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Abstract. Combining and analyzing data collected at multiple adriative lo-
cations is critical for a wide variety of applications, suehdetecting malicious
attacks or computing an accurate estimate of the populafityeb sites. How-
ever, legitimate concerns about privacy often inhibitijggsation in collaborative
data aggregation. In this paper, we design, implement, saldia@e a practical
solution for privacy-preserving data aggregation (PDApama large number of
participants. Scalability and efficiency is achieved tlgloa “semi-centralized”
architecture that divides responsibility betwegmaxy that obliviously blinds the
client inputs and alatabase that aggregates values by (blinded) keywords and
identifies those keywords whose values satisfy some evafutanction. Our so-
lution leverages a novel cryptographic protocol that pbbyarotects the privacy
of both the participants and the keywords, provided thakyrnd database do
not collude, even if both parties may be individually malies. Our prototype
implementation can handle over a million suspect IP addgeper hour when
deployed across only two quad-core servers, and its thpuigstales linearly
with additional computational resources.

1 Introduction

Many important data-analysis applications must aggredata collected by multiple
participants. ISPs and enterprise networks may seek te stadfic mix information to
more accurately detect and localize anomalies. Similadifaboration can help iden-
tify popular Web content by having Web users—or proxies rwoimig traffic for an
entire organization—combine their access logs to deteazrttie most frequently ac-
cessed URLSs [1]. Such distributed data analysis is singilarportant in the context of
security. For example, victims of denial-of-service (Dafpcks know they have been
attacked but cannot easily distinguish the malicious selfPcaddresses from the good
users who happened to send legitimate requests at the sameSince compromised
hosts in a botnet often participate in multiple such attagkgims could potentially
identify the bad IP addresses if they combined their measein¢ data [39]. Coopera-
tion is also useful for Web clients to recognize they haveiresz a bogus DNS response
or a forged self-signed certificate, by checking that therimiation they received agrees
with that seen by other clients accessing the same Web &itd I3 In this paper, we
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present the design, implementation, and evaluation of ficiesft, privacy-preserving
system that supports these kinds of data analysis.

Today, these kinds of distributed data aggregation andysisalck privacy pro-
tections. Existing solutions often rely on a trusted (tgflic centralized) aggregation
node that collects and analyzes the raw data, thereby fepbath the identity and in-
puts of participants. There is good reason to believe thibits participation. ISPs and
Web sites are notoriously unwilling to share operation#hdéth one another, because
they are business competitors and are concerned about comngprg the privacy of
their customers. Many users are unwilling to install sofsveiom Web analytics ser-
vices such as Alexa [1], as such software would track andrtepvery Web site they
visit. Unfortunately, even good intentions may not tratest® good privacy protec-
tions, demonstrated all too well by the fact that large-sciata breaches have become
commonplace [35]. There certainly are non-Internet apfibois as well. Patients could
benefit from the aggregated analysis of medical data, boifgignt privacy concerns—
and regulation in the form of HIPAA and laws—understanddishjt deployment in
practice. As such, we believe that many useful distributa@-énalysis applications
will not gain serious traction unless privacy can be ensured

Fortunately, many of these collaborative applicationseh@aommon pattern: ag-
gregating participants’ inputs on common input keys ane@piidlly analyzing the re-
sulting intersection. When designed with privacy in mine, refer to this problem as
privacy-preserving data aggregation (PDA). Namely, each participapt (or client) au-
tonomously makes observations abealties associated witleys, i.e., input key-value
tuples(k;, v;). The system jointly computes a two-column input tableThe first col-
umn of T is a set comprised of all unique keys belonging to all pgrtinis (thekey
column). The secondyalue column is comprised of value3 [k;] that are the sum or
union of all participant’s values fdt;. This is akin to a database join on matching keys
across each participant’s input (multi)set.

We consider two different forms of this functionality: (aygregation-only (PDA),
where the output s just the value column, ando@)ditional-release (CR-PDA), where
the protocol also outputs a key if and only if some evaluation functiofi(vj|v; ;) is
satisfied. For example, our botnet anomaly detection is starce of over-threshold
set intersection—also known as the heavy-hitter or icedetgction problem—where
the goal is to detect keys that occur more than some threshmidber of times across
all participants. Here, the keys refer to IP addresses, each valug is 1, and f
is true iff its cardinality exceeds some thresheldi.e., if values are aggregated as
T[ki] «— T[ki] +1,is T[k;] > 7?)

A practical PDA system should provide the following:

4 In fact, since CR-PDA also releases the value column of 58 kene can choose the functign
based on the value table itself. (For example, in the casearhaly detection the dataset may
naturally expose a clear gap between frequency counts ofai@nd anomalous behavior, and
so it makes sense to set the frequency threshadrrespondingly.) This increases the utility
of the system by letting the data operators “play” with rawad@vithout seeing the keys).
However, one should note that in some scenarios this addltinformation may be seen as a
privacy violation.



Keyword|Participan Lack of

Approach Privacy | Privacy | Efficiency |Flexibility [Coordinatio
Garbled-Circuit Evaluation [42,3] Yes Yes Very Poor| Yes No
Multiparty Set Intersection [16, 28] Yes Yes Poor No No

Hashing Inputs [17, 2] No No Very Good| Yes Yes
Network Anonymization [11] No Yes |Very Good| Yes Yes
This paper Yes Yes Good Yes Yes

Table 1: Comparison of proposed schemes for privacy-preseing data aggregation

— Keyword privacy:No party should learn anything about inputted keys. That is,
given the above aggregated tablgeach party should only learn the value column
T|[k;] at the conclusion of the protocol. In the case of CR-PDA iparhould only
learn the keyg:; whose corresponding valtgk;] satisfiesy.

— Participant privacy:No party should learn which key inputs belongs to which par-
ticipant (except for information which is trivially dedugtérom the output of the
function). This is formally captured by showing that thetpawl leaks no more in-
formation than an ideal implementation that uses a trustied party, a convention
standard in secure multi-party computation [19].

— Efficiency: The system should scale to large numbers of participanth, ganer-
ating and inputting large numbers of observations (key&aliples). The system
should be scalable both in terms of the bandwidth consunedrfwnication com-
plexity) and the computational complexity of executing EH2A.

— Flexibility: There are a variety of computations one might wish to perfover
each key's values[k;], other than the sum-over-threshold test. These may include
finding the maximum value for a given key, or checking if thedmea of a row
exceeds a threshold. A single protocol should work for a wéage of functions.

— Lack of coordination: Finally, the system should operate without requiring that
all participants coordinate their efforts to jointly exéesome protocol at the same
time, or even all be online around the same time. Furtherpmorset of participants
should be able to prevent others from executing the protocol

Classes of solutions.In this work, we consider privacy-preserving data aggriegat
as a form of the generakcure multiparty computation problem, where multiple par-
ticipants wish to jointly compute some value based on imtligily-held secret bits of
information without revealing their secrets to one anothee theoretical cryptographic
literature provides generic solutions for this problemethélso satisfy very strong no-
tions of security [42, 20, 4, 7]. In general, however, thessds are not efficient enough
to be used in practice. Few have ever been implemented @28])1 let alone operated
in the real world [5]. Moreover, they do not scale well eith@targe data sets or to a
large number of participants. More efficient solutions efdsspecial cases of the PDA
problem, such as secure set intersection [13, 30, 27, 165283, 10]. However, while
some of these solutions are quite efficient when the numbmanticipants is small (e.g.,
2), none of them achieve practical efficiency in our settifgere there are hundreds or
thousands of participants each generating thousands wisinp

5 For example, a careful protocol implementation of [16] fduwo sets of 100 items each took
213 seconds to execute [18].



On the other extreme, ad-hoc solutions for PDA can be hidffilsient. Rather than
building fully decentralized protocols, we could aggregdata and compute results
using a centralized server. One approach is to simply héeatslfirst hash their keys
before submitting them to the servexd., using SHA-256), so that a server only sees
H(k;) [2]. While it may be difficult to find the hash function’s prexage, brute-force
attacks may be possible. In our intrusion detection apfitinafor instance, a server can
easily compute the hash values of all four billion IP addesssd build a simple lookup
table. Thus, while efficient, this approach fails to achieiteer keyword or participant
privacy, with the latter not achieved because a client stgits inputs directly to the
server. That said, one possible approach for participanagy would be to proxy a
client’'s request through one or more intermediate proXiastiide the client’s identity
(eg., its IP address), as done in network anonymity systems suébrg11].

Table 1 summarizes these design points. An important gadligfvork is to pro-
vide a solution between these two extrenigs,a protocol that is efficient enough to be
used in practice and at large scale, yet also provide a mgfahlavel of security that is
formally provable. There are various ways one could imagiarakening the strongest
notions of secure multi-party computation, which provid&gcy guarantees against
any malicious participant. A standard relaxation would be tdyauarantee privacy
againsthonest-but-curious parties, in which participants learn no information pradd
that they faithfully execute the correct protocol. Anothpproach would be to provide
privacy against all small coalitions of malicious partiBat in the large settings we con-
sider, it may be easy for a single party to forge multiple tdtgss and thus circumvent
such protections, the so-called Sybil attack [12].

Instead, we focus on providing security against any maljoarticipant, provided
that there exists a small set of well-known parties that dacotbude. This is a natural
model that already appears in real-world scenarios, subleascrats and Republicans
jointly comprising election boards in the U.S. politicakgm. For our specific exam-
ples, business competitor ISPs like AT&T and Sprint couidt]g provide a service like
cooperative DoS detection. Or, it could be offered by thuedty entities who have no
incentive to collude. Such non-collusion assumptionsaalyeappear in several crypto-
graphic protocols [8, 14]. It should be emphasized thatahesl-known parties should
not be treated as trusted: we only assume that they will nibidm Indeed, jumping
ahead, our protocols do not reveal sensitive informaticgittzer party.

Contributions. In this paper, welesign, implement, and evaluate privacy-preserving
data aggregation—through logical centralization over alsnumber of non-colluding
parties—that provably offers privacy-preserving dataraggtion without sacrificing
efficiency. Rather than full decentralization (as in seauréti-party computation) or
full centralization (as typical in trusted-party solut&nour PDA architecture is split
between well-known entities playing two different rolegraxy and adatabase (DB).
The proxy plays the role of obliviously blinding client ingsu as well as transmitting
blinded inputs to the DB. The DB, on the other hand, buildshéetthat is indexed by
the blinded key and aggregates each row’s values (eithegrmentally or after some
time). While most of the paper will focus on the case of onlg ®wntities—one proxy
and one DB—we also show how to extend the protocol to largerhaus of parties.



The resulting system provides strong keyword and partitipaivacy guarantees,
provided that the well-known entities—which operate thexgrand the database—do
not collude. Specifically, we describe two variants of thetpcol which provides the
following notions of security (see Appendix A for more détgi

— Privacy of PDA against malicious entities and malicious gaipants Even an ar-
bitrary coalition of malicious participants, togetherhvéither a malicious proxy or
DB, learn nothing about other participants’ inputs (exdagépt implied by the pro-
tocols’ output). Such a coalition may violate correctnesalimost arbitrary ways,
however. Similar notions of security have appeared befdzel5, 23].

— Privacy of CR-PDA against honest-but-curious entities amdalicious partici-
pants Our CR-PDA protocol achieves full security in the “ideabf”’ framework.
This holds with respect to malicious coalitions of partanips, as well as honest-
but-curious coalitions between participants and the DBroky

Using a semi-centralized architecture greatly reducesadip@aal complexity and
simplifies the liveness assumptions of the system. Cliesntsasynchronously provide
inputs without our system requiring any complex schedulidespite these simplifica-
tions, the cryptographic protocols necessary to providingt privacy guarantees are
still non-trivial. Specifically, our solution makes use dfliwious pseudorandom func-
tions [33, 15, 23], amortized oblivious transfer [31, 24jdehomomorphic encryption
with re-randomization. In summary, the contributions a$ thaper include:

— We demonstrate a tradeoff between efficiency and securityuhi-party compu-
tation. Our protocols achieve a relatively strong notiopiafvable security, while
remaining practical for large numbers of participants vattge input sets.

— At an abstract level, we introduce and implement a new ciyatohic primitive
that extends the notion of oblivious pseudorandom fundi@®RF) as follows: A
sender with inpuf: communicates with a receiveia a mediator who holds a PRF
key s. At the end of the protocol, the receiver learfig k), and the sender and
mediator learn nothing. We believe that this notion, as aelbur specific imple-
mentation, are of independent cryptographic interest aayllme useful elsewhere.

— There are very few implementations of secure multi-partypotation ([28, 3, 5]),
and our system is one of the first to demonstrate practicalefity. To our knowl-
edge, it also includes the first implementation of some aggtphic machinery we
use as sub-protocols.¢., amortized oblivious transfer [24]); our evaluation show
that they realize significant benefits in practice.

— Finally, we illustrate that our system provides a level offpemance that is suf-
ficient for several applications of interest, including araly detection, certificate
cross-checking, and distributed ranking.

The remainder of this paper is organized as follows. Se¢@odescribes our PDA
protocols and sketches proofs of their privacy. We desaibiesystem architecture and
implementation ir{3, evaluate its performanced, and conclude i§5. The appendix
details some security definitions, protocol extensiond,@oofs.
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Fig. 1: High-level system architecture and protocol. Condional release extensions to PDA
are steps 4 and 5, as well as additional input in step 2 (all sk in blue). F is a keyed hash
function whose secrets is known only to the proxy.

2 Our Protocols

In this section, we describe our protocols and analyze gegiurity. We first describe
a simplified version of the CR-PDA protocol that achieves eoimat weaker security
properties, and we then extend this protocol to supportangér notion of security.
We conclude by explaining how to adopt the CR-PDA protocaltpport the (simpler)
case of the PDA functionality and sketch an extension to #se ©ft > 2 mutually-
distrustful parties. Formal security proofs are defercethe full version of this paper.

2.1 The Basic CR-PDA Protocol

Our protocol consists of five basic steps (see Figure 1).d@ditkt two steps, the proxy
interacts with the participants to collect the blinded kmgether with their associated
values encrypted under the DB’s public key, and then pa$msetencrypted values
on to the DB. Then, in the next two steps, the DB aggregateilihged keys with the
associated values in a table, and it decides which rows dib@ulevealed according to a
predefined functiorf. Finally, the DB asks the proxy to unblind the correspondiens.
Since the blinding schemg; is not necessarily invertible, the revealing mechanism
uses additional information sent during the first phase.speeific steps are as follows.

— Parties Participants, Proxy, Database.

— Cryptographic Primitives: A pseudorandom functiof’, where F(k;) denotes
the value of the function on input; with a keys. A public-key encryption,
whereEy (x) denotes an encryption efunder the public key K.

— Public Inputs: The proxy’s public keyRrx, the database’s public keys.

— Private Inputs. Participant: A list of key-value pairgk;, v;). Proxy: key s of PRF
I and secret key foprx; Database: secret key foDB.

1. Each participant interacts with the proxy as follows. Each entry(k;, v;) in its
list, the participant and the proxy run a sub-protocol folivabus evaluation of
the PRF (OPRF). At the end of this sub-protocol, the proxyriganothing and
the participant learns only the valué (k;) (and nothing else, not evey). The
participant compute&pg (Fs(k;)), Epg(vi), and Epg(FEprx(k:)), and it sends
them to the proxy. (The last entry will be used during the ading phase.) The
proxy adds this triple to a list and waits until most/all peigants send their inputs.

2. The proxy randomly permutes the list of triples and sehdsésult to the DB.



3. The DB decrypts all the entries of each triple. Now, it lsoddlist of triples of the
form { F(k;), vi, Eprx(k;) ). If a valuev; is not valid {.e.,, v; ¢ D, whereD is

the domain of legal values), the corresponding triple istdi The DB inserts
the valid values into a table which is indexed by the blindeg K;(%;). At the

end, the DB has a table of entries of the foftﬁs(ki), Tlki], E[ki]>. T[k;] is some

aggregation of all;’s that appeared with; (e.g., the actual values or, for threshold
set intersection, simply the number of times thawvas inputted)E[£;] is a list of
values of the fornEprx(k).

4. The DB uses some predefined functipmo partition the table into two part®,
which consists of the rows whose keys should be revealedHamdhich consists
of the rows whose keys should remain hidden. It publishesadhes column of the
tableH (without the blinded-keys) and senBgo the proxy.

5. The proxy goes over the received taRland replaces all the encryptétbrx(k;)
entries with their decrypted key. It then publishes the updated table.

Security Guarantees. This protocol guarantees privacy against the following:

Coalition of honest-but-curious (HBC) participant€Consider the view of an HBC
participant during the protocol. Due to the security of theRT, a single participant
sees only a list of pseudorandom valuesk; ), and therefore this view can be easily
simulated by using truly random values. The same holds fgrcaalition of partici-
pants. In fact, this protocol achieves reasonable secagigynst malicious participants
as well. The interaction of the proxy with a participant isrqaetelyindependent of the
inputs of other participants. Hence, even if participamesraalicious, they still learn
nothing about other participants’ inputs. Furthermoreremalicious participants will
be forced to choose their inputsdependently of other honest participants. (See [31,
23] for similar security definitions.) However, maliciouarficipants can still violate
thecorrectness of the above protocol. We fix this issue in the extended piatoc

HBC coalition of proxy and participantsThe proxy’s view consists of three parts:
(1) the view during the execution of the OPRF protocol—tlngg no information due
to the security of the OPRF; (2) the tuples that the partitipaend—these values are
encrypted under the DB’s key and therefore reveal no inftiomao the proxy; and (3)
the value column of the tabld and the key-value pairs that the DB sends during the
last stage of the protocol (encrypted under the proxy’s-keh)s information should
be revealed anyway as part of the the actual output of thegobt

This argument generalizes to the case where the proxy edlwith HBC partici-
pants: their joint view reveals nothing about the inputshefthionest participants.

HBC databaseThe DB sees a blinded list of keys encrypted under his pulgc k
DB, without being able to relate blinded entries to their ovgn&or each blinded key
F,(k;), the DB sees the list of its associated valués;] and encryptions of the keys
under the proxy’s keyRrx. Finally, the DB also sees the key-values pairs that were
released by the proxy.€., , the tableR which is chosen by). The valuesF; (k;) and
Eprx(k) bear no information due to the security of the PRF and theygtion scheme.
Hence, the DB learns nothing but the taBland the value column di, as it should.

2.2 A More Robust Protocol
We now describe how to immunize the basic protocol againshger attacks.



HBC coalition of participants and DB. The previous protocol is vulnerable against
such coalitions for two main reasons.

First, a participant knows the blinded versibg(k;) of its own keysk;, and, in ad-
dition, the DB can associate all the valug;] to their blinded keys(k;). Hence, a
coalition of a participant and a DB can retrieve all the valli§:;] that are associated
with a keyk; that the participant holds, even if this kdyould not be revealed accord-
ing to f. To fix this problem, we modify the first step of the protocaoistead of using
an OPRF protocol, we will use a different sub-protocol in ethihe participant learns
nothing and the proxy learns the valfigg (F;(k;)) for eachk;. This solves the prob-
lem as now that participant himself does not know the blingggdion of his own keys.
To the best of our knowledge, this version ofemncrypted-OPRF protocol (abbreviated
EOPRF and detailed i§2.3) has not previously appeared in the literature.

Second, we should eliminate subliminal channels, as thesde used by partici-
pants and the DB to match the keys of a participant to themdeld versions. To solve
this problem, we use an encryption scheme that suppor@nasmization of cipher-
texts; that is, given an encryption af with randomnes$, it should be possible to
recompute an encryption afunder fresh randomnegs(without knowing the private
key). Now we eliminate the subliminal channel by asking ttexg to re-randomize the
ciphertexts—Epg(Fs(k;)), Epg(v;), andEpg (Eprx(k:))—which are encrypted un-
der the DB'’s public key (at Step 1). We should also be able-tanelomize thénternal
ciphertextEprx(k;) of the last entry as well.

Coalition of malicious participants. As we observed, malicious participants can vi-
olate the correctness of our protocely., by trying to submit ill-formed inputs. Re-
call that the participants are supposed to send to the prapdes (a,b, ¢), of the
forma = Epg(Fs(k;)),b = Epg(v;) ande = Epg(Eprx(k;)) for somek; and
v;. However, a cheating participant might provide an incdesistuple, in which

a = Epp(Fs(k;)) while ¢ = Epg(FEprx(k.)) for somek, # k;. To prevent this
attack, we let the proxy apply a consistency checR fa the last step of the protocol.
The proxy makes sure th@iprx(k;) and Fs(k;) match, and otherwise omits the in-
consistent values. Then the DB checks again if the correipgmow should still be
revealed.

A cheating participant might also try to replat&ith some “garbage” valug =
Epg(v') which is not part of the legal domaih or for which he does not know the
plaintextv’. (While this might not seem beneficial in practice, we musvpnt such
an attack to meet strong definitions of security.) To prewermth attacks, we use an
encryption scheme which supports only messages taken fredoimairiD, and ask the
participant to provide a zero-knowledge proof of knowle@dk-POK) that he knows
the plaintexty to whichb decrypts. As seen later, this does not add too much overhead.

2.3 Concrete Instantiation of the Cryptographic Primitives

In the following section, we assume that the input keys goeasented byn-bit strings.
We assume that is not very large €.g., less than 192—-256); otherwise, one can hash
the input keys and apply the protocol to resulting hashedesl

Public ParametersWe mostly employ Discrete-Log-based schemes. In the fol-
lowing, g is a generator of a multiplicative group of prime orderp for which the



decisional Diffie-Hellman assumption holds. We publighy) during initialization and
assume that algorithms for multiplication (and thus for@xgntiation) inG exist.

El-Gamal Encryption. We will use EI-Gamal encryption over the gro The
private key is a random elememfrom Z;, and the public key is the pafy, h = g*).
In case we wish to “double-encrypt” a message G under two different public keys
(g9.h1) and(g, h2), we will choose a randomfrom Z* and computég®, - h”) where
h = (h1 - h2). This ciphertext as well as standard ciphertexts can bamdemized
by multiplying the first entry (resp. second entry) &y (resp.k?’), whereb' is chosen
randomly fromZ;.

Goldwasser-Micali EncryptionThe values; which are taken from the domain
will be encrypted under the Goldwasser-Micali (GM) Encigptscheme [21]. Specifi-
cally, if the domain size i&’, we represent the values Dfby all possible/-bit strings,
and encrypt such strings under GM in a bit-by-bit manner. GMescheme provides ci-
phertext re-randomization, and it allows the party who getes a ciphertextto prove
in zero-knowledge that he knows the decryptiore@nd thatc is valid (i.e., decrypts
to an/ bit string) [22]. Furthermore, both these operations anthgation cost only
modular multiplication$. Decryption cost2/ modular exponentiations, bétis typi-
cally bounded by a very small integer in our protocols. Hindghe ZK proof consists
of 3 moves and can run in parallel with the EOPRF.

Naor-Reingold PRF [33]The keys of the functionF; : {0,1}™ — G containsm
values(sy, ..., s;,) chosen randomly frord,. Givenm-bit stringk = 1 ...z, the

value of F (k) is gnwzl ®1, where the exponentiation is computed in the gréup
Oblivious-Transfer [36, 31] and Batched Oblivious Transf§24]. To implement
the sub protocol of Step 1, we need an additional cryptodecapbl called Oblivious
Transfer (OT). In an OT protocol a sender holds two strifigs?), and a receiver has
a selection bite. At the end of the protocol, the receiver learnsiigle string: « if
¢ = 0,andg if ¢ = 1. The sender learns nothing (in particular, it does not learin
general, OT is an expensive public-key operati@g.( it may take two exponentiations
per invocation and, in the above protocol, we would execufef@ eachbit of the
participant’s inpuk;). However, Ishagt al. [24] show how to reduce the amortized cost
of OT to be as fast as matrix multiplication. This “batch OTbdfcol uses a standard
OT protocol as a building block; we implemented our batch @Tap of [31].

2.4 The Encrypted-OPRF protocol

Our construction is inspired by a protocol for oblivious lexion of the PRFF' [15,
30, 31]. We believe that this construction might have furéggplications.

— Parties Participant, Proxy.
— Inputs. Participant: m-bit string & = (z1...x,); Proxy: secret keys =
(s1,-..,sm) Of a Naor-Reingold PRI

1. Proxy chooses: random valuesiq, . . ., u,, from Zy and an additional random

r € Zy. In parallel, for each < i < m: the proxy and the participant invoke the

® For the case of zero-knowledge, the protocol of [22] prosidely weak soundness at the cost
of ¢ multiplications. However, [9] provides strong soundnesargntees with amortized cost
of £ modular multiplications. Our setting naturally allows Buam amortization.



OT protocol where proxy is the sender with inp(is, s; - v;) and receiver uses;
as his selector bitig., the participant learns; if x; = 0, ands; - u; otherwise.)
The proxy also sends the valge= ¢"/ 7%,

2. The participant computes the prodilétthe values received in the OT stage. Then
it computesy™ = (g/f=i=1%:)" = F,(k)", encryptsF,(k)" under the DB’s public
keyDB = (g, h), and sends the resul§*, F(k)" - h*) to the proxy.

3. The proxy raises the received pair to the power pivherer’ is the multiplicative
inverse ofr modulop. It also re-randomizes the resulting ciphertext.

CorrectnessSinceG has a prime ordep, the pair(g®, Fs(x)" - h®) raised to the
power ofr’ = r—1, results in(g®"", F, (k) - ho"), which is exactlyEpg (F;(k)).

Privacy.All the proxy sees is the random tuple, . . ., u.,, ) and Epg (Fs(k)").
This view gives no additional information exceptBpg(Fs(k)). The participant, on
the other hand, sees the vectef' - wuy,...,s&™ - w,,), whose entries are randomly
distributed overG, as well as the valug = (g'/"*)". Sincer is randomly and in-
dependently chosen frodf;, and sinceG has a prime ordep, the elemeng is also
uniformly and independently distributed ov@r Hence, the participant learns nothing
but a sequence of random values. The protocol supportsiseagainst malicious par-
ticipants (in the sense that was described earlier) anccima$ proxy as long as the
underlying OT is secure in the malicious setting.

2.5 Efficiency of our Protocol

In both the basic and extended protocol, the round complex@donstant, and the com-
munication complexity is linear in the number of items. Thietpcol’'s computational
complexity is dominated by cryptographic operations. Fachen-bit input key, we
have the following amortized complexity: The participawhf holds the input key),
proxy and DB compute a small constant number of exponeaitistind perforn®(m)
modular multiplication / symmetric-key operations. In #ndended protocol, the DB
computes anothelg |D| exponentiations wherP is the domain of legal values. (One
can optimize the exact number of exponentiations in thechasitocol by employing
RSA instead of EI-Gamal.)

2.6 Extensions and variations

PDA Protocol. Our PDA protocol is based on the CR-PDA protocol. The proxg an
participant first use an EOPRF to send the proxy a list of pAws (Fs(k;)) and
Epg(v;). (The valueEpg(Eprx(ki)) is not needed in this case.) Then, the proxy
passes the (randomly shuffled) list to the DB, which aggesytite tuples according to

the blinded keys in the tabléFs(ki), T[ki]> and outputs the tupl€eB[k;] in a random

order. Security analysis (details omitted) is similar te firevious: malicious behavior
of either proxy or DB does not affect its own view or that of dwding participant.

Using many mutually-distrustful servers. One might want a generalized protocol
with ¢ > 2 proxies/DBs (hereafter referred to as servers), in whigbapy holds as
long asnot all of the servers collude. We now sketch one such simple exterti
our PDA protocol which works for HBC servers. This changeéases the complexity
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by a multiplicative factor of, and so we get a smooth tradeoff between security and
efficiency.

The basic idea is to make sure that both the key of the RR&nd the public key
of the databasepg) remain hidden from any coalition @¢f— 1 servers. Specifically,
each server holds a random share of an El-Gamal private keggdi.e., the sum
of the shares equals to the private key), and aeipr the Naor-Reingold PRF. We
define a PRFF;(z) to be the product of, (2),..., Fs, (x). The protocol proceeds
as follows: (1) For each inpuf:, v), each participant performs the first EOPRF step
of the previous PDA protocol with all the servers, and brastis the valudpg(v).
Thus, thei-th server learns the ciphertext&8pg (Fs, (k)), Epg(v)). In addition, the
participant supplies to each server a POK for knowing a spweding legal value.
(Some overhead can be saved here by usisigghe invocation of non-interactive ZK-
POK.) (2) Now, the servers use the homomorphism propertieEsGamal to compute
Epg(Fs(k)); they can pass th&pg(Fs, (k))’s to each other in a chain-like order or
via a broadcast. (3) Then, the servers emulate the secqnadfstiee previous protocol
to get a randomly-ordered list of decrypted pdifs(k), v). This is done int rounds:

At the i-th round, thei-th server decrypts each pair under his share of the private k
(removes the-th “layer” of encryption), rerandomizes the encryptionygles the list

in a random order, and passes the result to the next senefifd server aggregates
the values according to the blinded keys and broadcasts st .r

3 Distributed Implementation

This section describes our design and implementation okalsie PDA architecture.
For simplicity, we present the case of two administrativities, one running a single
logical proxy and the other a database. Both of these prodydatabase logical com-
ponents can be physically replicated in a relatively strdi@ward manner, however.
In particular, our design can scale out horizontally to harmdgher loads, by increas-
ing the number of proxy and/or database replicas, and thenlaliting requests across
these replicas. (Note that this replication strategy diffeom the extension for> 2
administrative entities, per Section 2.6.) Our distrilbuéechitecture is shown in Fig-
ure 2. Our current implementation covers all details désctin the basic protocol, as
well as some security improvements of the extended vergign {ncluding the EO-



PRF, but not ciphertext re-randomization, proofs of knalgk, or the final consistency
check).

3.1 Proxy: Client-Facing Proxies and Decryption Oracles

One administrative domain can operate any number of prokesh proxy’s function-
ality may be logically divided into two components: handllient requests and, in the
case of CR-PDA, serving as decryption oracles for the DB vehearticular key should
be revealed. None of these proxies need to interact, otharhhving all client-facing
proxies use the same secsdb key the pseudorandom functidghand all decryption-
oracle proxies use the same public/private k&x. In fact, these two proxies play
different logical roles and could even be operated by twtedkht administrative do-
mains. Currently, all proxies register with a single groupmibership server, although
a fault-tolerant, distributed membership service coulihip@emented [6].

To discover a client-facing proxy, a client contacts thisugr membership service,
which returns a proxy IP address in round-robin order (tbigld be replaced by any
technique for server selection, including DNS, HTTP rectia, or a local load bal-
ancer). To submit its inputs, a client connects with thisxgrand then executes an
amortized Oblivious Transfer (OT) protocol on its inputdyatThis results in the proxy
Iearning<EDB(Fs(ki)), Epg(v;), EDB(Epr(kZ—))> for each input tuple, with the fi-
nal element only present for CR-PDA protocols. The proxyhgssthis tuple onto an
internal queue. (While Section 2.3 only described the usgélGamal encryption, its
special properties are only needed oy (Fs(k;)); the other public-key operations
can be RSA, which we use in our implementation.) When thisigueaches a certain
length—10,000 in our implementation—the proxy randomlynpetes the items in the
queue, and sends them to a database server.

Conditional-release PDA protocols have one final step. Tatalzhse, upon deter-
mining that a keyk;’s value satisfies, sendsEprx(k;) to a proxy-decryption oracle.
The proxy-decryption oracle decrypiirx(k;) and returng; to the database for stor-
age and potentially for subsequent release to other pzatits in the system.

3.2 Database: Front-end Decryption and Back-end Storage

The database component can also be replicated. Similaretribxy, we separate
database functionality into two parts: tifrent-end module that handles proxy sub-
missions and decrypts inputs, antiack-end module that acts as a storage layer. Each
logical module can be further replicated in a manner sintddhe proxy.

The servers comprising the front-end DB tier do not need teratt, other than
being configured with the same public/private keymar Thus, any front-end DB can
decrypt theEpg (Fs(k;)) input supplied by a proxy, and the proxies can load balance
input batches across these servers.

The back-end DB storage, on the other hand, needs to be mbtly toordinated,
as we ultimately need to aggregate All(k;)'s together, no matter which proxy or
front-end DB processed them. Thus, the back-end storagpdittions the keyspace
of all 1024-bit strings over all storage nodes (using cdasishashing). All such front-
end and back-end DB instances also register with a group reestmip server, which the
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Fig. 3: Scaling effect of number of (a) keys, (b) participans, and (c) proxy/database replicas.

front-end servers contact to determine the list of backstoichge nodes. Upon decrypt-
ing an input, the front-end node determines which back-¢mge node is assigned
the resulting keyF;(k;), and sends the tupIéFS(ki),vi7Epr(ki)> to this storage
node (the final element again present only for CR-PDA prd&)cés these storage
nodes each accumulate a horizontal portion of the entite Tafthey can aggregate the
values of each table row accordingly. In the case of CR-PBAy ttan test the value
column for their local table to see if any keys satigfyFor each such row, the storage

node sends the tup<er(kl-), Tk, Epr(ki)> to a proxy-decryption oracle.

3.3 Prototype Implementation

Our design is implemented in roughly 5,000 lines of C++. Adhamunication is per-
formed over TCP using BSD sockets, and concurrency is aetlighrough Linux
pthreads. We use the GnuPG library for large numbers (bighamd cryptographic
primitives €.g., RSA, ElGamal, and AES). The Oblivious Transfer protocoldds
amortized variant) were implemented from scratch, conmmi625 lines of code. All
RSA encryption used a 1024-bit key, and EIGamal used a 1@ 2¢eup size. AES-256
was used in the batch OT and its underlying OT primitive. Taeksend DB currently
stores table rows only in memory.

4 Performance Evaluation

In this section, we evaluate systehmoughput (number of updates/queries per second)
as a function of the number of keys and system participanésalb investigate how
throughput scales with greater resources. In each casereveoacerned with both
how long it takes for clients to send key-value pairs to thexgrduring the OT phase
(proxy throughput), as well as how long it takes for the DB to decrypt and idgntif
keys with values that satisfy the functigr(DB throughput). Our experiments were run
on multiple machines. The proxy and DB were run on quad-cotel Xeon 2 GHz
machines running CentOS Linux. These machines can perfot@24-bit EIGamal
encryption in 2.2 ms, EIGamal decryption in 2.5 ms, RSA eption in 0.5 ms, and
RSA decryption in 2.8 ms. Clients were run on separate loealhimes.

As discussed earlier, our system can be used in differetégts One potential ap-
plication of collaborative anomaly detection. As moderiniets can range up to roughly
100,000 unique hosts [37], we would like our system to be abéorrelate suspicions



of hundreds of participating networks within a few hoursughour implementation
should be able to process millions of keys in the span of hauisundreds of keys per
second. We revisit the feasibility of supporting applioas in Section 4.2.

4.1 Scaling and Bottleneck Analysis

Effect of number of keys (Figure 3a). Figure 3a measures throughput of a single
proxy and DB (each running on a single core) as a functionehtimber of keys. The
throughput of the OT primitive is exceedingly low—Iess thiakey per second—and
was thus not evaluated on the full range of input sizes. Hewa&vhen using the amor-
tized OT, proxy throughput significantly improves. Thropghincreases with larger
numbers of keys per batch, as the amortized OT calls the fpr&"@T a fixed number
of times regardless of the number of input keys. DB throughguthe other hand, does
not increase with larger input batches. The DB must perfofixea number of decryp-
tions per input tuple—initiated when it receives a batch mdrgpted inputs from the
proxy—and thus its computational cost is relatively consgeer input. Figure 3a shows
our DB processes about 90 keys per second (and then becorudingfed).

The amortized OT protocol [24] introduces a trade-off betwenessage overhead
and memory consumption. The memory footprint of this prot@er client-proxy in-
teraction forn keys isn x 32 x 2 x 1024/8 = 8196n bytes (.e., we assume 32 bits per
key, the 2 values for the OT primitive, and 1024-bit encrypliengths). For.=10, 000
keys, for example, this requires 82 MB on both the proxy aedctlent. To reduce this
memory footprint, a user of the protocol could choose to etethe amortized OT
protocol in stages by sendirigkeys at a time.

Effect of number of participants (Figure 3b). We next evaluate the throughput of our
system as a function of the number of clients submitting isplm this experiment, we
limit the proxy and DB to one server machine each. Four cliaging proxy processes
are launched on one machine and four front-end DB processelsuanched on the
other. Figure 3b shows that the proxy scales well with thelmemof clients, increasing
by nearly a factor of two between 8 and 32 clients. When conicating with a single
client, a proxy spends a substantial fraction of its timéngllargely while the client
is performing its cryptographic operations). The four pesxn this experiment are not
CPU limited until they handle 32 clients, at which time theotighput approaches 900
keys per second. The DB, however, is CPU-bound throughesétexperiments. It has
a throughput of about 350 keys per second, independent ofltimer of clients (a like
amount of work per core as that seen in Figure 3a).

Effect of number of replicas (Figure 3c). Finally, we analyze how our distributed
architecture scales with computing resources. Here, wageaip to 8 cores on 2 ma-
chines to each of the proxy and DB front-ends. While the prioxgtionality alone is
evaluated using 64 clients, computing resource conssrangant that the DB (which
also required proxies to test) is evaluated using 32 clighésformance of both the
proxy and DB scale linearly with the number of CPU cores ated to them, enabling
a few servers to handle inputs on the order of a few milliorsiggr hour.

Micro-benchmarks. To understand the factors limiting our design’s perforneamee
instrumented the code to account for how CPU cycles are spénite the DB is en-
tirely CPU bound by the cost of decrypting inputs, the prory alient engage in the



oblivious transfer protocol whose bottlenecks are lessrci%hen communicating with
a single client, we found that the client-facing proxy spenmbre than 60% of its time
idling while waiting for the client (some of the OT time is alspent waiting on clients).
The 60% idle time is primarily due to waiting for the clienteéacryptk; and F(k;).
The single largest computational expense for the proxy ifopaing modular expo-
nentiations at 16%; the remaining non-OT tasks add up to 1&%en that concurrent
clients will reduce the proxy’s waiting state, achievinglier proxy throughput will
require either more efficient cryptographic operationsastdr bignum libraries.

We noted earlier that the GnuPG cryptographic library wedysesrformed public-
key operations in approximately 2.5-2.8 ms. On the samesgnwe benchmarked the
Crypto++ library to perform RSA decryption in only 1.2 msgirasing speed by 130%.
Crypto++ would also allow us to take advantage of ellipticveucryptography, which
would increase system throughput. In future work, we plamdalify our implementa-
tion to use this library.

4.2 Feasibility of Supporting Applications

Anomaly detection. Network operators commonly run systems to detect and oeali
anomalous behavior by dynamically tracking traffic chaggstics. For example, Mao
et al. [29] found that most DDoS attacks observed within a largew&Re sourced by
fewer than 10,000 source IPs, and generated 31,612 alarensadour-week period
(0.8 events per hour). Ramachandeiral. [38] were able to localize 4,963 Bobax-
infected host IPs sending spam from a single vantage poiatelVision our system
could be used to improve the accuracy of these techniquesiglating anomalies
across ISP boundaries. This correlation may be done ontbkdEIP addresses (given
DoS attackers typically do not spoof source IPs given igfétering [29] and for
applications such as email spam that require bidirecti®@d& connections), or on the
level of subnets. Our system could handle 10,000 IP addsesskeys, with a request
rate of several hundred keys per second, even with sevendréd participants.

Cross-checking certificates.Multiple vantage points may be used to validate authen-
ticity of information (such as a DNS reply or ssh certifica?d,[41]) in the presence
of “man-in-the-middle” attacks. Such environments demarigacy—DNS responses
reveal domains that clients access, ssh keys reveal hosection patterns—as well
as present scaling challenges due to the potentially laugger of keys that could be
inserted. Under typical workloads [25, 40] (15 key updatesshour, with 30 keys per
participating host), our system scales to support sevenadlted hosts with a single
proxy. Extrapolating out to larger workloads, our system bandle tens of thousands
of clients storing tens of thousands of keys with under fiflyqy/database pairs.

Distributed ranking. Search tools such as Alexa and Google Toolbar collect irderm
tion about user behavior to refine search results returnaddrs. Users have incentive
to install these tools, as they provide benefits (simplifeskshing and other features).
However, they are sometimes labeledsagvare as they reveal information about the
contents of queries performed by users. Our tool may be wsatprove privacy of user

submissions to these databases. Alexa Toolbar has an &stit80,000 active users,
and average web users browse 120 pages per day. Roughlpdatiag this data to



our results and assuming that users batch their daily usagesystem could handle
this daily workload with a single 4-core proxy and DB pair.

5 Conclusions

In this paper, we presented the design, implementationesalliation of a collabo-
rative data-analysis system that is both scalable andqyripeeserving. Since a fully-
distributed solution would be complex and inefficient, oasign divides responsibility
between a small number of well-known, independent partie®st commonly, a proxy
that obliviously blinds the client inputs and a databasedlggregates the inputs based
on the (blinded) keys. The functionality of both the proxyldhe database can be eas-
ily distributed for greater scalability and reliabilityxgeriments with our prototype
implementation show that our system performs well undeneiasing numbers of keys,
participants, and proxy/database replicas. The perfoceanwell within the require-
ments of our motivating applications for collaborativealanalysis.
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A Security Assumptions
We now motivate and clarify some security assumptions aivdqy definitions.

Security against coalitions. We insist on providing security against any coalition of
an arbitrary number of participants together with eitherdiatabase or the proxy. This
is essential as otherwise the DB (or proxy) can perform al$ytaick [12],i.e., create
many dummy participants and use their views, together wighotvn view, to reveal
sensitive information. On the other hand, in order to havefficient and scalable sys-
tem, we are willing to tolerate vulnerability against a ¢oah of the DB and the proxy,
which could otherwise break participant and keyword prjvac

Power of the adversaries: honest-but-curious vs. maliciaiadversaries.In our CR-
PDA protocol, both proxy and DB are expected to act as HBC. @eve this model
is very appropriate for our semi-centralized system agechitre. In many deployments,
the DB and proxy may be well-known and trusted to act to thé digheir abilities, as
opposed to simply another participant amongst a set of Mytdetrusted parties. Of
course, these trust assumptions do not extend to the paltetarge number of partici-
pants, and therefore we require security against any moabf malicious participants
(who are allowed to deviate arbitrarily from the protocte mention that our PDA
protocol provides security even when the DB or proxy meticious. More generally,
security holds against any arbitrary coalition of maliG@@articipants that include ei-
ther a malicious proxy or a malicious DB. Typically, secymtgainst fully malicious
behavior comes at a great computational cost. We avoid tteghead by providing a
weaker notion of security as discussed next.

Notions of security: ideal-real framework vs. input indistinguishability. In cryp-
tography, the security of a protocol is usually defined via idheal-real framework.
Roughly speaking, the protocol should be as secure as ahvidela implementation
in which the players can employ a fully trusted party. Thisamethat any attack that
can be carried against the real protocol should be simuéialthe ideal world as well.
This notion is very strong, as it shows that the protocol sty achieves the highest
possible level of security. Our CR-PDA protocol provideis thotion of security.

A weaker notion (recently studied in [32, 15, 23]) tries t@bdseparately with pri-
vacy and correctness in order to improve efficiency. In paldir, malicious parties
are allowed to arbitrarily corrupt the correctness of thet@eol as long as they do
not learn anything about the inputs of honest players. (Btiynthis is captured by
an indistinguishability-based definition [23].) This is tivated by the fact that a ma-
licious party can often violate semantic correctness indmaliimplementatiore.g.,
by adding, changing, or omitting inputs to the function—Iyjirig,” in more informal
terms. Therefore, it may be reasonable to give up completelgorrectness against
malicious parties (proxies and DBs) and gain significantetational saving$.

" For technical reasons this relaxation makes sense mairéy e malicious parties do not
get any output. Since in our PDA functionality only the DBgjaeh output, we may adopt this
relaxed notion and providarivacy (at the form of input indistinguishability) against madicis
participants and/or malicious proxy, and fegcurity (at the form of the ideal-real framework)
for coalitions that include a malicious DB.



