
Fairness and Isolation in Multi-Tenant Storage as
Optimization Decomposition

David Shue
Princeton University

dshue@cs.princeton.edu

Michael J. Freedman
Princeton University

mfreed@cs.princeton.edu

Anees Shaikh
IBM Research

aashaikh@us.ibm.com

ABSTRACT
Shared storage services enjoy wide adoption in commercial
clouds. But most systems today provide weak performance
isolation and fairness between tenants, if at all. Most ap-
proaches to multi-tenant resource allocation are based either
on per-VM allocations or hard rate limits that assume uni-
form workloads to achieve high utilization. Instead, Pisces,
our system for shared key-value storage, achieves datacenter-
wide per-tenant performance isolation and fairness.

Pisces achieves per-tenant weighted fair sharing of sys-
tem resources across the entire shared service, even when
partitions belonging to different tenants are co-located and
when demand for different partitions is skewed or time-
varying. The focus of this paper is to highlight the opti-
mization model that motivates the decomposition of Pisces’s
fair sharing problem into four complementary mechanisms—
partition placement, weight allocation, replica selection, and
weighted fair queuing—that operate on different time-scales
to provide system-wide max-min fairness. An evaluation of
our Pisces storage prototype achieves nearly ideal (0.98 Min-
Max Ratio) fair sharing, strong performance isolation, and
robustness to skew and shifts in tenant demand.

1. INTRODUCTION
An increasing number and variety of enterprises are mov-

ing workloads to cloud platforms. Whether serving external
customers or internal business units, cloud platforms typ-
ically allow multiple users, or tenants, to share the same
physical server and network infrastructure, as well as use
common platform services which include key-value stores,
block storage volumes, and SQL databases. These services
leverage the expertise of the cloud provider in building, man-
aging, and improving common platforms, and enable the sta-
tistical multiplexing of resources between tenants for higher
utilization and cost savings.

Because they rely on shared infrastructure, however, these
services face two key, related issues:

• Multi-tenant interference and unfairness: Ten-

Permission for classroom and personal use is granted, providing this notice
appears on all copies.
LADIS Workshop ’12. Madeira, Portugal.
Copyright 2012 by the Authors. This work derives from work published at
the workshop. Appeared in ACM SIGOPS Operating System Review,
Vol. 47 Issue 1, Jan. 2013 .

ants simultaneously accessing shared service nodes con-
tend for resources and degrade performance.

• Variable and unpredictable performance: Tenants
often experience significant performance variations, e.g.,
in response time or throughput, even when they can
achieve their desired mean rate [17,19].

These issues limit the types of applications that can migrate
to multi-tenant clouds and leverage shared services. They
also prevent cloud providers from offering differentiated ser-
vice, in which some tenants can pay for performance isola-
tion and predictability, while others choose standard “best-
effort” behavior.

Shared back-end storage services face different challenges
than virtual machine (VM) provisioning of shared physical
infrastructure. These stores divide tenant workloads into
disjoint partitions, which are then distributed (and repli-
cated) across different service nodes. Rather than managing
individual storage partitions, cloud tenants want to treat
the entire storage system as a single black box, in which
aggregate storage capacity and request rates can be scaled
on demand. As with VMs, resource contention arises when
tenants’ partitions are co-located, however the degree of re-
source sharing between tenants may be significantly higher
and more fluid.

To improve predictability for shared storage systems with
a high degree of resource sharing and contention, we target
global max-min fairness. Under max-min fairness, no
tenant can gain an unfair advantage over another when the
system is loaded, i.e., each tenant will receive its (weighted)
fair share. Moreover, when some tenants use less than their
full share, unconsumed resources are divided among the rest
to ensure high utilization. In comparison, recent commer-
cial systems that offer request rate guarantees (i.e., Amazon
DynamoDB [1]) do not ensure fairness, assume uniform load
distributions across tenant partitions, and are not work con-
serving. While our approach may be applicable to a range of
services with shared-nothing architectures [14], we focus our
design and evaluation on a key-value storage service, which
we call Pisces (Predictable Shared C loud Storage).

Providing fair resource allocation and isolation at the ser-
vice level is confounded by variable demand to different ser-
vice partitions. Even if tenant objects are uniformly dis-
tributed across their partitions, per-object demand is often
skewed, both in terms of request (read or write) rate and
request size. In short, simply assuming that each tenant
requires the same proportion of resources per partition can
lead to unfairness and inefficiency. To address these issues,
Pisces decomposes the problem of global fairness into four

Tenant A Tenant B Tenant C

Node 2 Node 3

VM VM VM VM VM VM VM VM VM

3

Node 1

RR

wa1 wb1

GET 1101100

wc1

WeightA WeightB WeightC
Tenant D
VM VM VM

WeightD

PP
RS

FQ

wd1 wa2 wb2 wc2 wd2 wa3 wb3 wc3 wd3

Controller

WA

tenant partitions

de
m

an
d

wc4 : local weight

Figure 1: Pisces multi-tenant storage architecture.

mechanisms based on the NUM optimization framework [4].
Operating on different timescales and with different levels
of system-wide visibility, these mechanisms complement one
another to ensure fairness under resource contention and
variable demand.

(i) Partition Placement (re)-assigns tenant partitions to
nodes to ensure a fair allocation (long timescale).

(ii) Weight Allocation distributes overall tenant fair shares
across the system by adjusting local per-tenant weights at
each node (medium timescale).

(iii) Replica Selection load-balances requests between par-
tition replicas in a weight-sensitive manner (real-time).

(iv) Fair Queuing enforces performance isolation and fair-
ness according to local tenant weights (real-time).

In this paper, we focus on the design and decomposition
of the system mechanisms from an optimization perspec-
tive. While the global fairness problem is amenable to dif-
ferent approaches, leveraging optimization theory not only
leads to performant algorithms, but also provides a basis for
understanding and proving system properties [7]. Through
experimental evaluation, we demonstrate that Pisces signifi-
cantly improves the multi-tenant fairness and isolation prop-
erties of our key-value store, built on Membase [2], even as
workloads shift dynamically. While this paper stresses our
optimization-based approach, a more detailed treatment of
the system design, implementation, and evaluation can be
found elsewhere [13].

2. ARCHITECTURE AND SYSTEM MODEL
Figure 1 shows the high-level architecture of Pisces, a key-

value storage service that provides system-wide, per-tenant
fairness and isolation. Pisces provides the semantics of a per-
sistent map between opaque keys (bit-strings) and unstruc-
tured values (binary blobs) and supports simple key lookups
(get), modifications (set), and removals (delete). To parti-
tion the workload, the keys are first hashed into a fixed-size
key space and then subdivided into disjoint partitions.

A controller assigns these partitions (and their replicas)
to service nodes while request router(s), which can be im-
plemented in client libraries, or deployed as intermediate
proxies (as shown in Figure 1), direct tenant requests to a
node hosting the appropriate partition replica. Each ser-
vice node schedules incoming requests and serves tenant
data. Note that this architecture is not limited to key-value
storage systems. Any system that employs workload par-
titioning (sharding) i.e., partitioned databases, distributed

System Parameters

wt global weight for tenant t

zt global max-min weighted fair share for t: zt =
wt ∑

n cn∑
u w

u

f tp t’s fair share demand for partition p:
∑
p f

t
p = zt

ρt replicas per partition for tenant t
cn resource capacity for service node n

Decision Variables

rtn local resource share for t at n

wtn local weight t at n: wtn =
rtn∑
u r

u
n

Qt |N | × |P t| partition replica selection matrix

Global Fair-Sharing Optimization

maximize: Λ(rt∈Tn∈N , Q
t∈T) : throughput utility function (1)

subject to:
∑
n

rtn ≤ zt : fair share constraint (2)∑
t

rtn ≤ cn : node capacity constraint (3)∑
p

Qtn,p ≤ rtn : local share constraint (4)∑
n

Qtn,p > 0 = ρt : replication constraint (5)∑
n

Qtn,p ≤ f tp : partition demand constraint (6)

Table 1: Pisces global fair-sharing system model

block storage, scalable message queues etc, will have a sim-
ilar structure and invoke similar mechanisms.

2.1 Achieving Global Fairness
Pisces provides per-tenant fairness at the system-wide level,

which we model as the global optimization problem shown
in Table 1. At a high level, each tenant t has a single, global
weight wt that determines its fair share of aggregate system
resources (i.e., throughput): zt. These weights are generally
set according to the tenant’s service-level objective and can
be adjusted at any time.

To ensure each tenant receives its fair share, Pisces has
to make several key decisions. Since tenant partitions p are
distributed across the service nodes n and can have varying
demand f tp, Pisces needs to determine (i) where each parti-
tion’s ρt replicas should reside (partition placement (PP)),
(ii) how much demand to send to each one (replica selection
(RS)) , and (iii) what share of local resources to give each
tenant at the nodes hosting its partitions (weight allocation
(WA)). Lastly, to enforce fairness and provide performance
isolation, service nodes should schedule requests with some
form of fair queuing (FQ).

Although the global objective could explicitly target per-
tenant fairness, the real goal is to find a fair allocation that
also achieves high performance. In other words, within the
set of feasible solutions defined by the constraints where
each tenant receives its fair share (Table 1, eq. 2) across the
system, no node is over-burdened (3), all local allocations
are enforced (4), and per-partition tenant demand is satis-
fied (6), we want to find the partition mapping I(Qt) > 0,
local resource allocation rtn, and replica selection policy Qt

that maximizes overall throughput (1).
While the global formulation gives a bird’s-eye view of the

system objective and fairness constraints, it serves solely as
an orienting framework. The collection and coordination

10

Replica Selection Policies

W
e

ig
h

t
A

ll
o

ca
ti

o
n

s

fairness constraint

no
de c

apa
city

const
rai

nt

PP

RS

W
A

Figure 2: Partition Placement (PP) ensures feasibility by
fitting each tenant’s per-partition fair-share demand within
the node capacity constraints (shaded region within the con-
straint set). Weight Allocation (WA) and Replica Selection
(RS) then iteratively search for the optimal solution (star)
starting from an initial configuration (dot) via coordinate
gradient ascent, climbing through regions of progressively
higher throughput (isoclines).

costs of gathering the necessary measurements and updat-
ing the appropriate components (request routers and service
nodes) to solve the global problem in a centralized fashion at
sufficient frequency to adapt to dynamic workloads would be
prohibitive. Instead, PP, WA, and RS (FQ simply enforces
the shares determined by WA) should compute their own
policies in a dynamic and decoupled fashion which we de-
scribe in the next section.

3. MECHANISMS AS DECOMPOSITION
We use optimization decomposition [4] to break the global

problem down into the more tractable and adaptive pieces
shown in Table 2. In this section we discuss the sub-problem
each mechanism solves and how they fit together to achieve
“optimal” global fairness, illustrated visually in Figure 2.

3.1 Partition Placement
The main goal of partition placement (PP) is to find a fea-

sible configuration of Qt ı.e fixing its non-zero entries which
correspond to the assignment of partition p to node n for
tenant t. In other words, PP boils down to placing par-
titions such that each tenant’s fair-share partition demand
(Table 2, eq. 10) fits within the node capacities (8). This
ensures that the other mechanisms search within the set of
globally fair solutions, as shown in Figure 2). Since PP re-
quires global information, it runs on the controller which
gathers per-partition demand statistics from each node to
determine the fair-share demand f tp and optimizes the PP
sub-problem shown in Table 2. The optimal partition as-
signment I(Qtn,p) > 0 minimizes the max node utilization
(7) to give WA and RS greater headroom for optimizing
throughput.

Partition placement typically runs on a long timescale
(every few minutes or hours), since we assume that ten-
ant demand distributions (proportions) are relatively sta-
ble, although demand intensity (load) can fluctuate more
frequently. This minimizes the frequency of data partition

Partition Placement (long timescale: min/hrs)

minimize: Υ(Qt∈T , cn∈N) = max
n

∑
t,pQ

t
n,p

cn
(7)

subject to:
∑
t,p

Qtn,p ≤ cn : node capacity constraint (8)∑
n

Qtn,p > 0 = ρt : replication constraint (9)∑
n

Qtn,p ≥ f tp : demand constraint (10)

Weight Allocation (medium timescale: sec)

maximize: Λ(rt∈Tn∈N , Q
∗t∈T) =

∑
t,n

logQ∗tn (11)

subject to:
∑
n

rtn ≤ zt : fair share constraint (12)∑
t

rtn ≤ cn : node capacity constraint (13)

parameters: Q∗tn (fixed by RS)

Replica Selection (real-time: ms)

maximize: Λ(rt∈Tn∈N , Q
∗t∈T) =

∑
t,n

logQ∗tn

subject to: Qtn ≤ r∗tn : local share constraint (14)

parameters: r∗tn (fixed by WA), I(Qt) > 0 (fixed by PP)

Table 2: Pisces mechanism decomposition

migration which can affect on-going workloads. It also al-
lows the faster timescale mechanisms to stabilize under the
current partition mapping. That said, PP can also be ex-
ecuted in response to large demand shifts, severe fairness
violations, or the addition or removal of tenants or service
nodes. Although the bin-packing problem is NP-hard, for
the system to work PP need only ensure that the assign-
ment is feasible, not necessarily optimal. There are many
approximation techniques (e.g., [12]) that find near-optimal
solutions in polynomial time. We use a simple greedy algo-
rithm that works reasonably well.

3.2 Weight Allocation
Given a feasible partition placement, weight allocation di-

vides each tenant’s global share into local shares rtn where
the tenant needs it most, i.e., where the per-node tenant de-
mand determined by Qt is highest. Although we could op-
timize both variables together at the controller and dissem-
inate the policies to the appropriate components, the com-
putation and update overhead would limit adaptivity and
prevent the system from handling short-term demand varia-
tions. Thus, as shown in Table 2, we decompose the problem
into the “master” weight allocation (WA) and “slave” replica
selection (RS) sub-problems to minimize coordination and
achieve near real-time adaptivity. These two mechanisms
work in tandem to optimize system throughput by itera-
tively adapting rtn to match tenant demand then adjusting
Qt to leverage the larger local shares, as depicted in Figure 2.

Using the primal [10] approach, WA observes per-node
tenant request latencies, which acts as a proxy for tenant
demand, and increases local shares rtn to match tenant de-
mand. On each iteration, WA collects an estimate of the per-
node tenant demand xtn =

∑
pQ
∗t
n,p generated by RS. Using

this estimate, WA approximates the gradient of the RS La-

grangian w.r.t rtn (∂L(Q,λ)
∂rtn

= λtn), with a latency-based cost

function: ltn = 1 / (rtn − xtn). Minimizing this cost function
maximizes throughput (Table 2, eq. 11) since λtn is a“conges-
tion” price corresponding to the request queuing delay expe-
rienced by tenant t at node n. Thus, WA minimizes the max
latency by performing a reciprocal swap that shifts weight
(local share) from a lower latency tenant u on node n to the
max latency tenant t (argmaxt,nl

t
n) and reciprocates the ex-

change (from t to u) on a different node m to preserve global
fairness (12, 13). WA computes the swap as the linear bisec-

tion of the latencies, y(t, u, n) =
(run−x

u
n)−(rtn−x

t
n)

2
, and uses

the minimum of the swap steps, min(y(t, u, n), y(t, u,m)) in
the exchange. This ensures that the swap always reduces
the maximum latency. We also model multilateral swap ex-
changes as a maximum bottleneck flow (MBF) problem [13],
but omit the details for space. Since it requires global infor-
mation (max latency), WA also runs on the controller.

Since WA is an iterative optimization algorithm, we rely
on the general properties of convex optimization to ensure
convergence and stability. The latency cost function exhibits
convexity over the operating regime where rtn > xtn, and
each gradient descent step (reciprocal exchange) shrinks the
latency variation across the max latency tenant t’s nodes,
which reduces the next weight swap (step size) involving
t. The timescale separation between WA (seconds) and RS
(real-time) allows the RS sub-problem to converge to an op-
timal Q∗t within each WA iteration. Taken together, these
properties ensure that WA will converge to an optimal fair-
share weight allocation [3] (< 20 iterations in our experi-
ments). To avoid oscillations around the optimal point, only
swaps that exceed a minimal threshold ε are executed.

3.3 Replica Selection
When enabled, replica selection (RS) not only improves

performance by load-balancing read requests, but it also re-
laxes the fair-share demand constraint (Table 2, eq. 10).
RS accomplishes this by smoothing the demand distribution
across replicas and alleviating node hotspots. This expands
the set of feasible solutions since tenant partition demand is
now easier to fit within node capacities. Given local shares
r∗tn computed by WA, the RS optimization ensures that the
replica-selection policy Qt sends more demand to replicas on
nodes with greater local allocation.

Here, we apply dual decomposition [10] to minimize co-
ordination overhead by distributing the RS optimization
across request routers. Since the local rate allocation r∗tn
isolates tenant demand from each other on each node, RS
can compute Qtn =

∑
pQ

t
n,pindependently for each tenant.

This allows each request router to maintain per-node, rather
than per-node per-partition, request windows (Qtn) for each
tenant. Each RR updates its per-node windows according
to the FAST-TCP gradient ascent equation, which optimizes
the throughput objective (11) subject to per-node conges-
tion (λtn), approximated by request latency: w(m + 1)tn =

(1 − α) · w(m)tn + α ·
(
lbase
lest

)
.

Each iteration of the algorithm adjusts the window based
on the ratio of the desired average request latency lbase to
the smoothed (EWMA) latency estimate lest. The α pa-
rameter limits the window step size. Thus, the greater the
local share, the larger the node’s request window will be.
Each request router makes adjustments to its own Qtn in a

fully decentralized fashion: it only uses local request latency
measurements to compute the replica proportions. This al-
lows RS to handle short-lived fluctuations and converge to
the optimal Qtn within the WA timescale according to the
convergence and stability of FAST-TCP [18].

3.4 Fair Queuing
Although not explicitly involved in the optimization, fair

queuing (FQ) plays the crucial role of implementing and en-
forcing the fairness and performance bounds established by
the local rate allocations. Moreover, these local shares acts
as a coordination point between WA and RS, eliminating the
need for direct coordination. RS implicitly detects the local
shares r∗tn through latency estimates, while WA infers the
current replica selection policy Q∗tn by measuring the actual
per-node request rate xtn at n.

In every “round” of FQ, the server allocates tokens to each

tenant according to its local weight wtn =
rtn∑
u r

u
n

, which it

consumes when processing requests from the tenant queues.
If the request requires more than the allocated resources,
it must complete on a subsequent round after its tenant’s
tokens have been refilled. This guarantees that each tenant
will receive its local fair share rtn in a given round of work,
if multiple tenants are active. Otherwise, tenants can con-
sume excess resources left idle by the others without penalty.
We implement FQ using deficit weighted round robin; de-
tails [13] omitted for space.

4. EVALUATION
In our evaluation, we consider how the mechanisms in

Pisces work together to (i) provide fairness and performance
isolation, (ii) achieve weighted fair sharing, and (iii) handle
dynamic demand. We quantify fairness as the Min-Max Ra-
tio (MMR) of the dominant resource (typically throughput)

across all tenants, xmin

xmax . This corresponds directly to a max-
min notion of fairness.

Our testbed consists of sixteen 2.4 GHz quad-core ma-
chines (8 clients and 8 servers) connected to a single 1 Gbps
switch. Each client uses the Yahoo Cloud Storage Bench-
mark (YCSB) [5] to generate a Zipf-distributed key-value
request workload (α = 0.99) over a fully cached data set of
100,000 1kB objects. All workloads are read-only (all GET),
unless otherwise noted. We only present the most illustra-
tive examples (see [13] for the full set).

4.1 Achieving Fairness and Isolation
As a basis for comparison, we start with an unmodified

system (Membase), to establish a baseline, as shown in Fig-
ure 3. Then we add in fair queuing, followed by partition
placement and weight allocation. Lastly, we enable replica
selection. In the top row, 8 tenants with equal global weights
access the system with the same demand.

Unmodified Membase: The unmodified system provides
poor throughput fairness between tenants. This is largely
due to the infeasible (uniform) partition mapping of the
skewed tenant demand distributions. In contrast, PP packs
the partitions according to the fair-share demand and node
capacity constraints to ensure feasibility.

Multi-tenant Weighted FQ: Unsurprisingly, fair queu-
ing alone barely improves fairness due to over-contention

 0
 30
 60
 90

 120
 150
 180

Membase (no queuing)

0.57 MMR

Fair Queuing

0.59 MMR

FQ + PP with WA

0.64 MMR
0.93 MMR

WA (45s)

FQ + PP + RS with WA

0.90 MMR
0.98 MMR

fair share
109 kreq/s

 0
 30
 60
 90

 120
 150
 180

 10 20 30 40 50 60 70 80 90

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Membase (no queuing) 2x

0.36 MMR

 10 20 30 40 50 60 70 80 90

Time (s)

Fair Queuing 2x

0.58 MMR

 10 20 30 40 50 60 70 80 90

FQ + PP with WA 2x

0.74 MMR
0.96 MMR

WA (45s)

 10 20 30 40 50 60 70 80 90

FQ + RS + PP with WA 2x

0.89 MMR
0.97 MMR

2x demand
1x demand

Figure 3: System-wide throughput fairness (top) and performance isolation (bottom) with Pisces mechanisms. For experiments
involving weight allocation (columns 3 and 4), WA is activated at time 45s.

for node resources under the uniform partition placement.
FQ can only enforce (not change) the policies computed by
higher-level mechanisms, whether they are feasible or not.

FQ and Partition Placement: Despite starting with a
pre-computed feasible partition placement , fairness only im-
proves marginally. Although the tenant demand should fit
within node capacity, hotspots still remain. The mismatch
between the hotspots and the initially fixed (uniform) local
weights allows tenants with an unfairly large local share on
a given node to ”over” consume and thus exceed their global
fair share. Once weight allocation starts at 45s, the local
shares converge within 10 seconds (5 iterations) to their op-
timal fair values (0.93 MMR).

FQ, PP, and Replica Selection: When enabled, replica
selection improves fairness by alleviating hotspots in the de-
mand distribution. However, under this particular parti-
tion mapping, RS is unable to eliminate all demand skew
on its own. With weight allocation running (after 45s), RS
is able to adjust the selection policy in tandem with WA
to find the optimal fair solution and achieve near ideal fair-
ness (0.98 MMR). Using a different feasible partition map-
ping (not shown), RS is able to achieve > 0.99 MMR even
without WA, due to the more efficient placement and work-
conserving local shares.

In the bottom row of Figure 3, half of the (equal weight)
tenants issue twice the demand of the others to stress the
system’s performance isolation. Unmodified Membase al-
lows the 2x demand tenants to consume additional resources,
degrading fairness. In contrast, fair queuing denies the 2x
tenants any additional share, preserving fairness when en-
abled. Interestingly, unmodified Membase with a feasible
partition mapping and replica selection (not shown) can
achieve high fairness (> 0.95 MMR) for equal demand ten-
ants, but, again, not in the performance isolation scenario
(< 0.68 MMR).

4.2 Service Differentiation
Thus far, we have demonstrated that Pisces’s mechanisms

can enforce isolation (FQ) and achieve near ideal even fair

 0
 20
 40
 60
 80

 100
 120
 140
 160

 25 30 35 40 45 50 55 60

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Time (s)

100x weight (4)
10x weight (20)

1x weight (40)

(a) 64 tenant thruput

 0
 20
 40
 60
 80

 100
 120
 140
 160

 25 30 35 40 45 50 55 60

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Time (s)

100x weight (10)
10x weight (40)

1x weight (50)

(b) 100 tenant thruput

Figure 4: Pisces achieves global fairness for skewed tenant
weights on an 8 (a) and 20 node cluster (b).

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60 70 80 90

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Time (s)

(a) Dynamic intensity

 0

 50

 100

 150

 200

 20 40 60 80 100 120 140

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Time (s)

Distribution shift
(50s and 110s)

(b) Dynamic distribution

Figure 5: Pisces responds to demand dynamism (a) and
distribution shifts (b) to preserve fairness.

sharing (PP + WA + RS). We now examine weighted fair-
ness for service differentiation. In Figure 4a, 64 tenants
reside on 4 out of 8 servers (32 tenants per server). To
reflect the highly skewed nature of tenant shares, i.e., a
few heavy hitters and low-rate users, we assigned 4 weight-
100, 20 weight-10, and 40 weight-1 tenants. Within each
weight class, Pisces achieves > 0.91 MMR. Unfortunately,
fairness between the highest and lowest classes decreases to
0.56 MMR, due to the limits of the FQ scheduler.

Figure 4b shows a larger experiment, with 100 tenants res-
ident on 6 of 20 servers (30 tenants per server). While we see
a qualitatively similar result, fairness degrades (0.46 MMR
across all classes on average). This is mostly due to perfor-
mance variance on the (shared) scale-out testbed [11] arising
from CPU scheduling and network bottlenecks, which penal-
izes the high-weight tenants.

4.3 Dynamic Workloads
Dynamic workloads present a challenge for any system to

provide consistent, predictable performance. In Figure 5a,
two bursty tenants (weight 1), two diurnal demand tenants
(weight 2), and four constant demand tenants (weight 1)
access the system. Initially, the constant tenants are able to
exceed their fair share and consume the excess capacity. As
the diurnal tenants ramp up (0–20s), they gradually reduce
the excess share. When the bursty and diurnal tenants peak
around 20s, Pisces enforces the proper 2-to-1 weighted ratio
between all tenants. Around 50s, the diurnal and bursty
tenants tail off which allows the constant demand tenants to
once again consume the excess. Finally, at 70s, the bursty
tenants spike again, which forces the constant and bursty
tenants to receive equal shares.

Demand distributions can evolve as well. In Figure 5b,
the tenants switch from the current Zipfian demand distri-
bution to a different, equally skewed distribution at 50s, and
then switch back to the original at 110s. With WA and RS
working together, Pisces is able to preserve fairness (>0.94
MMR), despite the potential ”infeasible” mismatch of the
partition demand for the new distribution and the original
partition mapping.

5. RELATED WORK
Recent work on cloud storage resource sharing has focused

mainly on single-tenant or single-server scenarios. Parda [6]
applies FAST-TCP congestion control to provide per-VM
fairness, which Pisces uses as well, but for replicated service
nodes. Maestro [9] optimizes I/O resource and port allo-
cation for multiple applications, but on a single disk array.
Similarly, Argon [15] uses caching schemes and time-sliced
disk scheduling for performance insulation between multi-
ple clients accessing a single shared file server. FAST [8]
presents a block-storage specific design for minimizing work-
load interference, but does not address weighted resource
sharing. Cake [16] adapts resource shares in a two-tier sys-
tem to achieve latency-based SLO’s for disk-bound work-
loads. Additional related work can be found in [13].

6. CONCLUSION
In this paper we presented a set of mechanisms that to-

gether provide per-tenant weighted fair sharing of system-
wide resources for a multi-tenant, key-value storage service
which we call Pisces. Using optimization decomposition, we
showed how the mechanisms—partition placement, weight
allocation, replica selection, and fair queuing—combine to
optimize throughput while maintaining fair resource allo-
cation across the service nodes even when tenants contend
for shared resources and demand distributions vary across
partitions and over time.

Although we focus on key-value storage in this work, we
believe that the optimization model and mechanisms should
apply to a wider range of services. Any system built using
a shared-nothing architecture will have to manage partition
placement and replica selection. Enforcing fairness and iso-
lation requires some form of fair queuing or resource alloca-
tion at the point of contention. To these we introduce one
additional component, weight allocation, and link them to-
gether using optimization decomposition. Thus we see these
mechanisms as providing a fairness framework for a variety
of services, which we intend to pursue in future work.

Acknowledgments We thank Jennifer Rexford for help-
ful discussions early in this project. Funding was provided
through NSF CAREER Award #0953197.

7. REFERENCES
[1] http://aws.amazon.com/dynamodb/faqs/, 2012.

[2] http://www.couchbase.org/, Jan. 2012.

[3] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, Cambridge, UK, 2004.

[4] M. Chiang, S. H. Low, A. Calderbank, and J. C.
Doyle. Layering as optimization decomposition: A
mathematical theory of network architectures.
Proceedings of the IEEE, 95(1):255–312, January 2007.

[5] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In SOCC, June 2010.

[6] A. Gulati, I. Ahmad, and C. A. Waldspurger.
PARDA: Proportional allocation of resources for
distributed storage access. In FAST, Feb. 2009.

[7] K. Keeton, T. Kelly, A. Merchant, C. Santos,
J. Wiener, X. Zhu, and D. Beyer. Don’t settle for less
than the best: use optimization to make decisions. In
HotOS, May 2007.

[8] X. Lin, Y. Mao, F. Li, and R. Ricci. Towards fair
sharing of block storage in a multi-tenant cloud. June
2012.

[9] A. Merchant, M. Uysal, P. Padala, X. Zhu, S. Singhal,
and K. Shin. Maestro: Quality-of-service in large disk
arrays. In ICAC-11, 2011.

[10] D. Palomar and M. Chiang. A tutorial on
decomposition methods for network utility
maximization. JSAC, 24(8):1439–1451, 2006.

[11] L. Peterson, A. Bavier, and S. Bhatia. VICCI: A
programmable cloud-computing research testbed.
Technical Report TR-912-11, Princeton CS, Sept.
2011.

[12] D. B. Shmoys and E. Tardos. An approximation
algorithm for the generalized assignment problem.
Math. Prog., 62(1):461–474, 1993.

[13] D. Shue, M. J. Freedman, and A. Shaikh. Performance
isolation and fairness for multi-tenant cloud storage.
In OSDI, Oct. 2012.

[14] M. Stonebraker. The case for shared nothing. IEEE
Database Eng. Bulletin, 9(1):4–9, 1986.

[15] M. Wachs, M. Abd-el-malek, E. Thereska, and G. R.
Ganger. Argon: Performance insulation for shared
storage servers. In FAST, Feb. 2007.

[16] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz,
and I. Stoica. Cake: enabling high-level SLOs on
shared storage systems. In SOCC, Oct. 2012.

[17] J. Wang, P. Varman, and C. Xie. Optimizing storage
performance in public cloud platforms. J. Zhejiang
Univ. – Science C, 11(12):951–964, Dec. 2011.

[18] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. Fast TCP:
Motivation, architecture, algorithms, performance.
Trans. Networking, 14(6):1246–1259, Dec. 2006.

[19] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving MapReduce performance in
heterogeneous environments. In OSDI, Dec. 2008.

http://aws.amazon.com/dynamodb/faqs/
http://www.couchbase.org/

	Introduction
	Architecture and System Model
	Achieving Global Fairness

	Mechanisms as Decomposition
	Partition Placement
	Weight Allocation
	Replica Selection
	Fair Queuing

	Evaluation
	Achieving Fairness and Isolation
	Service Differentiation
	Dynamic Workloads

	Related Work
	Conclusion
	References

