
Peer-Assisted Content Distribution with Prices

Christina Aperjis
Stanford University

Michael J. Freedman
Princeton University

Ramesh Johari
Stanford University

ABSTRACT
Peer-assisted content distribution matches user demand for
content with available supply at other peers in the network.
Inspired by this supply-and-demand interpretation of the na-
ture of content sharing, we employ price theory to study
peer-assisted content distribution. The market-clearing prices
are those which align supply and demand, and the system is
studied through the characterization of price equilibria. We
discuss the efficiency and robustness gains of price-based
multilateral exchange, and show that simply maintaining a
single price per peer (even across multiple files) suffices to
achieve these benefits.

Our main contribution is a system design—PACE (Price-
Assisted Content Exchange)—that effectively and practically
realizes multilateral exchange. Its centerpiece is a market-
based mechanism for exchanging currency for desired con-
tent, with a single, decentralized price per peer. Honest users
are completely shielded from any notion of prices, budget-
ing, allocation, or other market issues, yet strategic or ma-
licious clients cannot unduly damage the system’s efficient
operation. Our design encourages sharing of desirable con-
tent and network-friendly resource utilization.

Bilateral barter-based systems such as BitTorrent have been
attractive in large part because of their simplicity. Our re-
search takes a significant step in understanding the efficiency
and robustness gains possible with multilateral exchange.

1. INTRODUCTION
Peer-to-peer systems have been wildly successful as a dis-

ruptive technology for content distribution. Varying accounts
place peer-to-peer (P2P) traffic as comprising anywhere be-
tween 35% and 90% of “all” Internet traffic, with BitTor-
rent accounting for its large majority [5]. Perhaps BitTor-
rent’s biggest technical contribution is its content-exchange
mechanisms—rate-based tit-for-tat [8], or bilateral barter—
that users widely view as incentivizing uploads.

While BitTorrent’s usage numbers are certainly impres-
sive, there are some fundamental problems with its resource
allocation and incentive mechanisms, even beyond poten-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2008, December 9-12, 2008, Madrid, SPAIN
Copyright 2008 ACM 978-1-60558-210-8/08/0012 ...$5.00.

tial “free-riding” attacks already observed [15, 19, 26, 24].
Namely, the system can only perform bilateral barter by match-
ing up well-suited pairs of nodes that have disjoint subsets of
a file (or, more generally, files). Yet the discovery of stable
peering relationships is slow in practice—measured in the
tens of minutes [7] or, at least for high-bandwidth peers, re-
quiring a linear brute-force search of other participants to
find similar reciprocation rates [24]—if such reciprocation
exists at all. In the end, altruistic uploading often turns out to
be critical for providing continued content availability [12].

From an economics perspective, many of these problems
ultimately have to do with “market failure” in the system: it’s
hard to find good reciprocation with bilateral barter alone.
But economics also offers an alternative—market-based mul-
tilateral exchange—where the system matches user demand
for content to available supply at other peers in the network.
As we discuss in Section 2, bilateral barter-based systems
such as BitTorrent implicitly encode prices through their rate
reciprocation mechanisms; by contrast, we explore the effi-
ciency benefits of explicit price signals. Explicit prices can
help identify which files are “most useful” to disseminate,
where resource congestion is occurring, and who is provid-
ing useful content to the system. We briefly describe the sig-
nificant efficiency gains possible through the use of a price-
based multilateral exchange (see [2] for a full discussion).

Design of a price-based exchange is subtle: what exactly
should we price? In Section 3, we consider a range of mod-
els, and conclude that simply maintaining a single price per
peer suffices to achieve the benefits of price-based multilat-
eral exchange. We also demonstrate the impact of currency
on system dynamics. This analysis motivates our desire to
use one price per peer in our system design.

Our main contribution is a system design—PACE (Price-
Assisted Content Exchange)—that effectively and practically
realizes multilateral exchange. Its centerpiece is a market-
based mechanism for exchanging currency for desired con-
tent, with a single price per peer as advocated by our theoret-
ical analysis. The system fully specifies the algorithmic buy-
and-sell behavior of users’ clients: Honest users are com-
pletely shielded from any notion of prices, budgeting, alloca-
tion, or other market issues, yet strategic or malicious clients
cannot unduly damage the system’s efficient operation. Still,
users are incentivized to contribute resources, as each user’s
performance is affected by his (hidden) budget.

PACE has several desirable features. First, price manage-
ment is straightforward. Price updating is fully decentralized

to the user clients, and price information is easily discover-
able via existing architectures similar to BitTorrent trackers
or even DHTs. We also show that our decision to use one
price per peer leads to a simple price update implementation,
as well as a simple and robust service discipline at uploaders.

Second, there are several incentive benefits of our design.
For example, the exercise of “market power” by uploaders
is transient, because the dissemination of a file immediately
creates competitors. Further, the use of currency provides an
incentive for users to remain available after downloading, as
credit obtained can be spent later on other content.

Third, our model enables ISPs to easily incorporate sig-
nals for “network friendliness”, and allows a dynamic adap-
tation to resource constraints across multiple domains. Our
hierarchical network model captures the congestion points in
a network for resource pricing, yet also supports the ability
for ISPs to express preferences for long-haul traffic carriage.
This model ensures that P2P traffic has a strong incentive
to remain local when possible, or at least traverse wide-area
links that yield more efficient network usage.

Finally, although PACE uses explicit prices, it is flexible
enough to be adopted in a wide range of settings. For exam-
ple, a content distributor can employ our system design on a
trusted platform (e.g., set-top boxes), in which case manag-
ing currency is vastly simplified. At the other extreme, de-
centralized currency mechanisms such as Karma [29], one-
hop reputations [25], and BarterCast [28] may be used to
support a system implementation that does not rely on cen-
tral money management. In the middle lie systems that em-
ploy (potentially many) logically centralized banks, such as
Dandelion [27] or an alternate design we sketch in §7.

The paper is organized as follows. Section 2 compares
bilateral and multilateral exchange, and §3 compares vari-
ous pricing schemes. Section 4 discusses the user incentives
provided by our exchange model, while §5 presents our net-
work model. Section 6 details the algorithmic mechanisms
at the heart of our buy and sell clients, while §7 describes
the services and protocols that complete the PACE system.
Section 8 evaluates the resulting system in simulation, §9
discusses related work, and §10 concludes.

2. BILATERAL AND MULTILATERAL EX-
CHANGE

This section compares P2P system designs with bilateral
barter, such as BitTorrent, and a market-based multilateral
exchange of content enabled by a price mechanism to match
supply and demand.

BitTorrent and its variants promote bilateral exchange be-
tween peers: a peer i uploads to a peer j if and only if peer
j uploads to peer i in return. Of course, such an exchange
is only possible if each peer has something the other wants.
While such protocols are traditionally studied solely through
the rates that peers obtain, in this section we provide an in-
terpretation of these protocols through exchange ratios.

Let ri j denote the rate sent from peer i to peer j in an in-
stantiation of a BitTorrent swarm. We define the exchange
ratio between peer i and peer j as the ratio γi j = r ji/ri j; this

is the download rate received by i from j, per unit of rate
uploaded to j. By definition, γi j = 1/γ ji. Clearly, a ratio-
nal peer i would prefer to download from peers with which
he has higher exchange ratios, since that would increase his
total download rate.

The exchange ratio has a natural interpretation in terms of
prices. An equivalent story emerges if we assume that peers
charge each other for content in a common monetary unit,
but that all transactions are settlement-free, i.e., no money
ever changes hands. In this case, if peer i charged peer j a
price pi j per unit rate, the exchange of content between peers
i and j must satisfy pi jri j = p jir ji, and the exchange ratio is
γi j = pi j/p ji (as long as the prices and rates are nonzero).

What is the exchange ratio for BitTorrent? A peer splits
its upload capacity equally among those peers in its active
set from which it gets the highest download rates. Let α be
the size of the active set. Suppose all rates rk j that peer j
receives from peers k 6= i are fixed and let Rα

j be the α-th
highest rate that j receives. Let B j be the upload capacity of
peer j. Then, r ji depends on ri j. In particular,

r ji =
{

B j/α if ri j > Rα
j ;

0 otherwise.

Thus for BitTorrent, the exchange ratio is γi j = B j/(α ·ri j) if
peer i is in the active set. We note that γi1, j and γi2, j may be
different for two peers i1 and i2 in j’s active set.

The exchange ratio γi j decreases with ri j as long as peer
i is in peer j’s active set. Hence, a strategic peer i would
prefer to choose ri j as small as possible while remaining in
j’s active set. This behavior is exactly the approach taken by
the BitTyrant [24] variation on BitTorrent. In fact, if all peers
that upload to j follow this policy, then ri j = Rα

j for all peers
i in j’s active set. Note that in this case, γi j = B j/(α ·Rα

i).
Thus, peer j has the same exchange ratio to all peers i with
which he bilaterally exchanges content.

Bilateral exchange is rather restricted. A peer is implic-
itly required to download only from those peers to which he
uploads. Another option is multilateral exchange: let a peer
accrue capital by uploading, and allow him to spend it how-
ever he wishes for downloading. This is achieved through
prices on peers or files (or both) as explained in Section 3,
where multilateral exchange is formally defined. In such a
setting, some peer i may be downloading from peer j, even
though i is not uploading to j, but to some other peer k.

In [2], we exploit the relationship between exchange ra-
tios and prices to theoretically compare the two exchanges
through their equilibrium allocations, where peers explicitly
react to given exchange ratios or prices. We show that when
exchange is restricted to being bilateral, then equilibria may
fail to exist, may be inefficient if they do exist, and may fail
to be robust to collusive behavior even if they are efficient.
With multilateral exchange on the other hand, equilibria exist
under general conditions, are efficient, and are robust to col-
lusive behavior. Indeed, we show that a bilateral exchange
equilibrium is also a multilateral exchange equilibrium ex-
actly if an additional collusion-resistance property is satis-
fied (see [3] for full details). These results demonstrate that
multilateral exchange is efficient and robust to strategic devi-

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

P
er

ce
nt

ag
e

Completion time

PACE, F1
BT, F1

PACE, F2
BT, F2

Figure 1: Completion times for PACE and BitTorrent exchanges.
File F1 started at 10% of the nodes; file F2 at a single node.

ations of cliques, while bilateral exchange is not in general.
Figure 1 provides a comparison of dynamic behavior. The

figure shows the completion times of peers under multilateral
exchange (PACE) and rate-based tit-for-tat (BitTorrent). We
see that for files with constrained availability, peers complete
significantly faster in multilateral exchange, demonstrating
that it behaves well in dynamic settings. Section §8 describes
our simulations in greater depth.

Given these benefits, we choose to use multilateral ex-
change for the system design. In the following section, we
discuss the benefits of having explicit prices and currency in
the system, and we provide a comparative study of a range
of price-based multilateral exchange mechanisms.

3. PRICES IN PEER-TO-PEER SYSTEMS
As discussed in the previous section, multilateral exchange

satisfies a number of desirable properties that bilateral ex-
change does not. In this section, we discuss how these ben-
efits can be enabled. In §3.1, we compare a range of pricing
schemes for multilateral exchange and conclude that sim-
ply maintaining a single price per peer suffices to achieve
the benefits of price-based multilateral exchange. This re-
sult means that a more complex approach of variable pric-
ing (at each peer) for different files or different chunks of
files is, in fact, neither necessary nor beneficial. Intuitively,
even with a single price per peer, variable prices for files still
arise across the network since different peers supply differ-
ent files. In §3.2, we consider how explicit prices, pricing
per peer, and currency benefit system dynamics. We con-
clude by discussing the implications for designing a system
for multilateral exchange.

3.1 Comparing Pricing Schemes
This section compares three pricing schemes for multilat-

eral exchange: (1) one price per peer (denoted PP); (2) one
price per file (denoted PF); and (3) one price per file per peer
(denoted PFP). We compare the schemes through their equi-
libria. First, we show that all three are equivalent when trans-
fers are only constrained by peer upload capacity. However,
we then demonstrate that PF may be strictly worse than PP if
the network topology is non-trivial. Finally, we show that PP
and PFP yield equivalent equilibria, even when the network
topology is non-trivial. Since explicitly pricing every file of
every peer is much more complicated than only maintaining
a single price per peer, our analysis suggests PP is the most
desirable scheme.

Peer Optimization:
maximize Vi(di)
subject to di f = ∑ j r ji f for all f ∈ Ti

ri j f = 0 if f 6∈ Fi
∑ j, f ri j f ≤ Bi
Budget Constraint
r ≥ 0.

Budget Constraints:
PP ∑ j, f p jr ji f ≤ pi ∑ j, f ri j f
PF ∑ j, f p f r ji f ≤ ∑ j, f p f ri j f
PFP ∑ j, f p j f r ji f ≤ ∑ j, f pi f ri j f

Figure 2: Optimization problem for price-based exchange.

In the formal model we consider, a set of peers N shares a
set of files F . Peer i has a subset of the files Fi ⊆ F , and is
interested in downloading files in Ti ⊆ F−Fi. Let ri j f be the
rate at which user i uploads file f to user j, and di f ≡ ∑ j r ji f
be the total rate at which user i downloads file f . We use
sans serif to denote vectors, e.g., di = (di f , f ∈ Ti) is the vec-
tor of download rates for user i. We measure the desirability
of a download vector to peer i by a utility function Vi(di) that
is nondecreasing in every di f for f ∈ Ti. The upload capac-
ity of peer i is denoted by Bi. We allow peers to bilaterally
exchange content over multiple files, even though this is not
typically supported by swarming systems like BitTorrent.

Figure 2 gives the peer optimization problem in price-
based exchange. The first three constraints (giving down-
load rates, ensuring peers only upload files they possess, and
meeting the bandwidth constraint) are identical for all pric-
ing schemes. The budget constraint ensures that the capi-
tal peer i spends for downloading does not exceed the capi-
tal the peer accrues by uploading. Given prices (pi, i ∈ N),
(p f , f ∈ F) and (pi f , i ∈ N, f ∈ F) for the PP, PF and PFP
pricing schemes respectively, the corresponding budget con-
straints are shown in Figure 2.

An equilibrium is a combination of a rate allocation vector
and a price vector such that all peers have solved their corre-
sponding optimization problems. In this case, the prices have
exactly aligned supply and demand: for any i, j, f , the trans-
fer rate ri j f is simultaneously an optimal choice for both the
uploader i and downloader j. We next give the equilibrium
definition for the PP pricing scheme. (Similarly, an equilib-
rium can be defined for the two other pricing schemes.)

Definition 1 The rate allocation r∗ = (ri j f , i, j ∈ N, f ∈ F)
and the peer prices (p∗i , i ∈ N) with p∗i > 0 for all i ∈ N con-
stitute a PP equilibrium if for each peer j, r∗ solves the Peer
Optimization problem given prices (p∗i , i ∈ N).

We first observe that if transfers are only constrained by
the upload capacity of peers, then the PF and PP schemes
are equivalent in terms of equilibria, i.e., an equilibrium for
one scheme exists if and only if there exists an equilibrium
with the same rate allocation for the other pricing scheme.
In particular, given PF equilibrium prices (p∗f , f ∈ F), peer
i will only be uploading files in argmax f∈Fi{p∗f }. Setting
p∗i = max f∈Fi{p∗f }, we get an equilibrium for the PP scheme,
since the optimization problem of each peer does not change.
Similarly, if (p∗i , i ∈ F) are PP equilibrium prices, then p∗f =
mini: f∈Fi{p∗i }, f ∈ F are PF equilibrium prices which yield

the same rate allocation.
Given a non-trivial network topology, however, links other

than peer access links may be congested. These links need
to be priced as well to ensure efficient network usage. Again
abusing notation, we denote the price of link ` by p`. For
now we assume that we can price every link in the network,
an assumption we waive in §5. When peer i is downloading
from peer j, i pays j, but also all links that i’s traffic traverses.

Network links are priced in order to make peers internalize
their effect on the network, and not for profit. Thus, it is
desirable to rebate any payments related to network costs to
peers. We will assume that whatever is paid to traverse links
in the network is rebated equally to all peers; however, our
results also hold for other rebating schemes.

When the network topology is non-trivial, we can modify
the budget constraints to include the payment to the network
on the left hand side and the rebate from the network on the
right hand side. An equilibrium now is a combination of
a rate allocation vector and a price vector (which includes
prices for links) such that all peers have solved their cor-
responding optimization problems and the total traffic that
traverses each link does not exceed its capacity.

The following example shows that when the network is
non-trivial, equilibria may fail to exist under the PF scheme,
even though they exist for the PP and PFP schemes.

Example 1 There are four peers and two files, with file al-
location and demand as shown in Figure 3. The network
has two clusters, consisting of peers {1,2} and {3,4}, with
a bidirectional link ` of capacity 1 connecting them. Peers
{1,3} have file f and want file g; peers {2,4} have file g and
want file f . The peers’ upload capacities are B1 = B4 = 8
and B2 = B3 = 2.

This system has no equilibrium under the PF scheme. If
p` = 0, peers demand d1 = (p f /pg)B1, d2 = (pg/p f)B2,
d3 = (p f /pg)B3 and d4 = (pg/p f)B4 when optimizing. The
market clears only if d1 +d3 = B2 +B4, which implies p f /pg =
1. But then d1 = 8, which is not feasible, since the maxi-
mum total rate at which peer 1 can download is 3. If p` > 0
and there is a single price per file, then peers only down-
load locally and, from the market clearing condition, we get
p f /pg = 4 in one cluster and p f /pg = 1/4 in the other, which
is a contradiction.

On the other hand, under the PP scheme, there is an equi-
librium with prices (p1, p2, p3, p4, p`)= (1,3,3,1,2) and rates
(d1,d2,d3,d4) = (3,7,7,3). Peers 1 and 4 download at rate
2 locally and at rate 1 remotely from each other. The revenue
collected from the link ` is rebated equally to all peers, which
allows peer 2 to download more than (p1/p2)B2.

The preceding example shows that for general network
topologies, the existence of a multilateral equilibrium for the
PP scheme does not imply the existence of an equilibrium
for the PF scheme. The reason is that a file may be uploaded
at different prices at different parts of the network.

PFP is the most general pricing scheme. The following re-
sult shows that PP is equivalent to PFP in terms of equilibria.
The proof (which can be found in [3]) is similar to the proof

Figure 3: System with peers {1,2,3,4} and files { f ,g}. Peers are
located in two clusters; transfers are constrained by bandwidth
constraints of peers and the inter-cluster link.

of equivalence between PP and PF in the trivial network set-
ting. It shows that given equilibrium prices for one pricing
scheme we can construct prices for the other pricing scheme
that yield the same equilibrium allocation.

Proposition 2 For any network topology, there exists a mul-
tilateral equilibrium for the PP scheme if and only if there
exists a multilateral equilibrium for the PFP scheme.

We conclude that one price per peer is sufficient to identify
heterogeneity in the system. Intuitively, the upload capac-
ity of a peer’s access link is the local resource that becomes
congested, and in market design it is typically the case that
one price is required for each congestible resource; hence
one price per peer suffices for multilateral equilibrium. The
argument holds not only for different files, but also for dif-
ferent chunks of the same file. In light of Example 1, a price
for each peer is the minimal amount of information needed.

The PP scheme provides many practical benefits as well.
It greatly reduces the number of prices that need to be main-
tained, compared to PFP pricing. Further, it simplifies price
discovery and leads to a natural service discipline for upload-
ing files, as discussed in §3.2.
3.2 Dynamics

The preceding section considers equilibria, i.e., a static
setting. However, since it is hard to know a system’s equi-
librium prices or allocation in advance, we need to consider
several issues related to dynamics: how downloaders and up-
loaders are matched (peer discovery), how out-of-equilibrium
prices are updated (price discovery), and which requests up-
loaders satisfy (service discipline). In this section we discuss
the role of explicit per-peer pricing in aiding dynamics; we
also briefly discuss the advantages of explicit currency.

A significant advantage of explicit per-peer prices is that
they enable fast peer discovery. This short discovery time
significantly improves on that needed by systems with im-
plicit prices, e.g., such as BitTorrent’s rate-based exchange
ratios, which have long discovery times. These implicitly-
priced systems need to perform a brute-force search across
their peers; this has been found in practice to sometimes take
tens of minutes [7], and, at least for high-bandwidth peers,
requires an asymptotically-linear search to find similar re-
ciprocation rates.

For price discovery, a simple mechanism is to update the
prices of peers and links according to the corresponding ex-
cess demand. In particular, a price should increase if demand
exceeds supply, and decrease if demand trails. But how to

define supply and demand for a peer? If the PP scheme is
employed, a peer’s observed demand is the sum of all re-
ceived rate requests, and his supply is equal to the upload
capacity of his access link (within a fixed time period). If
the PFP scheme is used, excess demand is more complex,
since it needs to be calculated for each file separately, and a
peer’s supply for a file depends on the prices (it is optimal for
each peer to only upload his most expensive file). Thus the
PP scheme leads to simpler price dynamics. The benefits of
the PP pricing scheme are even more apparent for unpopular
files for which requests are relatively rare.

PP pricing leads to a natural service discipline for up-
loading files, well-aligned with a peer’s incentives: serve
requests sequentially and without preemption. The service
discipline for PFP pricing is less clear, however: Serving re-
quests only for the highest-priced file may not fully utilize
a peer’s available resources, while serving requests sequen-
tially is not profit maximizing.

Allowing peers to store and exchange currency over time
also has significant benefits for a system in a dynamic setting.
First, peers can engage in trade before equilibrium prices
are reached. Second, peers can reach a rate allocation by
trading in a decentralized fashion, without requiring a cen-
tral authority to clear the market by matching uploaders and
downloaders. However, incorporating currency into a sys-
tem introduces its own complications, since the user experi-
ence could potentially be complicated, and peer exchanges
and credit balances need to be secured. We demonstrate how
these issues can be handled in §6 and §7, respectively.
3.3 Implications for System Design

In the previous sections, we argued that explicit prices and
currency facilitate multilateral exchange and showed that one
price per peer suffices to achieve the benefits of multilat-
eral exchange. Our system design (PACE) will enable mul-
tilateral exchange through currency and the per-peer pric-
ing scheme. The high-level picture is the following. Given
prices of peers and network links, a peer requests download
rates from other peers in the network. For downloading, a
peer pays the uploading peer and the links its traffic tra-
verses. Payments to links are rebated equally to all peers.
A peer serves requests sequentially without preemption, and
updates its price according to the mismatch between requests
received and available capacity.

In §4, we argue that this high level design in general pro-
vides the right incentives to users. We then make the system
design more practical in terms of network prices and end-
user decisions. Since it is probably infeasible in practice
to price all links in the network, we propose in §5 a hier-
archical model that separately prices most of the bottlenecks
that lead to supply constraints. In §6, we argue that pricing
mechanisms, rather than being directly exposed to end-users,
can serve as algorithmic devices to ensure efficient exchange,
and simplify the user experience. Section 7 describes the ser-
vices and protocols needed to complete the PACE system.

4. USER INCENTIVES
In this section we study the incentives provided to users

in our multilateral exchange model. First, we note that our

 40
 60
 80

 100
 120
 140
 160
 180

 10 100 1000

C
om

pl
et

io
n

tim
e

Network size

Figure 4: Completion time grows O(log(|network|)). Each data
point shows the average performance over five runs—error
bars show standard deviation—with 10 peers per cluster.

system encourages efficient use of resources in a large P2P
system. If the system is large, users cannot accurately antici-
pate how their actions affect prices, i.e., users have difficulty
in predicting the evolution of demand, supply, and prices.

Second, users are given incentives to contribute. In par-
ticular, users are implicitly incentivized both to contribute a
high percentage of their upload capacities and to share high-
value content, since high-value files will typically increase a
user’s price. Moreover, with currency stored over time, users
are incentivized to contribute even if they are not currently
downloading. We also note that a user is paid for delivered
rates, so a user does not profit by advertising a higher upload
capacity than the one he has.

Third, network prices align user incentives with efficient
network usage. If network links are priced correctly, we ex-
pect network prices to reflect congestion. Then users inter-
nalize their effect on the network, since they have to pay for
all network links they use. For instance, among peers with
the same price, a user prefers to download from the peer with
the smallest total network cost, which we expect to corre-
spond to the least congested route. On the other hand, sellers
do not benefit from network-cost-related payments, and so
the system does not create a perverse incentive for sellers to
prefer remote transfers.

Finally, one potential concern in a market-based system is
the phenomenon of market power: Users may try to manipu-
late prices higher than the laws of supply and demand dictate.
This effect is mitigated significantly in a market with many
sellers, where market manipulation cannot significantly in-
crease profit [21]. To illustrate this, suppose k peers have a
file desired by other users in the system. Let d(p) be the de-
mand for the file at price p, and B j be the bandwidth of peer
j. The equilibrium price p∗ satisfies d(p∗) = ∑

k
j=1 B j. Peer i

would benefit from increasing his price to pi > p∗ only if
Bi

d(p)
≥ −d(p)−d(p∗)

p− p∗
· p

d(p)
.

The right-hand side represents the demand elasticity, i.e., the
percentage change in quantity demanded, divided by the per-
centage change in price. Thus, user i will not be able to exert
market power as long as enough sellers compete to upload
the file relative to the elasticity of demand.

Market power may still be an issue if only a few users
have a file, yet any system can suffer if such users choose
to dictate terms to the remainder. In our setting, such users
are often the “seeders” of files and want to see their content

Network Core

Buy
Clnt

Sell
Clnt

Sell
Clnt

Buy
Clnt

Sell
Clnt bb’s

λ bs

Pbs

Pb’s

Buy
Clnt

=
λ bs= ++P

bs

Pb’s
r t

r t

[
[

]
]

ps
1

ps
0

ps
0 ps

1

ps
0

Figure 5: Network Model. Clusters of well-connected peers con-
nect across wide-area links. To download file f from sell client
s, local buy client b′ pays Pb′s and remote b pays Pbs to s.

disseminated. Many peers in existing P2P systems exhibit
such altruistic behavior.

More generally, sellers create other uploaders in the very
act of uploading; thus, market power is at best a transient
phenomenon, since other sellers quickly emerge as competi-
tors. Further, the number of competitors grows exponentially
in time: if a file chunk is always transferred from one user to
another in one time period, then after t time periods, O(2t)-
times more users will have it. Indeed, this asymptotic behav-
ior is supported by our simulation results; Figure 4 shows
that the completion time of all nodes to download a file ap-
pears to grow logarithmically with network size, as expected.

5. HIERARCHICAL NETWORK MODEL
In §3.1, we associated a price with every link in the net-

work in order to ensure efficient network usage. However,
this is probably infeasible in practice, given a lack of network
topology and routing information, inaccurate bandwidth ca-
pacity estimations, and computational complexity. Thus, we
propose a hierarchical network model, outlined in Figure 5,
that separately prices most of the bottlenecks that lead to sup-
ply constraints.

We observe that, to a first approximation, we can view the
entire network as composed of local clusters, connected to-
gether by the wide-area core. Our model assumes that most
bottlenecks—especially those due to transient congestion—
are at access links, where we can accurately estimate ca-
pacity and adapt prices accordingly. Rare bottlenecks in the
core are captured via slowly-changing network prices. Dif-
ferent network prices may be associated with different pairs
of clusters. Section 7 discusses how these network prices can
be set, potentially promoting cooperation between ISPs and
P2P systems. While less expressive than a price-per-link, our
design compares favorably to typical AS-level clustering ap-
proaches [16, 1], which statically restrict peers to their local
neighbors and do not capture dynamic resource constraints.

Our system design does not specify precise capacity re-
quirements for local clusters and the wide-area network. We
anticipate that nodes in the same local cluster share relatively
high-capacity links to each other (such as within a LAN or
a switched university network) and that transmission across

the wide area will involve shared, lower-capacity access links
to the Internet (e.g., a DSL connection or a university’s ex-
ternal link).

To capture these constraints, a peer s maintains two prices,
p0

s and p1
s , corresponding to the immediate upstream link at

s and the access link shared by all nodes in the same clus-
ter as s, respectively. One could extend this hierarchical
model to capture additional choke-points at the network’s
edge if needed and price these links separately and accord-
ingly. In fact, different peers could maintain different num-
bers of prices, based on their local network conditions (and
this would be largely transparent to buyers). For simplicity,
we restrict our further consideration to these two prices.

If peer b′ is within the same local cluster as s, b′ pays
Pb′s = p0

s · r · t to s for a transfer of duration t at rate r. Such
a payment is shown by the red dotted arrow in Figure 5.

If peer b is not within the same local cluster, the traffic
must also traverse the access link for s’s cluster and the wide-
area core. Peer b pays Pbs = (λbs + p0

s + p1
s) ·r ·t to download

from s (the blue dashed arrow),1 where λbs is the network
price between the clusters of b and s. Of this, only(p0

s + p1
s) ·

r · t is paid to s; the remainder is rebated equally to all peers.

6. PACE CLIENT MECHANISMS
One typical complaint against explicit pricing and cur-

rency is that the process of setting prices and bidding for
goods becomes a usability hurdle. Indeed, this hurdle is seen
by the designers of systems such as MojoNation [30] as their
major reason for failing to be widely adopted.

However, pricing mechanisms, rather than being directly
exposed to end-users, can serve as algorithmic devices to en-
sure efficient exchange: We can expose a very simple in-
terface to users and have users’ software optimally compute
their buy and sell behavior. We expect that even strategic
users cannot gain any significant benefit from operating in a
manner other than that specified by our algorithms (per §4).

This section describes the design and algorithmic mecha-
nisms of buy and sell clients in PACE. Clients interact with
each other across both local- and wide-area networks; when
chunks of a file are downloaded by a buy client from a sell
client, (virtual) currency flows in the opposite direction.

6.1 Sell Client
The sell client interface allows the user to declare (1) the

files he is willing to upload and (2) the total upload capacity
he is willing to commit. The sell client s maintains prices
p0

s and p1
s , corresponding to the two edge resources being

priced (per §5). This section details the price update rules
and service discipline used by the sell client.

The sell client s follows a very simple price update rule in
principle. Prices increase if demand exceeds supply and fall
if the opposite; we use a multiplicative increase/multiplicative
1Note that any remote peer b that downloads from s pays to traverse
the access link for s’s cluster, but not for its own access link. This
asymmetry means that congestion on the downstream link from the
wide-area core to b’s cluster may not be correctly priced. This con-
gestion applies to all remote files, however, and since local prices
are typically lower than remote prices, buy clients will generally
prefer local sources anyway.

decrease rule, so that convergence is insensitive to the units
in which prices are measured. A difficulty arises because
there are two scarce resources that are being priced; we now
describe the price update schemes for both p0

s and p1
s .

Sell client s estimates demand and supply over a fixed
time interval. To update p1

s , demand is estimated as the total
requested download rate originating at remote buy clients,
provided they offer at least p1

s . A request is counted re-
gardless of whether sufficient capacity existed to serve it.2

Supply is estimated as the sell client’s upload capacity on
its access link, B1

s . Estimating B1
s may be done by tracking

the maximum aggregate throughput ever seen across all up-
loads. (Note that systems such as BitTorrent similarly use
edge-capacity estimation, e.g., to set its active set size [24].)

The approach to update p0
s is similar. Demand is estimated

by aggregating the rates of all download requests from both
local and remote buy clients, taking the access-link band-
width constraint into consideration. In particular, demand is
equal to the sum of local requests and the minimum of re-
mote requests and B1

s . Supply is the upload bandwidth on
the sell client’s immediate link, B0

s .
Finally, we consider the sell client’s service discipline. In-

coming download requests are served in the order of arrival;
they can be immediately notified of acceptance, subject to
available capacity constraints. The fact that per-peer pricing
gives the seller no real incentive to queue requests simplifies
system design: If we queued requests, then buy clients would
need to maintain a large number of outstanding requests, and
reason about spending over a long time horizon.

6.2 Buy Client
The buy client’s interface allows the user to choose (1)

the files he is interested in (denoted by Ti for user i) and
(2) a savings rate, i.e., the percentage η of the user’s cur-
rent budget that should be saved for the future. During each
fixed time interval, our buy client sets aside a fraction η of
the user’s bank-account balance, and divides the remainder
equally among all files the user wishes to download. For each
such file f , the buy client follows a simple algorithm: First,
given a set of sell clients that have f , order these clients j by
the increasing total price the buy client has to pay for down-
loading from j (including network prices and remote access
prices, if applicable). Then, at each seller j in this order, the
buy client spends as much of its budget committed to f as
possible. If j’s upload capacity is exhausted, the buy client
moves to the next sell client in the list. The buy client stops
when it exhausts its budget for f . Any unused budget is split
evenly between files in Ti−{ f}.

This algorithm, though quite simple, can be interpreted
through a foundational utility model for the user. In partic-
ular, the buy client behaves as if a user’s utility for down-
loading is ∑ f∈Ti logd f , where d f is the total download rate
obtained for file f . Let M be the user’s current bank account

2In practice, demand might be somewhat overestimated, as a buy
client can issue several sequential requests to different sell clients
until a successful download. However, demand is overestimated
only when there already is excess system-wide demand, so prices
would have increased anyway.

balance and p̄ f be the average price he has to pay for file f
over available sellers (in the order described above). Given
that the user wants to reserve η percentage of his current
budget, the client solves the following problem:

maximize ∑
f∈Ti

logd f

subject to ∑
f∈Ti

p̄ f ·d f ≤ (1−η)M

d f ≥ 0, ∀ f ∈ Ti

The optimal solution recovers exactly the above algorithm: It
is optimal to divide (1−η)M—the budget allocated to this
period—equally among all files in Ti. (Note that although
our interpretation is in terms of per file prices, our imple-
mentation is in terms of per peer prices.)

There is a tradeoff between simplifying the user’s expe-
rience and allowing the user to personalize his utility func-
tion. The above mechanism favors simplicity over descrip-
tive power; other approaches can prefer the opposite.3

7. PACE SYSTEM DESIGN
This section describes the services and protocols needed

to complete the PACE system. We discuss how our system
can be employed in both a distrustful setting (where peers
may run their own buy and sell client implementations), and
a trusted platform (where end-clients obey the protocol).

In particular, there are compelling settings where end-clients
may be trusted to obey the protocol, such as with set-top
boxes. Dedicated hardware/software platforms are increas-
ingly popular—e.g., Comcast On-Demand, Verizon FiOS TV,
Microsoft Xbox Live, AppleTV, the Netflix/LG partnership,
and so on—with peer-assisted delivery on the horizon. In
these cases, PACE’s explicit prices would still serve as a
mechanism for efficient resource discovery and allocation,
especially for multi-file download situations.

To enable users to act as both buyers and sellers in currency-
backed content distribution, PACE should support the fol-
lowing functionality:

1. Resource discovery. A buy client should learn a set of
low-cost sell clients from whom to download content.

2. Network friendliness. Service or network operators
can express preferences for peer download behavior
across the wide area; buy clients are incentivized to fol-
low these preferences.

3. User management. The system concerns itself with
user registration, bootstrapping, and collusion.

4. Transactions and currency security. Exchanges be-
tween two parties should be ε-fair: sell clients should
receive payment within an ε of the content transmit-
ted for the agreed price; and buy clients should only
pay for what they receive. Clients should not be able

3For instance, we could allow the user to assign a weight w f for
each file f ∈ Ti, and then maximize ∑ f∈Ti

w f logd f . In this case, a
simple greedy algorithm which allocates budget to files according
to these weights is optimal.

to forge system currency nor spend more money than
their current balance allows.

We describe our design for achieving these four proper-
ties, organized as above. Resource discovery and network
friendliness apply to both trusted and distrustful settings; user
management and security are relevant only for the latter.

System overview. At a high level, the PACE architecture
is composed of four main components. First, users run both
buy and sell clients to trade content for virtual currency. Sell
clients advertise their existence (liveness), shared files, and
current price to a rendezvous service, where buy clients also
connect to discover nearby instances of sell clients offering
desired content. A network price service specifies the net-
work prices to accommodate network operator preferences.

In a non-trusted platform, a currency mechanism is also
needed to securely track each user’s accrued capital. Both
decentralized currency mechanisms (e.g., Karma [29], Barter-
Cast [28], one hop reputations [25]), and logically central-
ized banks (e.g., Dandelion [27]) may provide sufficient se-
curity in a non-trusted platform. For concreteness we fully
specify a centralized currency mechanism that secures trans-
actions and currency in §7.4.

We note that while some logical centralization may be
considered undesirable, it is common to many of today’s
deployed peer-to-peer systems, from Gnutella through Tor,
Skype and BitTorrent. These logically-centralized services
can be made scalable: the PirateBay BitTorrent site was, as
of January 2008, tracking over one million files and 10 mil-
lion peers [23]. That said, some system services may be fed-
erated between existing network providers.

We envision multiple rendezvous, network price services,
and—in the distrustful setting—banks to exist simultaneously,
run by providers seeking to disseminate collections of files,
which may range from large multimedia libraries (e.g., iTunes
and YouTube), to aggregates of user-hosted files (e.g., the
PirateBay BitTorrent tracker), to a corpus spanning the en-
tire web (e.g., CoralCDN [10]). We logically separate these
services because different ecosystems may arise around all
three: rendezvous is file-specific; banks are currency-specific;
and yet network prices are independent of files and currency.

7.1 Resource and Price Discovery
There are a number of feasible engineering designs that

PACE implementations could use for peer discovery, from
logically-centralized trackers (à la BitTorrent), to a feder-
ated application-level anycast service (e.g., OASIS [11]), to
distributed hash tables indexing clients’ addresses [10]. Be-
cause each user only needs to publish a single price (or one
per hierarchical access link, given our network model), prices
can be stored within the rendezvous service without signif-
icant communication overhead for updating. Thus, a query
to the rendezvous service—which takes a file identifier and
buy client information as input—can immediately return a
randomized set of IP addresses with minimal published cost,
potentially biased by network cluster locality or inflated by
additional network prices, which we discuss next.

Upon discovering a set of sell clients with chunks of in-

terest, the buy client determines their latest prices, allocates
its budget across desired files, and prioritizes transfers which
cost less, per §6. If two or more prices are identical, buy
clients prefer those with smaller network prices.

7.2 Network Friendliness
Beyond leveraging users’ prices to minimize resource con-

gestion, PACE benefits network operators by having clients
avoid expensive network links whenever possible. For a trans-
fer traversing the wide-area Internet, the network price λ is
added to the sell client’s file price ps, per §5. Thus, network
prices between the clients’ clusters need to be discovered.

PACE implementations and deployments have various de-
sign choices here as well. Well-suited for immediate deploy-
ment, a third-party service could independently determine
network prices via network measurements [11, 20] or ex-
plicit ISP input. Alternatively, a buy client’s network provider
could run a lookup service itself (as with DNS and DHCP)
and use these network prices to perform policy-based traf-
fic engineering on its intra-ISP and egress traffic, taking its
AS peering and transit relationships into account. In the
longer term, such network prices may be propagated between
ASes, perhaps alongside BGP announcements, and thus en-
able ISPs to better express their preferences for P2P data
transfers. This inter-ISP final proposal introduces interesting
incentive questions when coupled with current billing prac-
tices, so we leave this to future work.

In the preceding section, we proposed that the rendezvous
service could take sell clients’ prices into account when de-
termining which clients to return. There are various design
choices to be made, however, when incorporating network
prices into this model. For a loose coupling between the
two services, the rendezvous service may only incorporate
peers’ file prices or coarse-grained clustering information in
its selection—the latter akin to coarse-grained locality pro-
posals for peer-assisted CDNs [16, 1]—after which buy clients
would subsequently lookup network prices themselves. This
is well-suited for federated deployments in which ISPs pro-
vide network price services. On the other hand, if rendezvous
and network price services are more tightly coupled, the ex-
act network price could be considered in the selection crite-
ria, leading to greater efficiency.

7.3 Managing Users
This section discusses several issues on managing user

identities which are important when strategic users are in-
volved. Until now, we have assumed that clients do not col-
lude with one another, either as cliques of real-world users or
as part of a Sybil attack [9]. While we can cite the traditional
techniques to limit the scale of such attacks—such as ana-
lyzing “introduction” networks (e.g., via SybilGuard [32]),
leveraging real-world scarce resources (e.g., phone numbers
as in Google’s GMail), or even requiring membership sub-
scription via real-world money—the limited benefit of collu-
sion in our setting bears some additional comments.

In PACE, a clique of clients cannot increase its aggre-
gate wealth by combining trade amongst themselves with
service to non-colluding clients at market rates; this is a con-
sequence of the fact that multilateral exchange is robust to

collusive behavior, as discussed in §2. This differs greatly
from many reputation systems or systems based on down-
load/upload rates, where shilling reputation announcements
or faking content transfers [18], respectively, can increase a
clique’s aggregate balance.

The system must have a method to bootstrap new users. If
Sybil attacks are less of a concern, new users can be granted
money upon joining the system as a bootstrapping method.
Alternatively, a new user can be offered the ability to down-
load content for free from the operator: The redistribution of
this in-demand content—not necessarily desired by the new
user itself—can enable the system to provide better quality-
of-service for its published content, while allowing users to
earn initial capital by contributing upstream resources.

While these “free money” approaches may be suscepti-
ble to strategic Sybils—unless Sybil attacks are adequately
protected by the registration process—-these same problems
exist when bootstrapping most other incentive schemes of
which we are aware, even if these systems do not explicitly
use currency. Indeed, BitTorrent’s performance reliance on
seeders and its price-discovery mechanism (optimistic un-
choking) are precisely “free money” and have been attacked
as such [19, 26]. But because PACE maintains currency as
stored value, this bootstrapping phase only occurs when new
users join the system, not for every file being distributed and
every exchange being transacted.

7.4 Securing Transactions and Currency
While the problem of securing transactions and currency

may not arise when the system is deployed on a trusted plat-
form, they must be considered in mutually-distrustful envi-
ronments where peers may run their own buy and sell client
implementations. While decentralized currency mechanisms,
such as Karma [29] and BarterCast [28], may be applicable,
this section discusses how security can be achieved with a
logically centralized bank.

Securing Transactions. Exchanges between buy and sell
clients should be ε-fair in that the goods they ultimately ex-
change are equal (within some small ε factor) with respect to
the agreed-upon payment P. That is, if one party fails during
the transaction after only i

k th of the content is transferred,
and ε =1/k, then the buy client should pay i−1

k P≤ P′ ≤ i
k P.

We next describe how this property can be achieved.
To initiate a chunk transfer, sell client s sends a counter ct

and the agreed-upon price p to buy client b, who generates a
commitment to s:

σ ← signb(b, s, P, Λ, k, h0, ĥ, ct)

where sign is a cryptographic signature with message re-
covery in the “hash-then-sign” paradigm [6]. P = p · r · t =
p·|chunk| is the full payment for the chunk, of which Λ is the
network cost. This payment P can be split across k micro-
payments. h0 and ĥ are outputs of a cryptographic hash func-
tion, generated as follows. The buy client first selects some
random string hk, then recursively computes a hash chain:
hi−1← hash(hi) for i = k . . .1. The buy client also creates a
“shortcut” ĥ← hash(S,hk) for global constant S.

At the beginning of a transfer, the buy client sends σ and
its certified public key to s. Then s verifies both b’s public
key and σ ’s contents and signature. The sell client continues
to transmit only if it receives a successive pre-image of the
hash chain hi = hash−1(hi−1) every 1

k -th of the transfer.
To deposit a payment at a bank (discussed next), b pro-

vides the tuple 〈h′i, i,σ〉. The bank verifies σ and that the
statement is not being replayed (using the counter ct , also
discussed next). If these checks succeed, the bank deter-
mines whether i = k, in which case the bank checks ĥ ?=
hash(S,h′i). If 0 < i < k, the bank verifies h0

?= hashi(h′i), i.e.,
recursively applies the hash function i times. If this check
passes, the bank executes the transaction for an amount P′ =
i
k P; that is, it debits b with the amount P′, credits s with
P′− i

k Λ, and reserves the (potentially zero) payment i
k Λ for

network costs.
Thus, we see that the bank’s computational overhead is

one “double-entry book-keeping” transaction, one signature
verification, and one cryptographic hash in the normal case.
In the case of truncated transfers, this overhead increases to
at most k hashes, instead of one. (This use of ĥ is a pure
computational optimization.)

To further reduce the load at a bank, sell clients can ag-
gregate multiple payments from the same buy client before
depositing them as one transaction. Repetitive behavior is
especially likely once two well-located peers discover one
another and transfer many chunks, e.g., those peers belong-
ing to the same network cluster.

Securing Currency and Balances. To broker the exchange
of files belonging to some collection, a content provider both
runs a bank which manages currency used by the collection,
and acts as a user registration authority for peers seeking
to download files from the collection. The set of files that
belong to a collection can be dynamic; banking/registration
providers could thus offer their services to multiple publish-
ers of collections.

Users are identified by public/private key pairs. When reg-
istering a new user, the bank issues a signed certificate to the
user (with a short expiry time) attesting to its membership.
This certificate is used by sell clients to verify the mem-
bership of buy clients without online checks. Banks must
therefore refresh the certificate of active clients every expiry
period; these updates can be piggy-backed on other control
traffic, e.g., deposits.

For each registered user, the bank stores, at a minimum,
a hash of its public key, its current balance, and a monoton-
ically increasing counter clast of its last deposit. To prevent
sell clients from replaying deposits, the counter ct included
in a deposited payment must be strictly greater than the buy
client’s clast . If the deposit succeeds, clast is set to ct .

On the other hand, the bank must also prevent buy clients
from issuing payments for money they do not have. For in-
creased scalability, we have suggested a model by which in-
dividual sell clients can aggregate payments over short time
horizons into single deposits. Of course, there then exists
some window of vulnerability during which buy clients may
overdraw on their accounts. Thus, if the bank ever detects

that a client maintains a negative balance in its account, it
should suitably punish or evict that client—by not renewing
its membership certificate—from its network.

One could, of course, reduce this potential fraud by min-
imizing both sell clients’ aggregation of payments and buy
clients’ certificate expiry times. In the limit, sell clients could
perform an online check at the start of a transfer (escrowing
P for some duration), and avoid any potential for overspend-
ing, at the cost of greater bank load and client latency.

We believe that these logically-centralized banks can be
easily scaled via traditional replication and partitioning strate-
gies; indeed, the systems community has several decades of
experience building highly-scalable and available transaction-
processing systems. Further, given that currency is only vir-
tual, one may be able to slightly weaken consistency or fresh-
ness guarantees. Finally, as PACE’s network model specif-
ically encodes the hierarchical network structure for ISP-
friendliness, network providers may use (currency-agnostic)
local banks to aggregate local transactions to reduce load,
especially given the extent to which transactions in PACE
are executed locally. This layer of federation adds additional
complexity, so we leave its full consideration to future work.

8. SIMULATION ANALYSIS
In this section, we evaluate the following hypotheses through

simulation. (1) File prices reflect resource constraints. (2)
Contributing upstream capacity improves a user’s performance
(and thus incentivizes such behavior). (3) File prices yield
efficient dissemination across multiple files. (4) Efficient
network utilization is enabled (compared to BirTorrent).

Simulator design and configuration. We model network
connectivity and capacities using a hierarchical topology gen-
erated by BRITE [22], with clusters of nodes connected by
AS-level links. In the following experiments, capacity be-
tween local hosts is 100 units/round, while that across wide-
area links follows a heavy-tailed distribution on (10,1024).
Each file is comprised of 50 chunks, each of fixed size (25
units). We use these generated graphs to compute end-to-
end network capacities; for simplicity, however, we model
all pairs of nodes as having independent links, i.e., we do not
model cross-traffic congestion. We also assume simple fixed
transmission rates (e.g., no TCP slow start). Network prices
are static and computed as an inverse logarithmic function
of capacity, ranging [0,5). Money collected from network
prices are rebated equally to all peers.

The 8,000-line Python simulator operates in synchronous
time steps, with PACE buy and sell clients behaving as spec-
ified in §6. Our BitTorrent-like implementation, used for
some comparisons with PACE (e.g., in Fig.1), captures the
main aspects of the BitTorrent protocol: optimistic unchok-
ing (with 2 slots), active set sizing (with max(4,∼

√
B1) slots),

and rate-based tit-for-tat with equal-split bandwidth alloca-
tion (all per [24]). Both protocols use a local-rarest-first pol-
icy for chunk selection, and all peers have a neighborhood
set of at most 80 peers.

We first evaluate how the system handles a flash-crowd for
a single file: All users are interested in the same file, initially

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

P
ric

es
 fo

r
lo

ca
l l

in
ks

Simulation time

100-th pctl
90-th pctl
50-th pctl
10-th pctl

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

P
ric

es
 fo

r
re

m
ot

e
lin

ks

Simulation time

100-th pctl
90-th pctl
50-th pctl
10-th pctl

Figure 6: Local links (top) are cheaper than remote (bottom).

published at a single, random sell client (with an initial price
of 1). In most experiments, peers’ arrivals take a Poisson
distribution with a mean of 20 time units (rounds); after fin-
ishing a download, peers stop sharing a file after some time
(which is exponentially distributed, also with a mean of 20
time units).

The following results are for a network of 500 peers, com-
prised of 50 clusters of 10 nodes each. All nodes begin with
2,000 currency units. A randomly-chosen 50% of nodes are
“freeloaders,” i.e., they never upload content. Non-freeloaders
upload—and thus accrue capital—even after finishing their
file download(s). We later consider the multiple file case.

The system behaves similarly when nodes’ initial currency
varies from 100 to 10,000 units: the equilibrium price just
shifts accordingly. However, too little initial currency (10
units) led to liquidity problems, in that many exchanges ex-
ecuted at a 0 price, which led to indistinguishable perfor-
mance between freeloaders and non-freeloaders; too much
currency (1M units) took too long for price convergence,
leading to the same result.

Experimental results. We now seek to demonstrate that our
system fulfills the four hypotheses discussed at the beginning
of the section.

Figure 6 plots the prices of sell clients’ local (top) and re-
mote (bottom) links. Given their smaller capacity, remote
link prices remain higher for longer. Once chunks are dis-
seminated to a few peers per cluster, local supply can largely
satisfy local demand, and local prices drop. We can observe
convergence around the remote equilibrium price between
time 30 and 50 (the jagged edge corresponds to the MIMD
oscillations around the equilibrium price).

Figure 7 gives these prices’ performance implications. We
observe four distinct regions: In the first ∼18 time slots, the
network is largely quiescent, as peers are still slowly arriv-
ing and beginning transmissions. Between 18–27, the rate of

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

P
er

ce
nt

ag
e

Simulation time

Non-free in xmit
Free in xmit

Non-free done
Free done

Figure 7: Non-freeloaders (dashed green on left) download
chunks earlier than freeloaders (dotted blue), leading to earlier
completion times for non-freeloaders (solid red) than freeload-
ers (dotted black).

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

Simulation time

F1 chunks in xmit
F2 chunks in xmit

F1 done
F2 done

Figure 8: Transfer rates for two files in the same network. File 1
starts at 50 nodes; file 2 at 1 node.

chunk transmissions for both non-freeloaders and freeload-
ers greatly increases, as prices are still low (see Figure 6)
and every node still has starting capital: The system has
yet to reach an equilibrium. Already between time 21–60,
however, we see the benefit of cooperation: Non-freeloaders
download significantly more chunks than freeloaders, as when
prices are non-zero, only non-freeloaders accrue capital to
afford such. Finally, around time 50, non-freeloaders begin
to finish, and prices drop toward zero given the enlarged sup-
ply. Freeloaders take advantage of this excess capacity (as is
socially efficient) and their transmissions increase again. The
result: non-freeloaders complete in about 60% of the time.

Figure 8 demonstrates the system dynamics for multiple
files in more flash-crowd scenarios (i.e., all peers arrive at
time 0). Here, we initiate our 500-node network (no freeload-
ers) with two files, F1 and F2. Given increased supply of
F1 exists—it starts on 10% of nodes—its transmission rate
initially shoots up. While the nodes initiated with F1 start
downloading F2 immediately (F2’s initial bump in “chunks
in transit”), most nodes delay while they download F1: F1’s
supply and lower available prices have led to saturated down-
stream links. As individual nodes finish downloading F1,
they begin to download F2. Resource allocation thus prop-
erly adapts to constraints, yielding a median completion time
for F1 that is 50% of F2. Under the Poisson arrival setup used
earlier, the dissemination of both files behaved more identi-
cally, given that the lower initial demand on F1 allowed con-
tinued dissemination of F2.

Finally, Figure 9 shows that most transfers are local. We

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

P
er

ce
nt

ag
e

Chunks sent

Opt. rem
BT loc

PACE rem
PACE loc

BT rem

Figure 9: PACE downloaders prefer local (loc) to remote (rem)
transmissions, but BitTorrent (BT) makes poor use of locality.

return to the single-file case, again with no freeloaders. The
graph plots a CDF of chunk transmission frequency (i.e.,
how many times each chunk traverses local and remote links).
The minimum number that each chunk needs to be remotely
transfered is 49, which would lead to 450 local transfers
(given 50 clusters, 500 users, and 1 initial publisher). Our
graph shows a median number 131% more remote transfers,
primarily caused when chunks sent at low rates (and hence
multiple rounds) are concurrently downloaded by multiple
peers in the same cluster. Conversely, median local transfers
occur at 86% of optimal.

Our BitTorrent simulation, however, performed significantly
worse. Figure 9 shows BitTorrent’s remote transmissions
were 702% greater than optimal, or 26% of the optimal for
local. One could add some static locality to BitTorrent [7,
1], but these do not capture dynamic constraints. Adapting
to these dynamic constraints is useful; recall that Figure 1
shows PACE outperforming BitTorrent when it had to allo-
cate resources across files. We omit further comparisons be-
tween PACE and BitTorrent due to space limitations.

9. RELATED WORK
Early P2P systems did not provide any incentives for par-

ticipation, leading to extensive freeloading. According to [14],
85% of Gnutella users were sharing no files. The P2P com-
munity responded with mechanisms to prevent freeloading
by incentivizing sharing.

One approach is to design a system based on bilateral
barter, as used by BitTorrent [8] and its variants [24, 31],
where users can achieve better download performance from
peers to which they are simultaneously uploading. Not only
are there no network considerations, but users are also not in-
centivized to continue uploading a file after they finish down-
loading it, making such systems ill-suited for anything but
flash crowds for very large files. Our system encourages up-
loading, as this builds a user’s budget for future downloads.
Finally, [25] proposes a volume-based tit-for-tat that is coor-
dinated through a relatively small set of intermediaries.

Another option is monetary incentives [13, 29]: A user’s
budget decreases when downloading a file and increases when
uploading. MojoNation allowed users to price individual
transactions in a centralized auction, but the usability hur-
dle for doing so—which is instead hidden from users in our
design—was seen as its downfall [30]. Dandelion [27] de-

scribes currency-backed exchanges that use an online cen-
tralized bank, but gives no consideration about the resulting
market, i.e., how prices are set or adapt. Kash et al. stud-
ies performance as a function of the total amount of internal
currency available [17], but does not consider heterogeneity
in the system. While the market-theoretic formulation of [4]
considers files with different prices, it does not propose a
system design. Further, none of these approaches consider
efficient resource utilization; in particular, no pricing is used
for communication constraints between peers.

10. CONCLUSIONS
This paper studies the role of prices in peer-assisted con-

tent distribution. Our novel theoretical results demonstrate
how relatively simple pricing mechanisms are sufficient for
efficient allocations. Given these results, we present PACE,
a system design for currency-backed content exchange. Be-
yond efficient use of network resources, PACE’s algorithmic
mechanisms are promising to hide complexity from users,
provide robustness to strategic deviations, incorporate net-
work friendliness, and prevent cheating.

Beyond a more in-depth consideration of ISP-propagated
network prices, two other aspects for future work are inter-
esting: long-term money management and the role prices
could play in server provisioning. As users join and leave,
and the network size changes, we must ensure that an appro-
priate amount of currency remains in the system. While the
MIMD adaptation of prices makes the system somewhat ro-
bust to moderate inflation and deflation, excessive inflation
may cause price convergence to take too long, while exces-
sive deflation can lead to insufficient liquidity. We currently
suggest a proportional “tax” on client’s balances to prevent
hoarding, and reinjecting money into the system via equal
rebates to all parties. We leave a careful analysis of money
management and rebating schemes to future work.

Content providers seek to use peer-assisted content dis-
tribution to cut costs, yet they also seek a certain quality-
of-service. In PACE, providers can use prices, much like
users do, to allocate their server resources near optimally.
An interesting question remains how providers can use these
prices to determine the level of provisioning sufficient to
achieve desired QoS guarantees.

Acknowledgments. This paper was supported by the Na-
tional Science Foundation.

11. REFERENCES
[1] V. Aggarwal, A. Feldmann, and C. Scheideler. Can ISPs and

P2P users cooperate for improved performance? ACM CCR,
37(3), 2007.

[2] C. Aperjis, M. J. Freedman, and R. Johari. A comparison of
bilateral and multilateral exchanges for peer-assisted content
distribution. In NetCoop, Sept. 2008.

[3] C. Aperjis, M. J. Freedman, and R. Johari. The role of prices
in peer-assisted content distribution. Technical Report
TR-814-08, Princeton University, Computer Science, 2008.

[4] C. Aperjis and R. Johari. A peer-to-peer system as an
exchange economy. In GameNets, 2006.

[5] E. Bangeman. P2P responsible for as much as 90 percent of
all ’Net traffic. ArsTechnica, Sep 3 2007.

[6] M. Bellare and P. Rogaway. The exact security of digital
signatures: How to sign with RSA and Rabin. In
EUROCRYPT, 1996.

[7] R. Bindal and P. Cao. Can self-organizing P2P file
distribution provide QoS guarantees? OSR, Self-Organizing
Systems, 2006.

[8] B. Cohen. Incentives build robustness in BitTorrent. In
Workshop on Economics of Peer-to-Peer Systems, 2003.

[9] J. R. Douceur. The Sybil attack. In IPTPS, 2002.
[10] M. J. Freedman, E. Freudenthal, and D. Mazières.

Democratizing content publication with Coral. In NSDI,
2004.

[11] M. J. Freedman, K. Lakshminarayanan, and D. Mazières.
OASIS: Anycast for any service. In NSDI, May 2006.

[12] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang.
Measurements, analysis, and modeling of BitTorrent-like
systems. In IMC, 2005.

[13] M. Gupta, P. Judge, and M. Ammar. A reputation system for
peer-to-peer networks. In NOSSDAV, 2003.

[14] D. Hughes, G. Coulson, and J. Walkerdine. Free riding on
Gnutella revisited: The bell tolls? IEEE Dist. Systems
Online, 6(6), 2005.

[15] S. Jun and M. Ahamad. Incentives in bittorrent induce free
riding. In WEIS, 2005.

[16] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should
Internet service providers fear peer-assisted content
distribution? In IMC, 2005.

[17] I. Kash, E. Friedman, and J. Halpern. Optimizing scrip
systems: Efficiency, crashes, hoarders, and altruists. In EC,
2007.

[18] Q. Lian, Z. Zhang, M. Yang, B. Zhao, Y. Dai, and X. Li. An
empirical study of collusion behavior in the Maze P2P
file-sharing system. In ICDCS, 2007.

[19] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free
riding in BitTorrent is cheap. In HotNets, 2006.

[20] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,
A. Krishnamurthy, and A. Venkataramani. iPlane: An
information plane for distributed services. In OSDI, 2006.

[21] A. Mascolell, M. Whinston, and J. Green. Microeconomic
Theory. Oxford University Press, 1995.

[22] A. Medina, A. Lakhina, I. Matta, and J. Byers. Boston
University Representative Internet Topology Generator,
2007.

[23] T. Mennecke. The Pirate Bay breaks 10 million users. Slyck
News, Jan 26 2008.

[24] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. Do incentives build robustness in
BitTorrent? In NSDI, 2007.

[25] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson. One
hop reputations for peer-to-peer file sharing workloads. In
NSDI, 2008.

[26] M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Free-riding
in BitTorrent networks with the large view exploit. In IPTPS,
2007.

[27] M. Sirivianos, J. H. Park, X. Yang, and S. Jarecki. Dandelion:
Cooperative content distribution with robust incentives. In
USENIX Technical, 2007.

[28] Tribler. Bartercast. http://www.tribler.org/BarterCast, 2008.
[29] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer.

KARMA: A secure economic framework for P2P resource
sharing. In WEIS, 2003.

[30] B. Wilcox-O’Hearn. Personal Communication, 2007.
[31] F. Wu and L. Zhang. Proportional response dynamics leads to

market equilibrium. In STOC, 2007.
[32] H. Yu, M. Kaminsky, P. Gibbons, and A. Flaxman.

SybilGuard: Defending against Sybil attacks via social
networks. In SIGCOMM, 2006.

	Introduction
	Bilateral and Multilateral Exchange
	Prices in Peer-to-Peer Systems
	Comparing Pricing Schemes
	Dynamics
	Implications for System Design

	User Incentives
	Hierarchical Network Model
	PACE Client Mechanisms
	Sell Client
	Buy Client

	PACE System Design
	Resource and Price Discovery
	Network Friendliness
	Managing Users
	Securing Transactions and Currency

	Simulation Analysis
	Related Work
	Conclusions
	References

