'.)

Py Efficient Compactions between Storage Tiers with PrismDB
Ashwini Raina Jianan Lu Asaf Cidon Michael J. Freedman
Princeton University Princeton University Columbia University Princeton University
United States United States United States United States

araina@cs.princeton.edu jlananl@princeton.edu

ABSTRACT

In recent years, emerging storage hardware technologies have fo-
cused on divergent goals: better performance or lower cost-per-bit.
Correspondingly, data systems that employ these technologies are
typically optimized either to be fast (but expensive) or cheap (but
slow). We take a different approach: by architecting a storage engine
to natively utilize two tiers of fast and low-cost storage technolo-
gies, we can achieve a Pareto efficient balance between performance
and cost-per-bit.

This paper presents the design and implementation of PrismDB,
a novel key-value store that exploits two extreme ends of the spec-
trum of modern NVMe storage technologies (3D XPoint and QLC
NAND) simultaneously. Our key contribution is how to efficiently
migrate and compact data between two different storage tiers. In-
spired by the classic cost-benefit analysis of log cleaning, we develop
a new algorithm for multi-tiered storage compaction that balances
the benefit of reclaiming space for hot objects in fast storage with
the cost of compaction I/O in slow storage. Compared to the stan-
dard use of RocksDB on flash in datacenters today, PrismDB’s aver-
age throughput on tiered storage is 3.3 faster, its read tail latency
is 2X better, and it is 5X more durable using equivalently-priced
hardware.

CCS CONCEPTS

« Information systems — Data layout; « Computer systems
organization — Secondary storage organization.

KEYWORDS
PrismDB, key-value store, tiered, storage, compaction

ACM Reference Format:

Ashwini Raina, Jianan Lu, Asaf Cidon, and Michael J. Freedman. 2023. Ef-
ficient Compactions between Storage Tiers with PrismDB. In Proceedings
of the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 3 (ASPLOS ’23), March
25-29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3582016.3582052

1 INTRODUCTION

Several new NVMe storage technologies have recently emerged,
expressing the competing goals of improving performance and
reducing storage costs. On one side, high performance non-volatile

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582052

asaf.cidon@columbia.edu mfreed@cs.princeton.edu

Table 1: Comparing NVM (Optane SSD) and dense flash (QLC).
Cost taken from cdw.com for Intel’s Optane SSD 5800x and
Intel 660p, and lifetime is based on publicly available infor-
mation [29, 70]. Latency of 4KB random read is computed
with Fio [4].

NVM QLC
Lifetime (DWPD) 200 0.1
Cost ($/GB) $2.5 $0.1

Avg Read Latency (4KB) 6us 391us

memory (NVM!) technologies, such as Optane SSD [30, 72] and
Z-NAND [59], provide single-digit us latencies. On the other end of
the spectrum, cheap and dense storage such as QLC NAND [45, 47]
enables applications to store vast amounts of data on flash at a low
cost-per-bit. Yet with this lower cost, QLC has a higher latency and
is less reliable than less dense flash technology (e.g., TLC NAND).

Table 1 compares the large variation in endurance, cost and
performance across two representative storage technologies. For
example, we observe that there is a roughly 65X performance differ-
ence between Optane SSD (NVM) and QLC on random reads, and
sequential reads show a similar trend (not shown). However, Op-
tane SSD costs more than 20X per GB compared to QLC. Endurance
also varies widely: QLC NAND can only sustain a relatively small
number of writes before exhibiting errors [46].

Many studies have shown that simply running existing soft-
ware systems on new hardware storage technologies often leads to
poor results [13, 16, 21, 22, 39]. Therefore, significant recent effort
has sought to build new software storage systems that are archi-
tected specifically for these new technologies [16, 21, 22, 39, 61, 63].
They typically choose one point in the design space: fast but ex-
pensive [16, 22, 39] (e.g., using Optane SSD or Z-NAND), or cheap
but slower [21, 61, 63] (e.g., using dense flash). However, these sys-
tems do not exploit the cost-performance benefits of using multiple
storage tiers.

While a few recent key-value stores [13, 73, 74, 79] combine fast
and cheap storage technologies together, they reuse the same mono-
lithic data structure used for flash (typically log-structured merge
trees) and use naive techniques for compacting data across tiers
(e.g., by simply copying entire files from one tier to the other). As
we demonstrate experimentally in §3, these existing approaches are
ill-equipped for a multi-tiered use case, because they inefficiently
use fast NVM devices. In fact, we spent the first year of this project
trying to retrofit a log-structured merge (LSM) tree to use multiple
storage tiers, and take advantage of fast NVM devices by retaining
more frequently-accessed data on NVM. However, we were not
able to show any performance improvement because doing so led
to excessive compactions, hurting overall performance.

'n the paper, “NVM” refers to fast block devices (e.g., Intel Optane SSD, Samsung
Z-NAND, Kioxia FL6). We do not focus on persistent memory.

https://doi.org/10.1145/3582016.3582052
https://doi.org/10.1145/3582016.3582052
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582016.3582052&domain=pdf&date_stamp=2023-03-25

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

This led us to fundamentally rethink key-value store data struc-
tures and compaction mechanisms to fully exploit fast and slow
storage tiers, in order to realize more optimal trade-offs between
performance, endurance, and cost. We design a new key-value store,
PrismDB, which assumes a setting where a large percentage (e.g.,
75-95%) of the storage capacity sits on dense flash (e.g., QLC), and
the rest on NVM (e.g., Optane SSD). In this setting, given the far
inferior performance and endurance of flash compared to NVM,
PrismDB’s primary design goals are to maximize read and write
performance, while minimizing the amount of I/O (and especially
writes) issued to flash.

To achieve this goal, PrismDB uses a hybrid data layout, where
hot objects are stored in slab-based files on NVM (where random
access is fast), and cold objects are stored in a sorted log on flash
(where sequential writes are prioritized). Since NVM does not suffer
from write amplification and supports fast random writes, it can
efficiently perform in-place updates and fresh inserts of objects
directly into slabs. PrismDB tries to store frequently read or updated
data in NVM, and cold, immutable data on flash. To estimate the
access frequency of objects, PrismDB uses a lightweight object
popularity mechanism based on the clock algorithm. Yet since key
popularity distributions vary across workloads, PrismDB records
clock value distributions and uses them to determine which objects
are colder and should be compacted to QLC. As most requests are
served from either DRAM or NVM, the bottleneck shifts from I/O to
CPU. PrismDB employs a partitioned, shared-nothing architecture
to minimize the amount of synchronization between threads.

Since space in the faster tier (NVM) quickly fills up, PrismDB
needs to decide which objects to migrate from NVM to flash. This
leads to a fundamental trade-off: keeping a large number of popular
objects in NVM ensures a higher proportion of accesses are served
from NVM, but it comes at the expense of migration or compaction
efficiency. Retaining more objects in NVM means the system needs
to work harder to find less-popular objects, and thus has to merge
with a wider range of keys in flash, thereby increasing expensive
flash write I/O. In addition, when deciding which keys to compact,
PrismDB needs to consider other typical factors [52, 57] that impact
compaction performance: the overlap between the merged key
ranges and amount of stale data to be cleaned.

Our primary contribution is multi-tiered storage compaction
(MSC), a novel compaction mechanism that captures the relation-
ship between key popularity and write amplification on multi-tiered
storage. We design a new metric by adapting the classic cost-benefit
model of the log-structured file system (LFS) [57] to a multi-tiered
setting and assign a score to each range of keys that measures
whether they are good candidates for compaction. The score is
higher when ranges have more cold data that can be compacted
from the faster storage tier, and is lower when it incurs a large
amount of flash I/O per compacted object. Since computing this
metric precisely is expensive, PrismDB introduces an approxima-
tion algorithm that performs well in practice (§5.3). PrismDB does
not only migrate data from the faster tier to the lower tier, but
also, under read-heavy workloads, it can promote objects from
the slower tier to the faster one in response to changing object
popularity.

We implement PrismDB and compare it to a multi-tiered ver-
sion of RocksDB [23], a version of RocksDB that uses NVM as a

180

Ashwini Raina, Jianan Lu, Asaf Cidon, and Michael). Freedman

(_dram) (__dram]
[J nvm cache
[flash

Figure 1: Tiered storage designs: embedded within a single-
tier data structure (left) and extra cache capacity (right).

second-level (L2) cache, a version of RocksDB that pins hot objects
to levels mapped on NVM, as well as to two academic systems - Mu-
tant [79] and SpanDB [13]. PrismDB significantly outperforms all
the baselines under all YCSB [17] workloads that issue point queries
(puts/gets/updates) and under Twitter production traces [76] that
are insert or read heavy.

Our paper makes the following primary contributions:

(1) Architecture. A hybrid architecture that exploits NVM in a
multi-tiered storage setup while minimizing flash writes.

(2) Multi-tiered compactions. A model and algorithm for efficient
compactions for multi-tiered storage that balances data place-
ment with compaction I/O in the slow tier.

(3) Popularity scoring. A novel algorithm for popularity-based
object placement decisions on multi-tiered storage.

(4) Performance and cost-efficiency. Compared to multi-tiered
RocksDB, PrismDB’s more efficient data structures and com-
paction mechanism improve the throughput and average latency
by 2.4x and 2.7X on write-dominated workloads, and by 2.5x
and 2X on read-heavy workloads. PrismDB achieves 3x higher
throughput than SpanDB on fsync enabled workloads. PrismDB
is 5% more durable compared to single-tier RocksDB on TLC
flash, which is the standard deployment in datacenters today.

2 BACKGROUND AND DIRECTLY RELATED
WORK

We provide a brief background on new storage technologies, and
survey systems that use multiple NVMe storage tiers.

Trends in storage. In recent years, NVMe storage devices have
evolved in two orthogonal directions: faster (and more expensive)
non-volatile memory and cheaper (and slower) dense flash. New fast
NVM technologies, such as 3D XPoint [30, 47] and Z-NAND [59],
which we refer to collectively throughout the paper as Non-Volatile
Memory (NVM), provide random read and write latencies of 10us
or less.

On the other end of the spectrum, NAND or flash technology has
become ever more dense and cheap. Flash manufacturers have been
able to pack more bits in each device, both by stacking cells verti-
cally (3D flash), and by packing more bits per memory cell. However,
making devices denser also causes their latency to increase and
makes them less reliable [28, 32, 47, 51, 61, 70]. The latest QLC
NAND technology, which packs 4 bits per memory cell, can only
tolerate 100-300 write cycles before it becomes unusable [51, 62, 70].
Future dense flash technologies, such as the recently announced
PLC NAND (5 bits per cell), will exacerbate this trade-off [32].

Existing tiered storage designs. With the emergence of fast
NVMe storage devices, several recent storage system architectures

Efficient Compactions between Storage Tiers with PrismDB

Table 2: Comparing single-tier NVM and QLC with multi-tier
(89% QLC, 11% NVM, labeled “het”) on Zipf 0.8 workload.

RocksDB PrismDB
NVM QLC het het
Throughput (Kops/sec) 121 54 93 184
Cost ($/GB) $2.5 $0.1 $0.3 $0.3

were proposed for tiered storage. These designs typically try to
augment an existing key-value store, which was typically originally
designed for flash, with a small amount of fast storage (e.g., Optane
SSD). We can broadly group the architectures into two categories,
depicted by Figure 1:
(1) Embedded in data structure. NVM is incoporated into an
existing flash-based data structure. This approach is used by Mu-
tant [79] and SpanDB [13], both of which employ log-structured
merge (LSM) trees. Mutant migrates cold LSM files to slow stor-
age, while SpanDB stores the tree’s top levels on NVM, and the
bottom ones on flash.
Extra cache. NVM is simply treated as extra cache space for
objects that are stored in DRAM. Example of such systems are:
MyNVM [22], SQL Server [73] and Orthus-KV [74]. MyNVM and
SQL Server simply treat NVM as an L2 cache, while Orthus-KV
dynamically uses NVM as an L2 cache or as auxiliary storage
tier that provides extra storage bandwidth.
In both of these approaches, a traditional single-tier data struc-
ture, which is optimized for flash (typically an LSM-tree), is retro-
fitted to use NVM. While these existing approaches have the ad-
vantage of relatively easy integration with existing flash-based
key-value stores, they do not take full advantage of NVM. In the
next section, we analyze why.

3 LSM PERFORMANCE ON EMERGING
STORAGE

Before describing why existing multi-tiered designs fail to achieve
the full potential of NVM, we outline the desired properties of such
a system. For a persistent key-value store to be high-performance
and affordable, it needs to satisfy the following design goals.
(1) Navigate cost-performance trade-off. The system should pro-
vide high performance (throughput, read/write latency), while
most of its data (i.e., 75-95%) is on low-cost storage.
Support small objects. The system needs to support datacenter
key-value workloads that consist of small objects (i.e., 1 KB or
smaller [11, 76]). Thus, we cannot assume the database’s index
entirely fits in DRAM [16, 22].
Minimize flash I/0. Since flash is slow, the system should min-
imize flash reads. It should also reduce flash writes to maximize
system lifetime given flash’s limited write cycles.
We now evaluate these design goals on an LSM-based key-value
store. We use RocksDB, a popular open-source key-value store [11].
Throughout the paper, by default we use YCSB-A [17] (50% reads,
50% updates), on a 100 GB database with 1 KB object sizes on hard-
ware described in §7.

Single-tier storage. We first analyze how a single-tier storage
setup performs using NVM and QLC, the two extremes of the cost-
performance trade-off. Table 2 compares the throughput and cost of

181

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

100—— total compactions 50
== compaction cpu time
80 40
c o
g 60 <30
o 40 <
o 220
20
10
ol
LO-L3 L4 0
(nvm) (flash) mt+bc LO L1 L2 L3 L4
(a) (b)

Figure 2: (a) Percentage of compactions in NVM and QLC in
a multi-tier RocksDB. (b) Distribution of reads across LSM
levels (L0-L4), memtable (mt) and block cache (bc).

running RocksDB on the two storage configurations. We note that
even though raw NVM performance is far superior to QLC (e.g.,
65X lower average 4 KB random read latency), the observed overall
system throughput in Table 2 is only 2.2 better than QLC. On QLC,
RocksDB is I/0 bound, and spends 36% of its CPU time in iowait
because QLCI/O is slow. On NVM, RocksDB is bottlenecked by CPU,
since the system spends less time waiting for I/O completions. This
leads us to ask: would a multi-tiered storage setup be bottlenecked
by QLC I/O, CPU contention or both?

Multi-tier storage. We next examine how an LSM-tree performs
on a multi-tiered setup, similar to the one used by SpanDB [13].
We refer to the LSM multi-tiered storage setup as het (i.e., hete-
rogeneous). We use a 5-level LSM-tree, in which levels L0-L3 are
mapped to NVM, and L4 to QLC, where L4 is 89% of the storage
capacity in the database.

By storing only 11% of the database on NVM, het’s cost-per-bit
($0.34/GB) is close to standard single-tier TLC flash setups used
today in datacenters ($0.31/GB). At the same time, it achieves a
throughput that is only 23% less than the throughput of RocksDB
running only NVM. Therefore, a multi-tier RocksDB configuration
pays a small extra cost for faster storage but achieves a significant
performance boost.

Nevertheless, the performance of RocksDB in this configura-
tion is still far from optimal. We make two observations. First, as
shown by others [5, 20], RocksDB spends significant CPU time
(54%) on background compactions. However, in our experiments
with RocksDB in the tiered setting (Figure 2a), more than 80% of
compaction time is spent sorting data in the NVM tier. Since NVM
supports fast in-place updates, spending CPU cycles sorting objects
is unnecessary.

Second, significant CPU time (23%) is still spent on I/O wait. Our
results show (Figure 2b), that even though RocksDB uses NVM for
the upper levels of its tree, many reads are still served from flash
(42%), which is 65X slower than NVM, contributing to high I/O wait
time. This negates the full performance benefit of using NVM as a
fast storage tier. The reason more reads are not served from NVM
is that LSM-tree organization is purely write-driven; LSM-trees do
not try to cache frequently-read items on the upper levels.

To add read-awareness to the LSM-tree, we spent the first full
year of this project building a prototype system, Rocksdb-RA, that
stores more frequently-read objects on upper levels of the tree
(L0-L3) on NVM using pinned compactions. Unlike traditional LSM
compaction that compacts all the objects down to the lower level,

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Worker Thread 1 Worker Thread 2

! 1
! 1
1 1
In-Memory Partition-1 [0, k,) | Partition-2 [k,, k,) !
Index Trees 1 1
n
1 y |
! 1
[|50 50 i] :
! 1
NVM Slab Small Large 1 Small Large |
Files Objects Objects 1 Objects Objects 1
1 — |
| Flash | { Flash '
lnSZx Compacuo index Compaction | ---
i :
+filter (Demoﬂons 'E +filter Promotlons)l
blocks | 11 blocks E \ 1
--------- d TRy 1
T AN 1
Flash | / j
SsT 0.k Kk) | [
Files [) tk k) 1 1
1 1

Figure 3: PrismDB system diagram.

RocksDB-RA “pins” some percentage of the popular objects, retain-
ing them in the NVM tier.

However, due to limited capacity of a level, retaining objects
results in lesser free space and triggers more compactions on that
level. We found that even though Rocksdb-RA was able to serve 27%
more client reads from NVM compared to flash, the total number
of compactions increased by 2.3X, which resulted in an overall
degradation of the system’s throughput and latency compared to
RocksDB.

This leads us to conclude there exists a fundamental tension be-
tween object pinning and compaction efficiency, which we explore
in this paper. Unfortunately, the salient features of an LSM tree,
including its multiple levels and the need to use large sorted files,
make compactions particularly expensive. As object pinning leads
to more compactions, it typically degrades the performance in LSM
trees. This motivates our decision to architect a new data layout
and compaction mechanism that is tailored to multi-tiered storage.

4 PRISMDB’S DATA LAYOUT

In this section, we introduce PrismDB’s system components.

4.1 Design Overview

Figure 3 depicts the architecture of PrismDB on two-tiered storage
(NVM and flash). Since NVM is low latency, in order to reduce
synchronization on shared data structures, PrismDB employs a
partitioned, shared-nothing architecture. Each partition consists
of a subset of the key space and runs a dedicated worker thread
to handle client requests one at a time. This partitioned approach
is extended across all storage tiers; i.e., each partition handles its
own data structures on DRAM, NVM, and flash. The partitioning
algorithm can be range-based for scan heavy workloads or hash-
based for workloads that exhibit load skew/imbalance.

PrismDB uses a hybrid data layout, optimized for both tiers. At
a high level, metadata (e.g., indices and bloom filters) is stored
on DRAM and NVM for fast lookups. DRAM and NVM also store
recently-accessed objects. In order to support fast writes and reduce
flash wear, all newly-written data (including updates) are written
to NVM. Therefore, to optimize for fast random writes and in-place
updates, the NVM data layout uses unsorted slabs. On the other

182

Ashwini Raina, Jianan Lu, Asaf Cidon, and Michael). Freedman

hand, the data layout on flash is optimized for sequential write
access in order to minimize write amplification, and is thus based
on a sorted log.

Each partition uses a tracker and a mapper that are stored in
DRAM. The tracker estimates key popularity using the clock al-
gorithm. The mapper maintains the clock value distributions and
uses those distributions to enforce the placement of objects on stor-
age. It uses a parameter, called the pinning threshold, to determine
whether an object is “popular” enough for NVM. Each partition
runs a background compaction thread to free up space on NVM
by moving the colder objects to flash while retaining the popular
ones on NVM. Key ranges are selected for compaction based on a
new compaction algorithm, called multi-tiered storage compaction
(MSC), which we describe in §5. We now provide more detail on
the data structures on DRAM, NVM, and flash.

In-memory data structures. We use a B-tree index to locate NVM
objects, which are not sorted. Since we need to support a large data-
base of small objects, an index over all keys in the database will
not fit in memory. Hence, only the index for objects on NVM is
stored in memory. Each index entry in the B-tree stores the key
and its NVM address (i.e., 1-byte slab ID plus 4-byte page offset).
Each partition also stores the clock-based tracker in memory (see
§4.3). Each tracker entry includes the key and 1-byte clock meta-
data. PrismDB does not use a userspace DRAM cache for caching
frequently-read objects and instead relies on the OS page cache.

Data layout on NVM. All new data is written to NVM, and it also
serves as a second-level read cache after DRAM for hot objects.
NVM uses a slab-based data layout to support fast random inserts
and updates of small objects. PrismDB uses a set of slab files each
of which is dedicated to a specific object size range (e.g., 100 B,
200B, ..., 1KB). Objects of similar size are inserted into available
fixed-size slots in the right slab file, along with a metadata header
containing version number (implemented as logical timestamp) and
object size information. If an object is deleted, its slot is freed for
new data. An in-place update can take place on the original slot if
the object doesn’t change its size range, and if it does, the object
needs to be deleted and moved to another slab file.

The index for objects on flash is stored in NVM rather than
DRAM, because reading them from flash (i.e., hundreds of microsec-
onds) amortizes the cost of the index lookup. Similarly, PrismDB
stores on NVM a bloom filter [8] for each file on flash to prevent
issuing expensive flash I/Os for non-existent objects. The combined
size of the flash index and filters can range from 100s of MBs to a
few GBs, depending on the object size. For a small-object database,
the flash index and filters reside entirely on NVM.

Data layout on flash. To support large sequential writes, data on
flash uses Sorted String Table (SST) files (similar to LSM trees [23,
27]), which are stored in a log. Each SST file has an index that points
to all the file’s data blocks, and a bloom filter for the file’s objects.
SST files store disjoint key ranges, which makes searching an object
fast. When the percentage of NVM in PrismDB is 10% or higher,
by default we store all the flash data in a single-level log. When
the percentage is lower, PrismDB by can store the flash data in a
multi-level log, similar to an LSM-tree. This choice is based on the
fanout of objects stored on NVM and flash.

Efficient Compactions between Storage Tiers with PrismDB

© hot objects O cold objects

NVM Flash
slab files demote cold objects SSTables
/\
writes EE@ OO00O
O—
elele] N—___—|[0ecec
p hot object:

deleted objects deleted objects

Figure 4: Lifecycle of a written object in PrismDB.

4.2 Lifecycle of a Written Object

Figure 4 illustrates the lifecycle of an object written to PrismDB.
Objects are always synchronously written to NVM because writes
need to be persisted for crash recovery. When NVM’s used capacity
hits a high watermark (by default 98%), the partition triggers a
background compaction job to demote colder objects to flash until
it frees up enough space on NVM (by default when NVM usage
reduces to 95%). In the meantime, incoming writes are rate-limited
to ensure NVM does not exceed its capacity. The job selects “cold”
NVM objects, by filtering the hot ones using the mapper, and de-
motes them to flash. At the same time, given that PrismDB is already
incurring the cost of writing a new SST file, if the compaction job
finds hot flash objects, it may promote them to NVM during the
compaction. In read-heavy workloads, where write-triggered com-
pactions are rare, PrismDB proactively triggers compactions when
it detects that too many objects are accessed from flash, with the
goal of promoting hot objects to NVM. Since NVM stores more
recent data, obsolete versions of objects on flash are deleted when
merging with new versions from NVM.

4.3 Popularity Tracking

We now discuss in more detail how PrismDB tracks popular objects,
and designates them as hot (or not).

Tracker: lightweight tracking of objects. The tracker estimates
object access popularity, while incurring a minimal overhead. There
is a large body of work on how to track and estimate object popular-
ity [7, 60, 63, 67, 68]. However, many existing mechanisms require
a relatively large amount of data per object, and computation per
access. Given that key-value objects are often small (e.g., less than
1KB [11, 14, 49]), we need to limit the amount of metadata we use
for tracking purposes per object. We also need to be able to track
millions of objects at a high throughput.

We turn to clock [18], a classic approach to approximate the
least recently used (LRU) eviction policy while offering better space
efficiency and concurrency [21, 24]. PrismDB’s tracker uses the
multi-bit clock algorithm for object tracking. The tracker uses a
concurrent hash map that maps object keys to their clock bits. The
object values are not stored in the tracker. Each client read or update
operation requires the tracker to update the clock bits of the object
that was accessed. Once the tracker becomes full, it uses the clock
algorithm to decrement clock values of objects and then evicts the
object with value 0.

Since setting the clock bits is on the critical path of reads and
updates, the tracker is optimized for concurrent key insertions,
evictions, and lookups. Further, to save space, the tracker does not

183

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

store clock bits of all key-value pairs in the database, only the most
recently accessed. In our evaluation, tracker size is set to 10% of
the total database keys; see §6 for more details.

Mapper: enforcing the pinning threshold. Ideally, PrismDB
needs a threshold to determine which objects are hot, which we call
the pinning threshold. At each pass of the compaction job, PrismDB
should pin on faster storage some percent (e.g., 10%) of the most
popular objects that are being tracked.

However, enforcing this threshold depends on the clock bit dis-
tribution, which vary as a function of the workload (Figure 12 in
appendix). Consider a two-bit clock, with 3 being most popular
and 0 being least popular. If PrismDB wants to enforce a pinning
threshold of 10%, and exactly 10% of keys have all their clock bits
set to 3, then PrismDB should pin all the objects with a clock value
of 3. However, if 50% of the keys have a clock value of 3, then
PrismDB cannot pin all objects a value of 3, otherwise it will exceed
the desired pinning threshold. To this end, the mapper is responsi-
ble for keeping track of the clock value distribution, and uses that
distribution to enforce the pinning threshold.

Pinning threshold algorithm. In order to enforce the pinning
threshold, the mapper uses the following algorithm, which is best
illustrated with an example. Suppose the clock distribution is such
that the percentage of keys with a clock value of 3 is about 10%, the
percentage of those with a value of 2 is 10%, the ones with a value
of 1 is 30%, and the remaining 50% have a clock value of 0. Now,
suppose the desired threshold is 15% (i.e., the most popular 15% of
objects are stored on NVM, and the rest on flash). If the compaction
job encounters an object with a clock value of 3, it will always pin
it. If it encounters an object with a clock value of 2, it will randomly
choose whether to keep it or not (in this example, with a probability
of 0.5). If it encounters either an object with clock value of 1 or 0, or
an object that is not currently being tracked (recall the tracker does
not track all objects in the database), that object will be demoted to
flash.

To summarize, the mapper satisfies the pinning threshold using
the highest-ranked clock objects by descending rank, and if need
be, randomly samples objects that belong to the lowest clock value
that is needed to satisfy the threshold.

5 MULTI-TIERED STORAGE COMPACTION

In this section we describe PrismDB’s compaction mechanism. We
discuss the trade-off between garbage collection and data pinning
(§5.1). We then present an analytical model for multi-tiered com-
paction efficiency (§5.2). Then we present our multi-tiered storage
compaction algorithm (MSC) (§5.3).

5.1 Performance Trade-Off

PrismDB’s compaction serves two purposes. First, it needs to re-
claim enough space in NVM to absorb new incoming writes. Com-
paction frees up space in NVM when it is close to running out of
capacity, and removes stale values from flash that have been up-
dated more recently in NVM. Second, it needs to prioritize limited
NVM space for hot data. Compaction demotes cold objects to flash
and promotes hot objects to NVM.

However, these two functions present a fundamental trade-off.
On one hand, if PrismDB were to move objects from NVM to flash

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

without considering their popularity, then NVM will not serve as
an effective second-level cache. On the other hand, if PrismDB were
to pin a high percentage of objects that it encounters, it will take
it much longer (and require more CPU) to free up enough space
in NVM. This will not only delay incoming client writes, but also
incur higher flash write amplification. This is because the objects
in NVM selected to be demoted will have a “sparser” key range,
and require the compaction job to merge the NVM objects with a
larger number of SST files on flash.

5.2 Modeling Compaction Cost and Benefit

Since data on NVM is organized as individual key-value pairs and
unpopular objects can be scattered across the entire key space, there
are many possible choices for selecting objects for compaction. To
reduce the search space and bound the flash I/O caused by each
compaction, PrismDB divides the contiguous NVM key space into
smaller key ranges based on existing SST file bounds on flash. We
define a compaction key range, i, as the key ranges of i consecutive
SST files. The value of i is tunable in PrismDB, and by default is set
to 1. A higher value of i is more suitable for workloads with where
popular objects are evenly distributed across the key space.

Analytical model. We design a novel compaction policy, which
is inspired by the classic log cleaning cost-benefit analysis [57].
In traditional log cleaning or compaction (e.g., LFS [57] and other
related systems [15, 58]), the system tries to select the optimal con-
tiguous segment of data to compact. It tries to choose the segment
that offers the highest benefit (free up the most space on disk, and
keep it free for a long time), at the lowest cost (I/O incurred by the
garbage collection). We adopt a similar approach, but we model
the benefit and cost differently, adapting them to the multi-tiered
setting.

Benefit. We model the benefit as demoting as many “cold” ob-
jects to the slow storage tier as possible. Cold objects are ones
that haven’t been recently accessed (read or written). We consider
writes, because objects that are not frequently updated are likely
to stay “stable” in the future, which avoids moving them back and
forth across tiers thereby saving costly flash disk bandwidth. Thus,
compaction offers greater benefit to the system if it can move more
cold data to the slower tier.

We assign every object a coldness score between (0, 1] (where 1 is
cold and 0 is hot). The coldness of object j is the inverse of its clock
value incremented by 1, coldness(j) = W. We increment the
clock value by 1 to avoid dividing by zero. If the object doesn’t
appear in the tracker, we assume its clock value is 0 and its coldness
score is therefore 1.

We define the multi-tiered compaction benefit of a key range
as the the sum of coldness values of the objects in that range:
benefit = j.';l coldness(j), where tp is the number of objects in
the key range. Table 3 lists the notations and their meanings.
Cost. Log-structured systems like LFS typically consider the clean-
ing cost as the extra I/O incurred on the same disk where space is
freed. In our multi-tiered disk setup, however, I/O on the slower tier
is an order of magnitude costlier (in terms of bandwidth, latency
and endurance) than I/O on the faster tier. Thus, for simplicity,
we model the cost of compaction as total flash I/O incurred per

184

Ashwini Raina, Jianan Lu, Asaf Cidon, and Michael). Freedman

Table 3: Notations.

Symbol Description
clock; Clock value of a NVM object j.

tnh Total number of objects in selected NVM key range.
ty Total number of objects in SST file before merging.
t
F The fanout ratio % between key range on flash and NVM.
P Fraction of popular objects in candidate NVM key range.
o Fraction of overlapping objects between NVM range and flash.

I random-selection I precise-MSC XX approx-MSC

°
% 8 40 S 20
o
5200 20 910
¥
0 0

0 compaction
time

tput flash 1/0
Figure 5: Comparison of throughput, flash write I/0 and
average compaction time for precise-MSC and approx-MSC
metric, and random-selection policy on YCSB-A Zipf 0.99.

migrated byte from NVM. During compaction, older versions of
objects on flash will first be read and later deleted when merging
with more recent NVM data. Thus, compacting an NVM key range
involves reading SST file objects from flash, and then writing un-
popular NVM objects and non-overlapping SST file objects back to
flash.

We initially assume object sizes to be equal, and define notations
in terms of “number of objects”, which directly equates to their size.
For an NVM key range where p is the ratio of popular objects, the
number of unpopular objects is (1 — p) - t,, where t, is the number
of objects in that candidate NVM key range. We define o as the
fraction of objects in the SST file that also appear in the NVM key
range. Then the number of non-overlapping objects in the SST file
becomes (1 — o) -y, where t7 is the total number of objects in the
flash SST file. Thus compacting (1-p) - tn objects on NVM incurs t¢
read I/O from flash and (1—p) -tn+(1—0) -t write [/O to flash. The
tf+(1—p)-t,,+(1—0)-tf _ (2—0)-tf

(1=p)-tn T (-p)tn
We define i—i as the fanout, F, which represents the size ratio of key
ranges on NVM and flash. Therefore, the flash I/O cost is reduced

toF- Ef:;; +1.

Finally, we define our multi-tiered storage compaction (MSC)
metric as the ratio of benefit to cost.

benefit Z;’;l coldness(j)
- - (2-0)
(1-p)

The metric’s score is higher for key ranges that contain more
colder objects and which incur lower I/O overhead per migrated
object to flash. Given a list of candidate key ranges, PrismDB selects
the range with the highest score for compaction. For workloads
with variable-sized objects, p, o and F are normalized by size (in
bytes) to compute MSC precisely.

flash I/O per migrated object is:

MSC

1)

cost

F- +1

5.3 MSC Algorithm

Precisely computing the compaction metric. To test the MSC
metric, we first implement a policy that precisely scores all candi-
date key ranges and selects the one with highest MSC score. We

Efficient Compactions between Storage Tiers with PrismDB

also introduce a strawman policy, random-selection, that randomly
selects a candidate key range and moves its cold objects to flash.
Figure 5 shows the comparison of precise metric with the strawman.

Since the random-selection policy is unaware of compaction
benefit or cost, it can choose key ranges that contain fewer cold
objects and incur higher write amplification on flash. We observe
that the precise-MSC metric can decrease flash write I/O by more
than 2.5X compared to the random-selection policy. However, it has
worse overall throughput. This is because computing MSC precisely
in Equation 1 requires checking the popularity of each object in
the mapper, and navigating the indices of all items in the candidate
range both in the DRAM B-tree and in the SST file indices, to check
for overlaps. This is CPU intensive and leads to long compaction
time (25 seconds, compared to the random-selection policy’s 1.7
seconds), during which PrismDB has to rate-limit foreground client
writes until it frees enough space on NVM.

Approximating compaction metric. Therefore, we propose a
light-weight metric called approx-MSC that efficiently approxi-
mates the value of MSC. Instead of computing the statistics for each
individual object in the candidate key range, approx-MSC metric
breaks each partition’s key space into smaller, fixed-sized ranges,
which we call buckets. It then keeps tracks of approximate values
related to p, o0, and F for each bucket. approx-MSC can be computed
using a weighted sum of the parameters of each bucket that over-
laps with the candidate key range. We describe the implementation
of buckets in §6.

Figure 5 shows that approx-MSC achieves high throughput while
keeping total flash write I/O low (i.e., nearly same as precise-MSC’s).
Since its approximation takes less time and fewer CPU resources,
it reduces average compaction time from 25 seconds to 1.7 seconds,
close to the random-selection policy. Therefore, we use approx-
MSC in PrismDB, and henceforth in the paper when we refer to
MSC it refers to approx-MSC.

Key range selection. Another important design question is which
NVM key ranges should be considered as candidates for compaction.
One simple approach is to enumerate over all possible NVM key
ranges to decide which to compact, but this is impractical for large
databases. We use power-of-k choices [48] to select a subset of
compaction key ranges as candidates. We empirically use k = 8, as
it provides a good trade-off between throughput and flash I/O.

Object promotions under dynamic workloads. During the com-
paction process, objects can be both promoted and demoted. De-
motions have an obvious benefit: they free up space in NVM. Pro-
motions, on the other hand, are more expensive, since they take
up space in NVM for an object that was previously stored in flash.
However, sometimes objects also need to be promoted from flash
to NVM, in order to enable fast reads for popular objects, which
at some point got demoted. For example, this would occur when
a large burst of newly-written objects fills up NVM. Such bursts
have been observed in production workloads [11, 14, 76].

Read-triggered Compactions. By default, compactions are trig-
gered when NVM fills up. However, in read-heavy workloads, NVM
will only slowly fill up, and the write-triggered compaction process
may not be called frequently enough to keep up with changing
read popularity distributions. Therefore, PrismDB also employs

185

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

write
—_— Flash
Bree b il p— I-I
SSTables
‘ -~ slab files read
|

X \
: \

D

/
/
/
3. compaction

Compaction

1.if NVM full, select Thread
compaction key range T

update CLOCK
distribution

Critical Path
———-— Background

|
2. pin hot objects|
on NVM

Figure 6: PrismDB’s system components.

read-triggered compactions for moving objects between NVM and
flash.

The main goal of read-triggered compactions is to improve the
ratio of reads served from NVM. Read-triggered compactions have
three stages: detection, invocation, and monitoring. In the detec-
tion stage, PrismDB checks if the write-triggered compactions
aren’t keeping up with popularity distributions, by detecting read-
dominated workloads where a large proportion of the keys in the
tracker are stored on flash. If so, it triggers compactions for an
epoch (by default 1 M client operations). At the end of each epoch,
the monitoring stage tracks the ratio of reads served from NVM
vs. flash. If the compactions triggered in the previous epoch im-
proved that ratio above a threshold (default 1%), it continues the
compactions for next epoch. If not, it enters a cool-down period
(default 10 M operations). At the end of that period, read-triggered
compactions resume again from the detection stage.

6 IMPLEMENTATION

In this section, we describe PrismDB’s implementation. PrismDB
is written in C++. It is built on top of Google’s B-tree [26], the
SST file format from LevelDB [27] and the slab implementation
for NVM from KVell [39]. Figure 6 depicts PrismDB’s principal
components. Every partition in PrismDB runs two threads, both of
which synchronize using a single partition lock. A worker thread
(depicted as a straight line) handles foreground client operations,
including looking up, reading objects and writing data to NVM. It is
also responsible for tracking object popularity and its distribution
in the tracker and mapper. A compaction thread (depicted as a
dashed line) runs in the background and is triggered intermittently
to free space on NVM and re-balance data popularity so hot objects
are always stored on NVM.

Interface. PrismDB supports 4 types of operations: Put(k,v),
Get(k), Delete(k) and Scan(k,n). Client requests are forwarded
to the appropriate partition worker based on the operation key. The
worker thread always acquires the partition lock before processing
the request and releases it at the end.

Put (k,v) writes the key k with value v to NVM. The worker
thread checks if the partition’s B-tree index has that key. If the key
is not present, it selects the slab file based on the object size, and
inserts the object to a free slot location within the slab. Then it
inserts the key and its disk location in the partition’s B-tree index.
If the key is present, the worker thread checks if the new object size
still fits within the original slab size range. If it does, it performs an
in-place update to the same disk location. Otherwise, it deletes the

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

object from the current slab and performs a fresh insert to the new
slab. Then it updates the object’s B-tree index entry with new disk
location. Lastly, the worker thread updates the key popularity in
the tracker.

Get (k) returns the most recent version of the key if found. The
worker thread checks if the key is in the B-tree index. It the key is
present, it reads the object from the slab file on NVM. Otherwise,
it checks the index and filter blocks of the SST files and reads
the object from flash. Lastly, the worker thread updates the key
popularity in the tracker.

Delete(k) first looks up the key. If the key exists in NVM, it
is deleted from the B-tree index and its slab slot is reclaimed. If
the key is present on flash, the worker thread performs a fresh
insert to NVM with a special delete tombstone entry. Eventually,
both the NVM tombstone and the flash object will be deleted when
compaction merges them.

Scan(k,n) fetches the next n objects with keys equal to or
greater than k. The worker thread runs a two-level iterator, one on
NVM objects and the other on flash objects. In every iteration, it
compares the key values of objects pointed by the two iterators and
selects the smaller object, and then moves the corresponding itera-
tor pointer forward. For range queries that span multiple partitions,
PrismDB locks and scans one partition at a time.

Tracker and mapper. The tracker is built on the concurrent hash
map implementation from Intel’s TBB library [31]. The hash-map
index is the object key and each index stores a 1-byte value - two
bits for clock and one bit for object location (NVM or flash). When
a database client calls Get or Put, the worker thread inserts the key
into the tracker. An insert operation can also invoke an eviction.
Keys are initially inserted into the tracker with a value of 0 (min
popularity), and keys accessed afterwards have their value set to 3
(max popularity). During eviction, clock values get decremented as
per the clock algorithm, and keys with clock values of 0 are evicted.
The clock value is stored as an atomic variable. Thus, looking up a
clock value does not need to be serialized with eviction. The mapper
is implemented as an array of four atomic integers; each tracks the
number of keys with a particular clock value.

Compaction thread. Once triggered, the compaction thread first
acquires the partition lock. It uses MSC to select a compaction key
range and only picks unpopular objects for compaction. Next, the
compaction thread reads these objects from NVM and the over-
lapped SST file(s) to memory, merge-sorts them and rewrites live
objects as new SST file(s) back to flash. This stage consumes the
most time in the compaction (seconds). Therefore, the compaction
thread releases the lock before merging the files. We use a reference
counting scheme, similar to RocksDB [64] to track live SST files
in flash. This guarantees that compaction doesn’t delete a SST file
that is being used by a concurrent Get or Scan iterator. Concurrent
client writes can update a compacted object with a more recent
version. The compaction thread ensures data correctness by re-
acquiring the partition lock to check if the version on NVM has
changed, and if it has, it skips deleting that item. To do so, PrismDB
uses a lightweight compaction bitmap to track whether a object
has changed its value since compaction.

MSC metric. By default, the approx-MSC metric uses a bucket size
of 64K keys, which is equal to the average number of keys in an SST

186

(
(
(
(

Ashwini Raina, Jianan Lu, Asaf Cidon, and Michael). Freedman

Table 4: YCSB workload description.

Type Description (read%, update%)

write heavy A (50%, 50%), F (50%, 50% read-modify-writes)
read heavy B (95%, 5%), C (100%, 0%), D (latest; 95%, 5%)
scan heavy E (95% scans, 5% updates)

file. The global key space is divided into consecutive buckets. Every
bucket contains four fields: num_nvm_keys (a counter of the number
of keys present on NVM), pop_bitmap (a bitmap of key popularity),
nvm_bitmap (a bitmap of keys on NVM), and flash_bitmap (a
bitmap of keys on flash). Access to these fields is protected by the
partition lock.

Puts increment num_nvm_keys in the corresponding bucket. Com-
paction decrements it for each overlapped bucket since it knows
exactly which keys to remove from NVM after identifying all un-
popular keys in the selected compaction key range. pop_bitmap
provides much faster access than looking up objects in the B-tree
and the mapper. Gets set the key’s bitmap value to 1, while evictions
from the tracker set the value to 0. Keys with value 0 are treated as
cold objects and have a coldness value of 1. This way, pop_bitmap
approximates a key’s popularity and coldness score without retriev-
ing the accurate clock value from the mapper. nvm_bitmap tracks
keys present on NVM. Puts set the key’s bit to 1, while compactions
set it to 0. flash_bitmap tracks if a key has any version (latest or
older) present on flash. Compactions set the key’s bit to 1, while
Deletes set it to 0. nvm_bitmap and flash_bitmap piece together
information about overlapped keys. AND-ing the two bitmaps and
counting the number of bit 1 gives the total keys that exist on both
NVM and flash.

Given a compaction key range, we sum over weighted param-
eters from each overlapped bucket to estimate the values of p, o,
F, and coldness, and to compute an MSC score for the compaction
key range. The weight of each bucket equals to the ratio of the
overlapped region to bucket size. A concrete example of how MSC
metric is computed is provided in §B.1.

Isolation and crash consistency PrismDB guarantees atomicity
of individual writes and provides read-committed isolation (default
in RocksDB, PostgreSQL). The current version doesn’t support
atomic batched writes, transactions and snapshots. We leave that
for future work. PrismDB does not use a write-ahead log for crash
recovery. Instead, client writes are committed synchronously to
their NVM slab locations. PrismDB ensures crash consistency on
NVM using a logical timestamp entry. It is part of the object meta-
data and is synchronously written to disk along with the object.
See §B.2 for details.

7 EVALUATION

We evaluate PrismDB by answering the following questions:
1) How does PrismDB compare to baselines (§7.1)?

2) Which workloads does PrismDB benefit (§7.2, §7.3)?

3) How do compactions impact performance (§7.4)?

4) How to set the pinning threshold (§7.4)?

Configuration. We performed our experiments on a 32-core, 64 GB
RAM machine running Ubuntu 18.04. Intel Optane SSD P5800X
(NVM), Intel 760p (TLC NAND) and Intel 660p (QLC NAND) are

Efficient Compactions between Storage Tiers with PrismDB

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

600{ —® prismdb % rocksdb-RA mm rocksdb % rocksdb-L2C s rocksdb-RA

i ® rocksdb rocksdb-L2C === mutant e prismdb
2 —¥- mutant 4]
@ 9 ,
'@ 400 3007 £ g251 g
=3 o 2 a S 7
2 M ® 3 2200 7
3 2) Lo~ g
= a a o A
+ 200 ° $ 2001 2, 3 Q15 7
g ,, ¥ K s 7

L] = N & 1o0-

0 3 100 g1 H
10 3134 58 130 190 250 = s £051
glctic ¥ het20 het50 het75 nvm <5 2
het10 0 read update read update 00 ead update read update
storage cost (cents/GB) A B C D E F YCSB-A YCSB-B YCSB-A YCSB-B
() (b) (c) (d)

Figure 7: (a) Throughput vs. storage cost under YCSB-A. “hetX” means heterogeneous or multi-tier setup with X% on NVM, (b)
YCSB Throughput, (c) YCSB normalized median latency, and (d) YCSB normalized p99 latency.

2000 mmm rocksdb 150 = rtn_ckst::;reaiij
S BRRR prismdb m prismdb rea
o 1500 P S —@— rocksdb update
g —¥— prismdb update
2 2100 sme Y
s 5
v 1000 =
5 o 50
2 s00 a
0
O nif 4 6 8 99 12 14 unif 4 .6 .8 99 12 14
(@) (b)

1001 hram NVM ;LM
—_ 80
§ 1000 /
- 60 /
9
5
+ 100 40
- —»— rocksdb read
g prismdb read 20 —=— prismdb
o —@— rocksdb update —<— rocksdb

101 —¥— prismdb update \ 0

. 10° 10t 102
unif 4 6 .8 .99 1.2 14 read latency (us)
() @

Figure 8: (a-c) YCSB-A performance with different Zipfian parameters, and (d) Read latency cdf on YCSB-B

locally attached to this machine. All baselines are evaluated using 8
clients. PrismDB uses 8 partitions (except Figure 11c). Each partition
uses 2 threads, a foreground thread to handle reads/writes and
clock-related operations and a background thread for compaction
(Figure 6). The key space is range-partitioned into equal partitions.
LSM based baselines are configured with 8 background threads.

We use a CPU cgroup of 10 cores in our experiments and set the
memory cgroup to one-tenth of database size. 20% of the memory
is used as block cache for LSM systems (as is standard [20]). By
default, we use only 10 CPU cores, because PrismDB is able to
fully utilize Optane SSD’s bandwidth with only 10 cores. However,
LSM-based baselines bottleneck on CPU and underutilize Optane
SSD’s I/O even with only 10 cores. For PrismDB, we set the tracker
size to 20% of the total key space and pinning threshold to 70%.
Other settings are default ones used in RocksDB.

Workloads. We run YCSB (Table 4) and three Twitter production
workloads [76]. For YCSB, by default we use YCSB-A with Zipfian
0.99 distribution, 100 M key dataset and a fixed 1 KB object size
(total database size of 100 GB). For the update-heavy workloads (A
and F) the first half of the trace is used as a warm-up period. For
read-heavy workloads (B, C and D), we run 300 M requests with a
longer warm-up (80%) to allow the promotion-based compactions
to take effect. The scan workload is run with 10 M requests and a
50% warm-up.

We choose three representative Twitter traces [76] with varying
read to write ratios and distributions. Write heavy trace (cluster39)
has 6:94 read write ratio (uniform writes). Mixed trace (cluster19)
has 75:25 read write ratio (zipfian reads, uniform writes). Read
intensive trace (cluster51) has 90:10 read write ratio (zipfian reads
and writes).

Baselines. We compare PrismDB against five baselines: RocksDB
(v6.2.0), RocksDB that uses NVM as an L2 read cache (labeled

187

rocksdb-12¢), our initial read-aware LSM prototype from §3 (labeled
as rocksdb-RA), and two academic LSM KV stores, Mutant [79]
and SpanDB [13]. Mutant is a storage layer for LSMs that tracks
access popularity of SST files and places them across heterogeneous
storage accordingly. SpanDB uses SPDK [69] on the Optane drive to
bypass the kernel’s I/O overheads. Since SpanDB by design bypasses
the page cache and persists all WAL writes to disk synchronously,
we evaluate it separately by enabling fsync mode in RocksDB and
PrismDB to persist all writes synchronously (RocksDB by default
does not fsync the WAL). All figures in evaluation section, except
Figure 9, use the default RocksDB setting of asynchronous WAL
writes.

We considered comparing against PebblesDB [55], an LSM-based
KV store that trades read performance for write throughput. How-
ever, in our experiments, RocksDB consistently outperformed a
tuned PebblesDB on all YCSB workloads (also observed by oth-
ers [25]). Also, PebblesDB does not have support for tiered storage,
so we do not use it as a baseline. All multi-tier experiments use 20%
NVM allocation (except in Section 7.1).

7.1 Single-tier vs. Multi-tier

Figure 7a compares the average throughput and storage cost be-
tween PrismDB and baseline systems under seven configurations:
three single-tier configurations (NVM, TLC, and QLC) and four
multi-tier configurations (het). Note that since default RocksDB
places data in different storage types on a level granularity, we
cannot create a configuration that will match every point on the X
axis with a fixed LSM tree shape.

As expected, for regular RocksDB, NVM outperforms single-tier
TLC NAND and QLC NAND setup, which uses denser and slower
flash. Surprisingly, the QLC setup slightly outperforms TLC, which
we attribute to the internal cache on the newer QLC device. Across

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

the multi-tier setups, the higher the proportion of NVM, the bet-
ter the performance. Interestingly, the L2 cache configuration of
RocksDB consistently underperforms the level-by-level configu-
ration. The reason for this is that the L2 cache serves as a read
cache, but not a write cache. All writes go to flash, which is slow.
Additionally, the L2 cache needs to load frequently updated objects
from flash to NVM which degrades system throughput.

PrismDB significantly outperforms the baselines on all multi-tier
storage setups. Notably, the het10 configuration with PrismDB has
3.3X better throughput and 2x lower tail latency than RocksDB
with pure TLC, which is the default way RocksDB is deployed
in datacenters today, while costing almost the same ($0.34/GB vs.
$0.31/GB). Note these prices fluctuate on a daily basis. Mutant’s per-
formance is equivalent to RocksDB’s, because it maps popular files
to NVM, this comes at the cost of triggering more compactions, es-
pecially for write-dominated workloads like YCSB-A. For example,
Mutant incurs 59% more background compactions on this workload.
In addition, Mutant’s mapping is coarse grained, since it makes
placement decisions on a file-by-file basis, and a single file may
have objects with varying popularity. Read aware RocksDB suffers
from the trade-off between pinning and compaction efficiency. Per-
formance gains from serving more reads from NVM are negated
by increased compactions, thus offering little to no throughput or
latency advantage.

7.2 Multi-tier Storage

YCSB Sweep. Figure 7 (b-d) compares the throughput, median
and 99th percentile latencies across the different YCSB workloads.
Mutant slightly outperforms RocksDB on read-friendly workloads
(YCSB-C and YCSB-D) because it can map popular SST files to
NVM better under low compaction churn. RocksDB’s L2 cache
configuration performs better than RocksDB in limited workloads
(YCSB-D only). PrismDB consistently outperforms all baselines for
point queries, in terms of throughput and tail latency, due to its more
efficient data layout and compaction algorithm. Notably, it is able
to outperform the baselines even for YCSB-B and YCSB-C, which
are read-heavy and read-only, respectively. In these workloads,
PrismDB’s promotions get triggered to migrate hot data that may
have been compacted in the past to flash. However, PrismDB offers
the biggest performance improvement for workloads that include a
significant percentage of writes (e.g., YCSB-A). For that workload,
PrismDB saves more than 1.9x CPU and does more useful work
compared to LSM-based stores that still need to run traditional
compactions on NVM.

The only YCSB workload where PrismDB does not outperform
the baselines is the scan workload. RocksDB in particular is opti-
mized for scans. It uses a sophisticated prefetcher that proactively
fetches blocks, which greatly improves its performance for pre-
dictable scan patterns. When we disable RocksDB’s prefetcher, we
find both systems exhibit comparable performance under scans. We
leave implementing a prefetcher for PrismDB as future work.

PrismDB uses clock based LRU for the tracker, as it is a common
caching policy used by many systems e.g., RocksDB’s block cache.
However, clock based LRU policy is not ideal for every workload.
Large workloads like scans that access many objects in the database

188

Ashwini Raina, Jianan Lu, Asaf Cidon, and Michael). Freedman

300

— = rocksdb Z6] = rocksdb

g 250 B 0000@ = spandb § 5/

= W prismdb ® mm prismdb

22004 a4

X 2,

] 150 2

[=% Nolt

51001 ©

3 Eq)

< S

£ 501 c o e

S
read update read update
F YCSB-A YCSB-B

(b)

Figure 9: Performance with fsync enabled.

can cause tracker to evict keys often. Since PrismDB’s scan imple-
mentation locks a partition and then reads the objects, if an object
in the scan range was evicted by the tracker, that object won’t be
migrated to flash till the scan query on that partition completes.
Therefore, tracker evictions have no impact on concurrent scan
queries. However, future queries may be impacted by such evic-
tions. Prior work [42, 80, 81] has explored techniques specific to
improving scan performance. PrismDB by default is optimized for
point query lookups. We leave the optimization of pinning popular
scan ranges on NVM for future work, and we plan to explore some
of the existing techniques, such as REMIX [81] which implements
a cache optimized for range queries.

Data skewness. Next, we evaluate how data skewness impacts
PrismDB. Figure 8 presents the results of a key distribution sweep
using YCSB-A. PrismDB is able to provide a throughput benefit
under all distributions. For highly skewed workloads, due to popu-
larity tracking and data pinning, PrismDB serves more reads from
DRAM or NVM and absorbs more writes as in-place updates in
NVM, delivering superior performance. For uniform workloads, due
to PrismDB’s partitioned design and NVM data layout, it has much
lower tail latency compared to RocksDB. RocksDB does excessive
compactions across levels which are known to severely impact tail
latency [6].

To better understand why PrismDB provides better read latency,
we plot a CDF comparing the latencies of PrismDB to RocksDB
on read-heavy YCSB-B (Figure 8d). As expected, the figure shows
that PrismDB serves a lower percentage of its requests from flash
c