers, and asynchronously

write blocks into the result file. Thus, they always read and

write large chunks of data sequentially, leading to minimal

disk I/O overhead when performing merge operations.

Memory Management. The major resource overhead on

the workers comes from the in-memory buffers for reading

the original shuffle output files and writing the merged file,

as shown in Figure 7. Buffering files ensures large, sequential

disk I/O requests, at the cost of more memory consumption

when the number of files and the number of concurrent

merge operations grow.

For example, assume that we keep a 4MB read buffer and

a 20MB write buffer. To merge 20 shuffle files, the merger

has to buffer 80MB data for all input files, and 20MB for the

output file, ending up consuming 100MB memory. Using a

dedicated buffer for each file parallelizes the reads and writes

and accelerates the merge speed. However, since a merger

is responsible to handle hundreds of map output files per

job generated by tens of executors on the worker node, the

memory consumption can be significant when handling a

large number of concurrent merge requests.
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Riffle deploys mergers with a fixed memory allocation on

each physical node. Upon receiving a newmerge request, the

merger estimates the memory consumption of processing

the request based on the fan-in (i.e., number of files) and

average block sizes, and only starts the operation if there is

enough memory. When exceeding the memory limit, new

incoming merge requests will be queued up and waiting for

the memory to become available. We find that allocating

6–8GB of memory to a merger is sufficient to process 10–

20 concurrent merge requests in most use cases.
2
With this

configuration, Riffle mergers can achieve nearly sequential

disk I/O speed when writing merged files. Given that each

physical node typically has 256GB or even larger memory in

modern datacenters, and tens of GB of memory per machine

is reserved for OS and framework daemons, we consider the

memory overhead of Riffle acceptable.

4.2 Best-Effort Merge
When processing large-scale jobs with Riffle, there are usu-

ally some merger processes still working on performing

merge operations while most of the other mergers have al-

ready completed the assigned requests. These merge strag-
glers exist mainly for two reasons. First, there are always

shuffle files that are generated by the final few map tasks,

and the late merge operations need to wait for these tasks to

complete before starting to merge. Second, the mergers on

the worker nodes could also crash and get restarted, which

slows down the pending merge requests on that node. We

find that when deployed at large scale, Riffle merge strag-

glers can sometimes significantly increase the end-to-end

job completion time.

To alleviate the delay penalty caused by stragglers, we

introduce best-effort merge, which allows the driver to mark

the map stage as finished and start to launch reduce tasks

when most merge operations are done on workers. Riffle

allows users to configure a percentage threshold, and when

the completed merge operations exceed this threshold, the

driver does not wait for additional merge requests to return.

The job execution directly proceeds to the reduce stage, and

all pending merge operations are cancelled by the driver to

save resources.

When using best-effort merge, the Riffle driver sends to

reducers the metadata for merged shuffle files for successful

merge operations, and the metadata of original unmerged

files for cancelled merge operations. By eliminating merge

stragglers, best-effort merge improves the end-to-end job

completion time as well as the overall resource efficiency

despite a small portion of shuffle fetches being done on less

2
Thememory allocation of themerger determines the number of concurrent

requests it can handle. In general, increasing the memory space leads to

higher merge throughput, until a certain point where the effective disk

output rate becomes a limiting factor.

efficient unmerged files. We demonstrate this improvement

in §6.2.

4.3 Handling Failures
Since failure is the norm at scale, Riffle must guarantee the

correctness of computation results, and should not slow

down the recovery process when failures happen. This re-

quires Riffle to efficiently handle both merge operation fail-

ures and loss of shuffle files. To handle these cases well, Riffle

keeps both the original, unmerged files as well as the merged

files on disks.

A merge operation can fail if the merge service process

crashes, or merging takes too long and the request times out.

When that happens, Riffle is designed to fall back to origi-

nal unmerged files in similar manner to best-effort merge.

This leads to a slight performance degradation during shuf-

fle, while avoiding delaying the map stage. Correctness is

guaranteed in the same way as best-effort merge, by the

Riffle driver sending a mixture of metadata for merged and

unmerged files to reduce tasks.

Spark and Hadoop deal with shuffle data loss or corruption

by recomputing only the map tasks that generated the lost

files. Riffle follows this strategy if unmerged files are lost,

but can recover faster if only merged files are lost. For lost

merged files, the original shuffle file is used as a fallback,

avoiding any recomputations in the map stage while slightly

degrading shuffle by fetching more files. Note that this is

different from previous solutions using aggregators to collect

data on the reducer side. Sailfish [45] modifies the underlying

file system with a new file format that supports multiple

insertion points for reduce block aggregation. However, a

data loss which involves a single chunk of the aggregated file

requires re-execution of all map tasks which appended to that

chunk. Thus, data losses can lead to heavy recomputation

for the tasks in the map stage, and it falls short to meet our

key requirement of efficient failure handling.

4.4 Load Balancing on Disaggregated
Architecture

Recent development in datacenter resource disaggrega-

tion [7, 24, 36] replaces individual servers with a rack of

hardware as the basic building block of computing. The new-

generation disaggregated architecture provides efficiency

through gains in flexibility, latency, and availability. At Face-

book, disaggregated clusters are widely used: the compute

nodes (with powerful CPUs and memory) and storage nodes

(with weaker CPUs and large disk space) on separate racks.

The distributed file system abstracts away the physical file

locations, and leverages fast network connections to achieve

high I/O performance across all storage nodes. While de-

ploying a data analytics framework such as Spark on the
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Figure 8: Multiple Riffle jobs on a disaggregated ar-
chitecture balances the merge requests leveraging the
power of two choices.

disaggregated clusters, all workers experience nearly homo-

geneous rates reading and writing files regardless of their

physical locations in the storage nodes.

Riffle on disaggregated clusters runs one merger process

on each compute node. In the context of resource disaggre-

gation, merge operations are no longer limited to work with

“local” shuffle files generated from the same physical nodes.

In fact, the driver can send a request to an arbitrary merger

to merge a number of available shuffle output files generated

by multiple executors on different physical nodes. For exam-

ple, when the fixed block size policy is used, the driver will

pick a merger and send out a merge request whenever the

accumulated average block sizes of shuffle files generated by

all workers exceed the minimum merging block size.

Because of the merger memory limits, merge requests can

queue up when the cluster experiences high workload (as

described in §4.1.2). Note that the mergers, located on the

physical nodes, are shared across all concurrent jobs running

on the cluster. The Riffle enabled drivers need to consider

the workload of mergers when sending out their requests, so

that the merge operations are balanced among the mergers.

In order to efficiently balance the dynamic merge work-

load in a distributed manner, Riffle leverages “power of two

choices” [40]. As shown in Figure 8, each driver only needs

to query the pending merge workload of two (or a few) ran-

domly picked mergers and choose the one with the shortest

queue length. Theoretical analysis and experiments [38, 44]

show that the approach can efficiently balance the distributed

dynamic requests while incurring little probing overhead.

4.5 Discussion
Analysis of I/O operation savings. Assume a two-stage

job hasM map tasks and R reduce tasks. The total amount of

data it processes is T . To simplify the discussion, we assume

the partitions of processed by all tasks can fit in memory

(i.e., no disk spills). With unmodified shuffle, the number of

total shuffle I/O requests isM · R.

Using N -way complete merge,
M
N merged files are gener-

ated by the mergers. During shuffle, each reducer only sends

M
N read requests. Assuming data is evenly partitioned, the

total shuffle I/O requests during is now
M
N × R.

Merge operations also trigger additional I/O. Specifically,

a complete merge of all intermediate files requires an addi-

tional read and write of T data. Since Riffle mergers only

incur sequential disk I/O, the total number of I/O requests is

2 · Ts , where s is the buffer size in the Riffle mergers. Putting

them together, the total number of I/O requests is

M

N
× R + 2 ·

T

s

For example, assume a job processing 100GB data uses

1,000 map tasks and 1,000 reduce tasks. It triggers 1,000,000

I/O requests during shuffle. If the Riffle merger uses 10MB

I/O buffers, then with 40-way merge, the total number of I/O

requests becomes
1000

40
× 1000 + 2 × 100GB

10MB =45,000, reduced

by 22x.

This calculation does not consider the effect of disk spills.

In fact, Riffle’s efficient merge alleviates the quadratic in-

crease of shuffle I/O. Thus users can run much smaller tasks

instead of bulky tasks, which further reduces disk IOPS re-

quirement due to less spills.

Note that the amount of additional I/O incurred by Riffle is

similar to that required in Sailfish [45]. More specifically, the

chunkservers and chunksorters in Sailfish also need to make a

complete pass reading and writing shuffle data to reorganize

the key-values and generate new index files. Both systems

move this process off the critical path to unblock the exe-

cution of map and reduce tasks. Riffle’s configurable merge

policy and best-effort merge mechanism further minimize

the merge overhead. In contrast, ThemisMR [46] provides

exactly twice I/O property. Compared with Riffle and Sailfish,

it completely avoids materializing intermediate files to disks,

at the cost of impaired fault tolerance. Thus, the solution

only applies to relatively small scale deployment.

Deployment on different clusters. Riffle works best

when there are multiple executors processing tasks on each

physical machine. As computing nodes getting larger and

more powerful, it is desirable to slice them into smaller ex-

ecutors for efficient resource multiplexing (i.e., shared by

multiple concurrent jobs) and failure isolation. In addition,

Riffle fits well with recent research and industry trends in re-

source disaggregation, where merge operations are no longer

limited to “local” files (§4.4). Large jobs running on small

machines can still benefit from Riffle: in this case, tasks in

map stage come in waves, ending up with many shuffle files

on each physical node to merge.
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5 IMPLEMENTATION
We implemented Riffle with about 4,000 lines of Scala code

added to Apache Spark 2.0. Riffle’s modification is com-

pletely transparent to the high-level programming APIs, so

it supports running unmodified Spark applications. We im-

plemented Riffle to work on both traditional clusters with

collocated computation and storage, and the new-generation

disaggregated clusters. Riffle as well as its policies and con-

figurations can be easily changed on a per-job basis. It is

currently deployed and running various Spark batch analyt-

ics jobs at Facebook.

Garbage collection. Storage space, compared to other re-

sources, is much cheaper in the system. As described in §4.3,

Riffle keeps both unmerged and merged shuffle output files

on disks for better fault tolerance. Both types of shuffle out-

put files share the lifetime of the running Spark job, and are

cleaned up by the resource manager when the job ends.

Correctness with compressed and sorted data. Com-

pression is commonly used to reduce I/O overhead when

storing files on disks. The data typically needs to go through

compression codecs when transforming between its on-disk

format and in-memory representation. Riffle concatenates

file blocks directly in their compressed, on-disk format to

avoid compression encoding and decoding overhead. This is

possible because the data analytics frameworks typically use

concatenation friendly compression algorithms. For example,

LZ4 [9] and Snappy [11] are commonly used in Spark and

Hadoop for intermediate and result files.

Merging the raw block files breaks the relative ordering

of the key-value items in the blocks of merged shuffle files.

If a reduce task does require the data to be sorted, it cannot

assume the data on the mapper side is pre-sorted. Sorting

in Spark (default) and Hadoop (configurable) on reduce side

uses the TimSort algorithm [13], which takes advantage of

the ordering of local sub-blocks (i.e., segments of the con-

catenated blocks in merged shuffle files) and efficiently sorts

them. The algorithm has the same computational complex-

ity as Merge Sort and in practice leads to very good per-

formance [6]. The sorting mechanism ensures that reducer

tasks will get the correctly ordered data even with the Riffle

merge operations. In addition, since merge will not affect the

internal ordering of data in sub-blocks (i.e., sorted regions

in map outputs), the sorting time using TimSort with Riffle

will be the same as the no merge case.

6 EVALUATION
In this section, we present evaluation results on Riffle. We

demonstrate that Riffle significantly improves the I/O effi-

ciency by increasing the request sizes and reduces the IOPS

requirement on the disks, and scales to process 100s of TB

Data Map Reduce Block

1 167.6 GB 915 200 983 K

2 1.15 TB 7,040 1,438 120 K

3 2.7 TB 8,064 2,500 147 K

4 267 TB 36,145 20,011 360 K

Table 1: Datasets for 4 production jobs used for Riffle
evaluation. Each row shows the total size of shuffle
data in a job, the number of tasks in itsmap and reduce
stages, and the average size of shuffle blocks.

of data and reduces the end-to-end job completion time and

total resource usage.

6.1 Methodology
Testbed. We test Riffle with Spark on a disaggregated clus-

ter (see §4.4). The computation blade of the cluster consists
of 100 physical nodes, each with 56 CPU cores, 256GB RAM

(with 200GB allocated to Spark executors), and connected

with 10Gbps Ethernet links. Each physical node is further

divided into 14 executors, each with 4 CPU cores and 14

GB memory. In total, the jobs run on 1,414 executors. 8GB

memory on each physical node is reserved for in-memory

buffering of the Riffle merger instance. The storage blade
provides a distributed file system interface, with 100MB/s

I/O speed for sequential access of a single file. Our current

deployment of file system supports 512KB unit I/O operation.

We also use emulated IOPS counters in the file system to

show the performance benefit when the storage is tuned

with larger optimal I/O sizes.

Workloads and datasets. We used four production jobs

at Facebook with different sizes of shuffle data, representing

small, medium and large scale data processing jobs, as shown

in Table 1. To isolate the I/O behavior of Riffle, in §6.2 we

first show the experiment results on synthetic workload

closely simulating Job 3: the synthetic job generates 3TB

random shuffle data and uses 8,000 map tasks and 2,500

reduce tasks. With vanilla Spark, each shuffle output file, on

average, has a 3TB/8000/2500 = 150KB block for each reduce

task (approximating the 147KB block size in Job 3). Without

complex processing logic, experiments with the synthetic

job can demonstrate the I/O performance improvement with

Riffle. We further show the end-to-end performance with

the four production jobs in §6.3.

Metrics. Shuffle performance is directly reflected in the

reduce task time, since each reduce task needs to first col-

lect all the blocks of a certain partition from shuffle files,

before it can start performing any operations. To show the

performance improvement of Riffle, we focus on measuring

(i) task, stage, and job completion time, (ii) reduction in the
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Figure 9: Riffle performance improvement in runtime with synthetic workload. 9(a) and 9(b) show the wall clock
time to complete stages and tasks, and 9(c) plots the total reserved CPU time representing the job resource effi-
ciency. Map time includes time to execute bothmap tasks and Rifflemerge operations. Reduce time includes time
to perform both shuffle fetch and reduce tasks. No complex data processing is in the synthetic applications, so
shuffle fetch dominates the reduce time. Dashed lines show the performance with best-effort merge.

number of shuffle I/O requests, and (iii) the total resource
usage in terms of reserved CPU time and estimated disk IOPS

requirements.

Baseline. In the experiments with the synthetic workload,

we compare the time and resource efficiency of Riffle with

different merge policies. In the experiments with real-world

workloads, we compare the performance improvement of Rif-

fle against the engineering tuned execution plans (numbers

of map and reduce tasks in Table 1) that have best shuffle-spill

tradeoffs with vanilla Spark.

6.2 Synthetic Workload
6.2.1 Stage and Task Completion Time
We compare the performance improvement of Riffle when

doing 5-way, 10-way, 20-way and 40-waymerge, respectively.

The merged shuffle files will on average get 750KB, 1.5MB,

3MB and 6MB block sizes.

Map and reduce stage execution time. Figure 9(a)

shows the map and reduce stage completion time when run-

ning the job with vanilla Spark (“no merge”) vs. Riffle with

different merge policies (note the log scale on x-axis). As N
grows, the merge operation generates larger block files, yet

also takes longer time to finish. Since Riffle merge operations

block the execution of reduce stage, map is only considered

as completed when the merge is done. We see the map stage

time increases gradually from 174 to 343 seconds. Despite the

delay in map, we have a much larger reduction in the reduce

stage time, which drops from 474 to 81 seconds. Overall, the

job completion time (i.e., sum of the two stages) drops from

648 down to 424 seconds, 35% faster.

Improvement with best-effort merge. Riffle uses best-

effort merge mechanism (§4.2) to further reduce the delay

penalty of merge operations. In Figure 9(a), the dashed lines

show the results of best-effort merge (threshold = 95%). We

can see the map stage overhead, compared to full merge, is

much smaller (343 down to 226 seconds with 40-way merge),

while the reduce stage time stays almost the same. Overall,

the job completes 53% faster compared with vanilla Spark.

To better understand the reduce stage time improvement,

we break down the stage time by plotting the distribution of

all task completion time. We show the minimum, 25/50/75

percentile, and maximum for different merge policies in Fig-

ure 9(b) (note the log scale of both axes). Similarly, results

with best-effort merge are in dashed lines. The medium task

time is reduced from 44 seconds (no merge) down to 10 sec-

onds (40-way merge). The improvement comes from the fact

that a reduce task only has to issue hundreds of large reads,

as opposed to thousands of small reads, after the merge.

6.2.2 Improvement in Resource Efficiency
We measure the resource efficiency via metrics reported by

the cluster resource manager. Figure 9(c) shows the total

reserved CPU time. When merge is disabled, the entire job

takes 293K reserved CPU seconds to finish; with over 20-way

merge, the reserved CPU time is reduced to 207K seconds, or

by 29%. In addition, when we enable best-effort merge, the

saving in job completion time is also reflected in the resource

efficiency—the total reserved CPU time is further decreased

down to 145K seconds. That means we can finish the job

with only 50% of the computation resource.

Note that the synthetic workload rules out the heavy data

computation from the jobs, in order to isolate the I/O per-

formance during shuffle. With production jobs, the overall

resource efficiency also highly depends on the nature of the

specific data processing logic. However, we expect to see the

same resource efficiency gains when considering the shuffle

operations alone.
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Figure 10: Riffle I/O performance during shuffle. The
dashed lines show best-effort merge performance.

6.2.3 I/O Performance
Figure 10(a) demonstrates how the number and size of shuffle

fetch requests change with different merge policies. The aver-

age read size (left y-axis) increases from 150KB (no merge) to

up to 6.2MB (40-waymerge), and the number of read requests

(right y-axis) decreases from 8,000 down to 200. With best-

effort merge, since shuffle files are partially merged, each

reduce task still has to read 5% of data from the unmerged

block files. With 40-way merge, we observe an average of

589 read requests per task, and the average read request

size of 2.1MB. Riffle effectively reduces the number of fetch

requests by 40x (10x) with complete (best-effort) merge.

To show the performance implication of the underlying

file system, we look at the IOPS requirement for running the

job with different policies. Wemeasure the IOPS requirement

with 512KB unit I/O size provided in our current deployment,

and the estimated IOPS counters when the file system sup-

ports larger I/O sizes. Figure 10(b) shows how the shuffle

IOPS changes (note the log scale of both axes) with differ-

ent merge policies. We can see that Riffle reduces the job

IOPS from 360M with no merge down to 22M (37M), or by

16x (9.7x), with complete (best-effort) 40-way merge. We see

the 10x reduction carries over as we increase the file system

I/O sizes to 1M, 2M or even larger.

6.3 Production Workload
In this section, we demonstrate Riffle’s improvement in pro-

cessing 4 production jobs, representing small (Job 1), medium

(Job 2 and Job 3), and large (Job 4) jobs at Facebook Compared

with synthetic workload, the production jobs are different

in several ways:

• They involve heavy computation in each task, instead

of only I/O in the synthetic case;

• Jobs are deployed in real settings with limited memory

resources that best fit the hardware configurations,

and data will be spilled to disks if the memory space

is insufficient;

• The block sizes of the intermediate shuffle files vary

based on the user data distribution and the partitioning

functions, and Riffle should merge based on block sizes

instead of a fixed fan-in.

Improvement in I/O performance and end-to-end job com-

pletion time is crucial to production workload. For instance,

Job 4 is processing a key data set, which is in the most up-

stream data pipeline for many other jobs under the same

namespace. It processes hundreds of TB of data and con-

sumes over 1,000 CPU days to finish. Accelerating this job

will not only improve resource efficiency significantly, but

also help improve the landing time of many subsequent jobs.

We show the performance of Riffle with fixed block size

merge, varying the block size threshold (512KB, 1MB, 2MB,

and 4MB for first three jobs, and 2MB for the last job). All

the experiments enable best-effort merge with a threshold

of 95%.

Stage and task completion time. Figure 11(a) shows

that Riffle significantly helps decrease the reduce stage time

by 20–40% for medium to large scale jobs, without affect-

ing the map time much. Compared to the gain in synthetic

workload, Riffle gets less relative time reduction because

of the fixed computing cost in the tasks. Note that in the

case of running small-scale jobs (like Job 1), Riffle does not

help because of the delay penalty incurred by the additional

merge requests. Figure 11(b) further explains that the saving

of reduce stage time comes from shorter reduce task time.

The reduce task can be shorten by up to 42% (39%) when

running medium (large) scale jobs.

Resource efficiency. The big saving in job completion

time leads to more efficient resource usage. Figure 11(c) mea-

sures the resource usage of running the jobs. We can see

that Riffle in general saves 20–30% reserved CPU time for

medium to large scale jobs.

Figure 12 compares the total I/O requests during shuffle.

Riffle reduces the total shuffle I/O requests by 10x for Jobs 2

and 3, and by 5x for Job 4. For Jobs 2 and 3, Riffle effec-

tively converts the average request size from the original

100–150KB (see Table 1) to 512KB or larger, and thus signifi-

cantly reduces the number of read requests needed during

shuffle operations. Similarly, for Job 4, Riffle increases the

average 360KB reads to 2MB and thus reduces the number

of I/O requests.
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Figure 11: Riffle performance improvement with production workload.

Job1            Job2            Job30

5

10

15

20

S
hu

ffl
e 

IO
 R

eq
ue

st
s 

/ 1
06

No Merge 512K 1M 2M 4M

Job4 0

200

400

600

800

Figure 12: Number of shuffle I/O requests (million), in-
cluding all additional I/O requests in Riffle mergers.

Riffle incurs additional I/O requests for merging shuffle

files. The mergers use up to 64MB in-memory buffers to

ensure that the merge operations only issue large, sequential

I/O requests to disks. The overhead of merge I/O requests

is almost negligible compared with the order of magnitude

savings in shuffle I/O requests.

7 RELATEDWORK
Shuffle optimization in big-data analytics.
ThemisMR [46] improves the performance of MapRe-

duce jobs by ensuring the intermediate data (including

shuffle and spill) are not repetitively accessed through disks.

However, the solution does not avoid large amounts of

small random I/O during shuffle. In addition, as the paper

stated, ThemisMR eliminates the task-level fault tolerance,

and thus only applies to relatively small scale deployment.

TritonSort [48] minimizes disk seeks by carefully designing

the layout of output files without using huge in-memory

buffers. However, since it targets the specific sorting

problem, the solution can hardly generalize to other data

analytics jobs. Sailfish [45] leverages a new file system

design to support multiple insertion points to aggregate

intermediate files. However, it requires modifications to file

systems, and a single corrupted aggregation file requires

recomputation of a large number of map tasks.

Parameter tuning for data analytics frameworks.
Previous work [20, 39, 56, 59] provide guidelines on how to

best configure system parameters (such as number of tasks

in each stage) with given cluster resources. Starfish [28] is a

self-tuning system which provides high performance with-

out requiring users to understand the Hadoop parameters.

However, the tuning process for a large number of jobs is

expensive, and jobs have to be retuned when their character-

istics such as the distribution and skew of input data change

over time.

IOPS optimization. Sailfish [45] leverages a new file sys-

tem design to support multiple insertion points to aggregate

intermediate files. However, it requires modifications to file

systems, and a single corrupted aggregation file requires re-

computation of a large number of map tasks. Hadoop-A [54]

accelerates Hadoop by overlapping map and reduce stages,

and uses RDMA to speed up the data collection process. How-

ever, this solution relies on the reducer task to collect and

buffer intermediate data in memory, which limits its scala-

bility and fault tolerance. Recent development on hardware

accelerates the handling of I/O requests and starts to get

deployed in big-data analytics and storage systems [50, 53],

but they do not targets the problem of small, random shuffle

fetch for large-scale jobs.

The case for tiny tasks. Recent work [32, 42, 44] pro-

poses tiny tasks which run faster and lead to better job com-

pletion time when investigating the performance of data

analytics jobs. While solutions have been studied to mini-

mize the task launch time [37] and overcome the scheduler

overhead [44], tiny tasks hit the performance bottleneck of

shuffle when used for large-scale jobs with multiple stages.

Riffle merges intermediate files and significantly improves

shuffle efficiency, so that the jobs can benefit from both fast

task execution and efficient shuffle with small tasks.

Straggler mitigation. The original MapReduce pa-

per [22] introduces the straggler problem. Previous work

on data analytics leverages speculative execution [16, 18, 58]

or approximate processing [15, 17, 51] to mitigate stragglers.

Riffle avoids merge stragglers using best-effort merge, which

allows shuffle files to be partially merged to avoid waiting

for merge stragglers and accelerate job completion.
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8 CONCLUSION
We present Riffle, an optimized shuffle service for big-data

analytics frameworks that significantly improves the I/O

efficiency and scales to process large production jobs at Face-

book. Riffle alleviates the problem of quadratically increasing

I/O requests during shuffle by efficiently merging intermedi-

ate files with configurable policies. We describe our experi-

ence deploying Riffle at Facebook, and show that Riffle leads

to an order of magnitude I/O request reduction and much

better job completion time.
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