
Prices are Right:
Managing resources and incentives in peer-assisted content distribution

Michael J. Freedman∗, Christina Aperjis†, and Ramesh Johari†
∗Princeton University, †Stanford University

Abstract
We present a novel design for a peer-assisted content distri-
bution system that addresses two key shortcomings of ex-
isting proposals. First, our system explicitly identifies the
relative demand for files: users are rewarded for sharing
more popular content. Second, our system efficiently uti-
lizes network resources, by considering resource constraints
explicitly when matching downloaders and uploaders.

Underlying our system is a market-based mechanism that
enables the efficient allocation of network resources across
multiple files. Although we price files and employ a vir-
tual currency, these are purely an algorithmic ploy: the sys-
tem clients hide the market details from the user. Neverthe-
less, our design also naturally incentivizes the contribution
of scarce resources. More importantly, our design endoge-
nously adapts peers’ behaviors to changing environments, a
critical advantage for real-world deployments in which net-
work conditions, participation rates, resource demands, and
content are continually in flux.

1 Introduction
Peer-to-peer (P2P) content distribution systems have been
widely successful for scalable file sharing across the Inter-
net, quickly delivering popular content to large numbers of
users and reducing costs for content providers in the pro-
cess. Traditional P2P designs have been overly focused on
performance optimization, however, without addressing the
overall welfare of participants. Scant attention is devoted to
asking which files are “most useful” to disseminate, where
resource congestion or network costs are accumulating, and
who is providing useful content to the system.

This paper proposes a novel P2P system design that ad-
dresses these shortcomings. Its centerpiece is a market-
based file-exchange mechanism that succinctly associates
prices to files and resource constraints. This underlying
market mechanism serves as a distributed algorithm that
identifies and prioritizes popular content, while allocating
scarce resources in a decentralized and efficient manner.
Further, the mechanism securely incentivizes participation.
We emphasize that our design employs a market-based solu-
tion primarily for algorithmic simplicity: our clients shield
honest users from any notion of prices, budgeting, or other
market issues, thus simplifying their experience.

At our system’s core, users act as both buyers and sell-
ers, with their software exchanging virtual currency in each
transaction. As buyers, users specify which files they seek
to download, while as sellers they decide which files they
are willing to upload and their maximum aggregate upload
rate. The system fully specifies the algorithmic buy-and-sell
behavior of clients—e.g., resource allocation and prices for
sellers, and budgeting and peer selection for buyers. On the
other hand, these underlying mechanisms prevent strategic

or malicious clients from unduly damaging the system’s ef-
ficient operation. In addition, a network cost service enables
the inflation of wide-area traffic prices to accommodate net-
work operator preferences, while a rendezvous service al-
lows peers to discover one another and a bank tracks each
users’ accrued capital. We envision many cost, rendezvous,
and bank services to exist simultaneously, run by providers
seeking to disseminate collections of files, which may range
from large multimedia libraries (e.g., iTunes and YouTube)
to a corpus spanning the entire web (as in CoralCDN [3]).

This paper makes three main contributions. First, we con-
sider a new hierarchical network model that can be lever-
aged to satisfy the goals of all participants. This model cap-
tures the congestion points in a network and enables parties
to price each accordingly. Our system employs decentral-
ized pricing mechanisms; prior calls [1] for a single price
per file not only require central agreement, but also ignore
resource constraints between peers, which is critical for cal-
culating supply and demand. By combining this network
model with our pricing mechanisms, our system can flexibly
and dynamically adjust to fit current operation conditions—
across resources and files, whether typical or unexpected—
and thus provides a form of environment robustness.

Second, users are incentivized to contribute to the sys-
tem. Even though prices and budgets are invisible to users,
each user’s performance is affected by his budget. Thus,
users must contribute upstream capacity to ensure a suffi-
cient budget for downloading under resource constraints.
On the other hand, if resources are not constrained, even
non-contributors (freeloaders) can download files, as it is
socially efficient for them to do. This design philosophy—
viewing freeloading as a concern only in the context of re-
source constraints—diverges significantly from prior work.

Finally, our system architecture provides benefit to all
major participants in a P2P system. Users benefit because
our system efficiently allocates resources across the domain
of many files, ensuring that only the most valued files are
sent over expensive or congested links. Network operators
can control impact on their networks, by setting “network
cost multipliers” for long-haul traffic carriage. These costs
ensure that P2P traffic has a strong incentive to remain lo-
cal when possible, or at least traverse wide-area links that
yield more efficient network usage. Content providers ben-
efit because prices can signal content providers as to how
to allocate and provision scarce server resources (a signifi-
cant area for future work). By recognizing these interests,
we can turn P2P content distribution into a collaboration be-
tween all involved parties, as opposed to the contention that
currently exists (e.g., where ISPs curtail P2P traffic).

2 Previous Approaches
Early P2P systems did not provide any incentives for partic-
ipation, leading to extensive freeloading. According to [6],

85% of Gnutella users were sharing no files. The P2P com-
munity responded with mechanisms to prevent freeloading,
mainly focusing on incentivizing users to share content and
upload capacity, but generally ignoring the value of content.
Thus, Gnutella users who share unpopular files would still
be freeloading, as their files would not be widely uploaded.

One approach is to design a system based on bilateral
peering relationships. This is the case in BitTorrent [2],
where users can achieve better download performance from
peers to which they are simultaneously uploading. Not
only are there no network considerations, but users are also
not incentivized to continue uploading a file after they fin-
ish downloading it, making such ill-suited for anything but
flash crowds for very large files. Our system encourages up-
loading, as this builds a user’s budget for future downloads.

Another option is monetary incentives [5, 12]: A user’s
budget decreases every time he downloads a file, and in-
creases every time he uploads. MojoNation allowed users
to price individual transactions in a centralized auction, but
the usability hurdle for doing so—which is instead hidden
from users in our design—was seen as its downfall [13].
Dandelion [11] describes currency-backed exchanges that
use an online centralized bank, but gives no consideration
about the resulting market, i.e., how prices are set or adapt.
Kash et al. studies performance as a function of the total
amount of internal currency available [7]. This approaches
all use a single price for all files, thus ignoring heterogeneity
in the value of files. While the market-theoretic formulation
of [1] considers files with different prices, it does not pro-
pose a system design. Further, none of these approaches
consider efficient resource utilization; in particular, no pric-
ing is used for communication constraints between peers.

3 System Model and Design
3.1 System components
Our design creates a market for files, in which users act as
both buyers and sellers. Software running on these users’
end-hosts includes both a buy client and a sell client. These
clients interact with each other across both local- and wide-
area networks; when chunks of a file are downloaded by
a buy client from a sell client, (virtual) currency flows in
the opposite direction. This section describes the high-level
design of these clients and other system components.

Buy and sell clients. Buy clients seek to achieve a good
download rate across multiple files—which means allocat-
ing their budget for the users’ desired files wisely—while
sell clients seek to maximize their revenues (while main-
taining a simple service discipline).

Our system accomplishes both tasks by pricing sell
clients’ resource constraints. A sell client s maintains a sep-
arate price for each file f —in “currency units per byte per
second”—call this ps f for now. As demand for f at s ex-
ceeds its available supply, s raises the price of ps f ; when
supply exceeds demand, s lowers this price. We will ex-
tend this pricing model in §3.2, however, so that sell clients
will price certain bottleneck links differently. §4 describes
client behavior in more depth and why this design achieves
efficient network usage and proper incentives.

Clients enforce the secure and fair exchange of content
for virtual currency. In a transfer, the buy client initially
commits to the sell client’s price in a signed statement,
which also includes the final output of a cryptographic hash
chain. Then, as the sell client begins uploading content to
the buy client, the buy client responds with a stream of mi-
cropayments, each a successive pre-image of the hash chain.
This simple design ensures fairness: The buy client only
sends micropayments for content actually received, while
the sell client stops transmitting data soon after a buy client
stops responding with micropayments. The buy client can
thus “steal” bandwidth from at most a small transmission
window before it is detected (and subsequently blacklisted
locally by the sell client).

We securely manage clients’ currency balances in a
straight-forward manner: sell clients aggregate and deposit
these currency transfers—i.e., the signed commitment and
final hash pre-image received—at a logically-centralized
bank. This bank, described later, performs simple double-
entry bookkeeping on the buy and sell clients’ balances.
The bank suitably penalizes or evicts any client maintaining
a negative balance (akin to preventing currency forgery).

Network price service. Beyond minimizing resource con-
gestion, our system benefits network operators by having
clients avoid expensive network links whenever possible.
Whenever a transfer would traverse the wide-area Internet,
the sell client’s file price is inflated by a network cost multi-
plier λ ≥ 1, resulting in the total price λ ps f . As different λ

are associated with different pairs of clients, the multiplier
acts as a “shadow price” for resource constraints in the core.

When a payment from a buy to sell client is made for a
transfer of duration t at rate r, however, only the amount
(ps f · t · r) is paid to the seller. The remaining ((λ −1)ps f ·
t · r) is collected by the bank and then rebated back to all
users (discussed a bit further in §6. This ensures that the
sell client does not benefit from the additional payment due
to network cost multipliers, which otherwise would create
perverse incentives for the sell client to prefer uploading to
expensive destinations. Note that ISPs or third parties do
not receive any of this virtual currency.

To calculate the total price for downloading from a spe-
cific sell client, a buy client needs to discover the network
cost multiplier between the clients. Various lookup service
designs could provide buy clients with such information.
Well-suited for immediate deployment, a third-party service
(e.g., OASIS [4]) could determine cost multipliers via net-
work measurements. Alternatively, a buy client’s network
provider could run a lookup service itself (as with DNS and
DHCP) and use these multipliers to perform traffic engi-
neering on its egress traffic, taking its AS peering and transit
relationships into account. In the longer term, we imagine
such multipliers may be propagated between ASes, perhaps
alongside BGP announcements, and thus enable ISPs to bet-
ter express their preferences for P2P data transfers.

Although additive network costs initially appear natural,
multiplicative network costs are more appropriate for this
setting: With such, it is easier to give relative instead of ab-
solute costs, and users can download without paying when
file prices are zero, allowing the system to better leverage

altruism (much like seeders in BitTorrent [2]). Multipliers
should not be too high, however. Otherwise, a large fraction
of a transfer’s costs would go to the network; the subsequent
rebate to users could provide freeloaders with sufficient cur-
rency to negate the incentive for uploading. Thus, a stand-
alone service [4] should choose multipliers from a limited
range, while multipliers propagated between ISPs should be
normalized.

Rendezvous service. We have yet to prescribe how
buy clients efficiently discover (nearby) sell clients offer-
ing their desired files. In practice, we envision that different
instances of the system might employ various rendezvous
techniques, from a logically-centralized tracker (a la Bit-
Torrent [2]), to application-level anycast [4], to distributed
hash tables indexing clients’ addresses [3]. It is simply im-
portant that the rendezvous service provide both localized
information—so that a buy client can discover nodes with
low network cost multipliers—yet also sufficient diversity,
in order to prevent individual sell clients from exerting mar-
ket power (§4.3). Upon discovering a set of sell clients, the
buy client contacts these nodes to determine both if they
hold file chunks of interest and the file prices they offer.

Bank. Finally, a bank plays the role of maintaining users’
account balances: a transfer of Pbs f from b to s requires
subtracting money from b and awarding some part to s,
with the (potentially zero) remainder from the network cost
multiplier going to rebates. The light-weight means of pay-
ment verification—verifying a single signature and a chain
of one-way hash functions—help minimize the bank’s com-
putational overhead.1 This logically-centralized bank can
be easily scaled by partitioning users over many servers
(e.g., via consistent hashing). Associated with the bank is
a registration authority, which serves as a certificate author-
ity for clients’ public keys and seeks to make it difficult
to operate many accounts per person (i.e., the Sybil attack).
Note that one benefits from multiple accounts only based on
the systems’ rebate policy; unlike with reputation or down-
load/upload ratios [8], faking transfers between colluding
nodes does not increase their aggregate balance.

We anticipate multiple network cost, rendezvous, and
bank services to exist simultaneously. At its simplest, an
entity that seeks to disseminate a collection of files creates
a new currency, registers its users, and runs a bank for this
collection. Thus, uploading any file in iTunes will result in
“iTunes currency” to assist with any future download.

In fact, some settings might not require bank services
at all. For example, locked-down set-top boxes for home
entertainment systems might have trusted software imple-
menting the buy and sell clients. Even though mechanisms
for incentivizing clients may be unnecessary, the system’s
use of prices and virtual currency would still facilitate the
efficient use of network resources.

3.2 Network model
Until now, we have described sell clients as maintaining a
single price ps f per file. This model does not leverage that

1We avoided anonymous e-cash, which require either online checks or
offline exposable secrets. That said, our system is amenable to such.

Network Core

Buy
Clnt

Sell
Clnt

Sell
Clnt

Buy
Clnt

Sell
Clnt bb’s

psf
0

psf
1

λ bs

Pbsf

Pb’sf

Buy
Clnt

=
λ bs= +)(P

bsf

Pb’sf
r t

r t

[
[

]
]psf

0

psf
0

psf
1

Figure 1: Network Model. Clusters of well-connected peers connect
across wide-area links. To download file f from sell client s, local buy
client b′ pays Pb′s f and remote b pays Pbs f to s.

sell clients may have varying network capacities (and hence
supply) to different buy clients. Yet pricing every link in
the network significantly increases complexity and leads to
inaccurate bandwidth estimations. Instead, we propose a
hierarchical network model, outlined in Figure 1, that cap-
tures most of the bottlenecks that lead to supply constraints.

A central observation of our network design is that, to a
first approximation, we can view the entire network as com-
posed of local clusters, connected together by the wide-area
core network. Our model assumes that most bottlenecks—
especially those due to transient congestion—are at access
links, where we can accurately estimate capacity and adapt
prices accordingly. Rare bottlenecks in the core are cap-
tured via the slowly-changing network cost multipliers.

Our system design does not specify precise capacity re-
quirements for local clusters and the wide-area network.
Rather, we anticipate that nodes in the same local clus-
ter share relatively high-capacity links to each other (such
as within a LAN or a switched University network) and
that transmission across the wide area will involve shared,
lower-capacity access links to the Internet (e.g., a DSL con-
nection or a University’s external link).

Each file f at each sell client s has two prices, p0
s f and

p1
s f , corresponding to the price on the seller’s local and re-

mote links, respectively. If buy client b′ is within the same
local cluster as s, b′ pays Pb′s f = (p0

s f · t · r) to s. Such a
payment is shown by the red dotted arrow in Figure 1. On
the other hand, (p0

s f + p1
s f) · t · r is paid to s if b is not in the

same local cluster—the blue dashed arrow2—since any re-
mote download must traverse both the immediate upstream
link at s, as well as the access link shared by all nodes in
the same cluster as s. The prices p0

s f and p1
s f are maintained

and updated by s, in response to available upload bandwidth
and the current demand for file f . In particular, if remote
and local demand for f are both high, then the price p0

s f

will typically be less than p1
s f : Even though remote traffic

must also traverse the local link, local capacity is usually
significantly higher than that of access links.

Buy clients always download a file’s chunks from the sell
clients providing the cheapest total price (see §4.2). When

2Any remote b that downloads from s pays to traverse the access link
for s’s cluster, but not for its own access link. This asymmetry means that
congestion on b’s downstream access link may not be correctly priced.
This congestion applies to all remote files, however, and since local prices
are typically lower, buy clients generally prefer local sources anyway.

a buy client requests a transfer from a sell client that is not
in the same cluster, note that the traffic must also traverse
the wide-area core, and is thus inflated by the network cost
multiplier λ ≥ 1. Thus, for any transfer of chunks of file f
from a sell client s to a remote buy client b, the total price
paid by b is

[
λbs(p0

s f + p1
s f)

]
. Of this, only (p0

s f + p1
s f) is

paid to the seller, with the remainder serving as rebates.
One could extend this same hierarchical model to cap-

ture additional choke-points at the network’s edge and price
these links separately and accordingly.

4 Mechanisms
4.1 Sell client
The sell client interface allows the user to declare (1) the
files he is willing to upload (denoted by the set Us for user
s) and (2) the total upload capacity he is willing to commit
(either as absolute numbers or as a percentage). For each
file f , prices p0

s f and p1
s f are maintained by the sell client.

This section details the service discipline and price update
rules used by the sell client.

We start with the service discipline. Incoming down-
load requests are not queued at the sell client. Requests are
served in the order of arrival, subject to available capacity,
and are immediately notified of acceptance. This greatly
simplifies system design: If we queued requests, then buy
clients would need to issue many requests in parallel, forc-
ing them to optimize spending over a long time horizon.

With respect to price updates, the sell client follows a
very simple rule in principle. However, a difficulty arises
here as there are two scarce resources that the sell client is
utilizing: his own immediate upstream link and the shared
access link to the core—hence the two prices p0

s f and p1
s f

for a single file. (A bottleneck at the access link of the buy
client will be taken into account through demand, see §4.2).

Each sell client s estimates demand and supply for a file
f over a fixed time interval. To update p1

s f , demand is
estimated as the total requested download rate originating
at remote buy clients; a request is counted regardless of
whether sufficient capacity existed to serve it.3 To estimate
supply, the possible upload rate is constrained by the sell
client’s estimate of available bandwidth on its access link;
denote this estimate by c1

s . Bandwidth estimation is used
only for price adaptation, however: Users pay for actual
content downloaded, even if throughput differs from the es-
timated rate. Thus, as we do not require end-to-end band-
width estimation, available capacity may be approximated
by tracking the maximum aggregate throughput ever seen
across all transfers compared to current usage. (Note that
systems such as BitTorrent similarly require edge capacity
estimation, e.g., to set its “active set size” [2].)

The sell client prefers to upload only those files with
the highest current price p1

s f (i.e., the set of files Umax
s =

argmax f∈Us p1
s f). Thus we set the supply of file f to

zero if f 6∈ Umax
s , and otherwise estimate available sup-

3In practice, demand might be somewhat overestimated, as a buy client
can issue several sequential requests to different sell clients until a success-
ful download. However, demand is overestimated only when there already
is excess system-wide demand, so prices would have increased anyway.

ply of f as c1
s /|Umax

s |. Prices increase if demand ex-
ceeds supply and fall otherwise; we use a multiplicative
increase/multiplicative decrease rule, so that convergence
is insensitive to the units in which prices are measured.
When a sell client downloads the first chunk of a previously-
unknown file, it sets its initial file price to that which it paid.

The approach to update p0
s f is similar. Demand is es-

timated by aggregating the rates of all download requests
from both local and remote buy clients, taking the access
link bandwidth constraint into consideration. In particu-
lar, demand is equal to the sum of requests from local buy
clients and the minimum of remote buy requests and the ac-
cess link constraint. Supply is the available bandwidth on
the sell client’s immediate upstream link.

These forces simultaneously incorporate three effects:
(1) the demand for files that the sell client has available,
(2) the available capacity in the network, and (3) the sell
client’s preference to upload more expensive files. In this
way, our system copes with both heterogeneity in the value
of different files, as well as efficient network utilization.

4.2 Buy client
The buy client’s interface allows the user to choose (1) the
files he is interested in and (2) a savings rate, i.e., the per-
centage η of the user’s current budget that should be saved
for the future. Our buy client sets aside a fraction η of
the user’s bank-account balance, and divides the remainder
equally among all files the user wishes to download. For
each such file f , the buy client follows a simple algorithm:
First, order potential sell clients s in increasing order of the
total price the buy client has to pay to s to download chunks
of file f (including the network cost multiplier and remote
access price, if applicable). Ties are broken in order of in-
creasing network cost multiplier. Then, at each sell client
s in this order, the buy client spends as much of its budget
committed to f as possible. If s’s upload capacity is ex-
hausted, b moved to the next sell client in the list. The buy
client stops when it exhausts its budget for f .

This algorithm, though quite simple, is based on a foun-
dational utility model for the user. In particular, the buy
client behaves as if a user’s utility for downloading is:[

∑desired f log(r f)+ constant · log(saved budget)
]

where r f is the total download rate obtained for file f , and
the constant depends on the saving rate η and the number
of desired files. Maximizing this utility subject to the bud-
get constraint faced by the buy client recovers exactly the
algorithm described above.

4.3 Getting Incentives Right
This section argues that, in many respects, our system pro-
vides the correct incentives to participants. We begin by
noting that, in particular, our system design encourages ef-
ficient use of resources in a large P2P system. If the system
is large, we expect that it is hard for users to anticipate how
their actions affect the prices, i.e., it is difficult for users to
predict how demand, supply, and prices will evolve in the
future. One potential concern in such system is the phe-
nomenon of market power: namely, that users may develop

rogue sell clients to manipulate prices higher than the laws
of supply and demand dictate. This effect is mitigated sig-
nificantly in a market with many sellers, where market ma-
nipulation cannot significantly increase profit [9]. While
market power may still be an issue if only a few users have
a file, any system can suffer if such users choose to dictate
terms to the remainder. In our setting, such users are often
the seeders of files and want to see their content dissemi-
nated, giving them no incentive to cheat. More generally,
note that the seller creates other uploaders in the very act
of uploading; thus, market power is at best a transient phe-
nomenon, since other sellers quickly emerge as competitors.

Our system implicitly incentivizes sellers both to choose
a high upload capacity and to share high-value content,
since high-value files will typically be more profitable. This
raises a potential problem: since serving remote clients is
more profitable than serving local ones, rogue sellers may
wish to prioritize uploads to remote clients. Yet there should
be little tension between remote and local transfers in real-
ity: assuming local capacity is much higher than access-link
capacity, serving a remote client does not typically exclude
a local one. We also note that the sell client is paid for de-
livered, not advertised, rate. Thus, a user does not profit by
advertising a higher upload capacity than the one he has.

We also believe our sell client service discipline—serving
requests sequentially and without preemption—is reason-
ably robust. A rogue seller might change this discipline,
e.g., rejecting requests even with available upload capacity,
in the hope of getting requests for more expensive files in
the near future. This is not significantly profitable, however,
since chunks are relatively small. Moreover, if the system
is large, predicting request arrivals is likely difficult.

Our system is designed so that the buy client chooses
files consistent with its user’s best interests, since it seeks to
download at the current minimum price. Moreover, among
files with the same local price, users prefer downloading lo-
cally; among remote transfers of the same price, they prefer
the ones with the smallest network cost multiplier. There-
fore, this aligns incentives with efficient network usage.

5 Simulation Analysis
This section evaluates the following hypotheses through
simulation. (1) File prices reflect resource constraints.
(2) Contributing upstream capacity improves a user’s per-
formance (and thus incentivizes such behavior). (3) Buy
clients prefer more efficient network links. (4) File prices
yield efficient dissemination across multiple files.

Simulator design and configuration. We model
the network using a hierarchical topology generated by
BRITE [10], with clusters of nodes connected by AS-level
links. In what follows, capacity between local hosts is
100 units/round, while that across wide-area links follows a
heavy-tailed distribution (10,1024). Each file is comprised
of 50 chunks, each of fixed size (25). These generated
graphs yield pair-wise network capacities; for simplicity,
however, we do not model cross-traffic congestion. We also
assume simple fixed transmission rates (e.g., no TCP slow
state). Network cost multipliers are static and computed as

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120

P
ric

es
 fo

r
lo

ca
l l

in
ks

Simulation time

100-th perc.

90-th perc.

50-th perc.

10-th perc.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120

P
ric

es
 fo

r
re

m
ot

e
lin

ks

Simulation time

100-th perc.

90-th perc.

50-th perc.

10-th perc.

Figure 2: Local links (top) are cheaper than remote (bottom).

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

P
er

ce
nt

ag
e

Completion time

Non-freeloader chunks in xmit
Freeloader chunks in xmit

Non-freeloaders completed
Freeloaders completed

Figure 3: Non-freeloaders (dashed green on left) download chunks
earlier than freeloaders (dotted blue), leading to earlier completion
times for non-freeloaders (solid red) than freeloaders (dotted black).

an inverse logarithmic function of capacity, ranging [1,2).
The 5,000-line Python simulator operates in synchronous

time steps. At each step, each buy client in random or-
der allocates its budget over its desired files (per §4.2),
choosing to download random chunks from each desired
file from least-cost peers, subject to monetary and capac-
ity constraints. Sell clients allocate their upstream supply
and update their prices each round per §4.1.

We first evaluate the system’s behavior for a flash-crowd
for a single file: All users simultaneously become interested
in the same file, initially at a single, random sell client (with
price set to 1). The network is comprised of 500 peers,
spread over 50 clusters of 10 nodes each. All nodes be-
gin with 1,000 currency units. A randomly-chosen 50% of
nodes are freeloaders, i.e., they never upload content. Non-
freeloaders upload—and thus accrue capital—after finish-
ing their downloads. We conclude with the multi-file case.

Experimental results. We now seek to demonstrate that
our system fulfills the above four hypotheses.

Figure 2 plots the prices of sell clients’ local (top) and
remote (bottom) links. Given their smaller capacity, remote
link prices remain higher for longer. Once chunks are dis-
seminated to a few peers per cluster, local supply can largely
satisfy local demand, and local prices quickly drop.

Figure 3 gives these prices’ performance implications.
There are three distinct regions: In the first ∼20 time slots,
the rate of transmissions for all parties greatly increases, as
prices are still low (see Fig. 2) and every node still has start-
ing capital. Between time 20–80, non-freeloaders download
significantly more chunks than freeloaders: As prices re-
main non-zero, only non-freeloaders accrue capital to afford
such. Finally, non-freeloaders largely finish; as prices drop

 0

 20000

 40000

 60000

 80000

 0 20 40 60 80 100 120

A
ll

ch
ar

ge
s

Simulation time

Non-network charges

Network charges

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

P
er

ce
nt

ag
e

Chunks sent

Optimal remote

Sent remote

Sent local

Figure 4: Buyers prefer local transmissions.

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

P
ric

es
 fo

r
re

m
ot

e
lin

ks

Simulation time

File 1, 90-th perc.

File 2, 90-th perc.

File 1, 50-th perc.

File 2, 50-th perc.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

Completion time

File 1 chunks in xmit
File 2 chunks in xmit

File 1 completed
File 2 completed

Figure 5: Prices (top) and transfer rates (bottom) for two files in the
same network. File 1 starts at 1 node; file 2 at 50 nodes.

towards zero given the excess supply, the transmission rates
of freeloaders quickly rise. The result: Non-freeloaders
complete in about two-thirds the time.

Figure 4 shows that buy clients prefer to download lo-
cally. A much larger fraction of money goes to sell clients
than to network costs (top graph). The bottom graph plots a
CDF of chunk transmission frequency (i.e., how many times
each chunk traverses local and remote links). An optimal
scheduler would transfer each chunk 49 times remotely and
450 times locally (given 50 clusters, 500 users and 1 initial
publisher). Our graph shows a median number of remote
transmissions 120% greater, primarily due to chunks sent
at low rates (and hence multiple rounds) being concurrently
downloaded by multiple peers in the same cluster. Thus, lo-
cal transmissions occur at a median rate of 85% of optimal.

We also found that the completion time of all nodes ap-
pears to grow logarithmically with network size, ranging
from an average of 59.0 time slots for 20 nodes to 156.2
slots for 1000 node systems, with only a small standard de-
viation between runs. All simulations used a cluster size of
10; we omit the graph due to space constraints.

Finally, Figure 5 demonstrates the system dynamics of
multiple files. Here, we initiate our 500-node network (no
freeloaders) with two files. Given that sufficient supply of
file 2 exists, its price stays low and its transmission rapidly
increases. While the nodes initiated with file 2 start down-

loading file 1 immediately (1’s initial bump), most nodes
delay while they download 2: File 2’s low prices have led
to saturated downstream links. After that time, 1 still lacks
sufficient supply, and its price rises given the influx of de-
mand from the nodes previously focusing on 2. Therefore,
we see that prices adapt properly to resource constraints.

6 Conclusions and Future Work
This paper proposes a market-based system design that in-
centivizes users to share valuable content and use network
resources efficiently. The design is novel in that it promises
benefit for all participants: users, network operators, and
content providers. We conclude by briefly discussing two
directions for future work: the management of the money
supply and server-side provisioning.

For our short time-scale evaluation, the total currency in
the system was constant. In a real system, however, users
may join (starting with some initial money or bootstrapped
by “free” popular content, akin to BitTorrent’s use of seed-
ers), leave (dissipating money), and hoard money. If no
monetary policy is enacted, the system may undergo infla-
tionary or deflationary pressures. However, our logically-
centralized bank is in a prime position to control the money
supply, either through the rebate policy or modifying users’
bank balancing (e.g., by decreasing the value of all node’s
old currency, either proportionally or progressively, and giv-
ing an additional direct rebate at a regular rate).

Content providers seek to use peer-assisted content dis-
tribution to cut server costs, yet they often seek to provide
some performance quality-of-service level to their users. In
our model, as prices typically reflect the shortage of re-
sources for a desired file, content providers can use prices,
much like users do, to allocate existing resources near op-
timally. An interesting question remains, however, how to
use these prices to determine the server or network provi-
sioning sufficient to achieve a certain quality-of-service.

References
[1] C. Aperjis and R. Johari. A peer-to-peer system as an exchange econ-

omy. In GameNets, 2006.
[2] B. Cohen. Incentives build robustness in BitTorrent. In Workshop on

Economics of Peer-to-Peer Systems, 2003.
[3] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing

content publication with Coral. In NSDI, 2004.
[4] M. J. Freedman, K. Lakshminarayanan, and D. Mazières. OASIS:

Anycast for any service. In NSDI, 2006.
[5] M. Gupta, P. Judge, and M. Ammar. A reputation system for peer-

to-peer networks. In NOSSDAV, 2003.
[6] D. Hughes, G. Coulson, and J. Walkerdine. Free riding on Gnutella

revisited: The bell tolls? IEEE Dist. Systems Online, 6(6), 2005.
[7] I. Kash, E. J. Friedman, and J. Y. Halpern. Optimizing scrip systems:

Efficiency, crashes, hoarders, and altruists. In EC, 2007.
[8] Q. Lian, Z. Zhang, M. Yang, B. Zhao, Y. Dai, and X. Li. An empirical

study of collusion behavior in the Maze P2P file-sharing system. In
ICDCS, 2007.

[9] A. Mascolell, M. D. Whinston, and J. R. Green. Microeconomic
Theory. Oxford University Press, 1995.

[10] A. Medina, A. Lakhina, I. Matta, and J. Byers. Boston University
Representative Internet Topology Generator, 2007.

[11] M. Sirivianos, J. H. Park, X. Yang, and S. Jarecki. Dandelion: Coop-
erative content distribution with robust incentives. In USENIX, 2007.

[12] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: A se-
cure economic framework for P2P resource sharing. In WEIS, 2003.

[13] B. Wilcox-O’Hearn. Personal Communication, 2007.

	Introduction
	Previous Approaches
	System Model and Design
	System components
	Network model

	Mechanisms
	Sell client
	Buy client
	Getting Incentives Right

	Simulation Analysis
	Conclusions and Future Work

