
Anycast for Any Service

Michael J. Freedman

Karthik Lakshminarayanan
David Mazières

http://oasis.coralcdn.org/

mycdn

?

What’s the replica-selection problem?

� Client needs to choose a “good” replica server

� Performance and cost dependent on replica selection

What do we currently do?

How bad can it get?

Anycast is the solution

� Anycast = automated “good” replica selection

� OASIS is a flexible anycast system for multiple services

?

mycdn

The need for anycast

� Internet systems rely on replicated content and services

� Distributed mirrors: Web servers, FTP servers, …

� Content Distribution Networks: Akamai, CoralCDN, …

� Internet Naming Systems: DNS, SFR, DOA, …

� Distributed File Systems: CFS, Shark, ….

� Routing Overlays: RON, Detour, i3, …

� Distributed Hash Storage Systems: OpenDHT, …

� All could benefit from anycast service

How should one
implement anycast?

Strawman: probe & find nearest
mycdn

I
D

B

C

A

E ICMP

Strawman: probe & find nearest
mycdn

I
D

B

C

A

E ICMP

, ,E I D

���� Result highly accurate

���� Lots of probing

���� Slow to compute

mycdn

I
D

B

C

A

E ICMP

, ,E I D

���� Result highly accurate

���� Lots of probing

���� Slow to compute

Strawman: probe & find nearest

mycdn

I
D

B

C

A

E ICMP

, ,E I D

���� Result highly accurate

���� Lots of probing

���� Slow to compute

Avoid probing on-demand

mycdn

I
D

B

C

A

E ICMP

, ,E I D

Avoid probing on-demand

���� Result highly accurate

���� Lots of probing

���� Slow to compute

18.0.0.0/8

[IMC05] shows IP prefixes often preserve locality
(99% of /24s by stub AS at the same location)

This is the problem
Akamai must solve

What about yourcdn?

mycdn E I D yourcdn M N O

18.0.0.0/8

���� Result highly accurate

���� Lots of probing

���� Slow to compute

Idea: Use geographic coordinates

mycdn yourcdn

18.0.0.0/8

(42N,71W)

���� Result highly accurate

���� Lots of probing

���� Slow to compute

���� Stable across services, time, and failures

Assume all replicas
know geo-coords

(42N,71W)

���� Amortize costs

OASIS provides…

���� Result highly accurate

���� Stable across time, services, and failures

���� Amortize costs

���� Fast response time

���� Supports flexible anycast policies
� Balances tension between:

� Performance: finding nearest replica

� Cost: minimizing 95% bandwidth usage

Outline

� Architecture and design decisions

� Detailed design

� Evaluation

� Deployment and integration lessons

� OASIS deployed since November 2005

� Currently in use by 10 services

Two-tier architecture
mycdn

OASIS core

Large set of replicas that assist in measurement

Reliable core of hosts that implement anycast

=
DNS OASIS

nodeRPC

mycdnreplica
proxy=

Using OASIS via DNS

1. Client issues DNS request for mycdn.nyuld.net

2. OASIS redirects client to nearby application replica

mycdn

OASIS core

Client Resolver

1
2

1
23

OASIS core

mycdn

1. Client issues HTTP request

2. Web cgi-bin issues RPC to OASIS core

3. Client redirected to nearby application replica

Client

Using OASIS via HTTP

servicebucketing

proximity replicas

IP prefix policy

coords

response

request
IP addr name

Using OASIS via HTTPHow does core answer anycast?

How does core answer anycast?

servicebucketing

proximity replicas

IP prefix

coords

request
IP addr name

policy

response

mycdn

18.26.4.9
171.66.3.181

216.165.109.81

mycdn .nyuld.net18.71.0.3

18.0.0.0/8

18.26.4.9

How to map IP prefix to coords?

proximityIP prefix (Lat, Lng, RTT distance)

location accuracy

� Two-pronged approach
� Find closest replica proxy

How to map IP prefix to coords?

:18.0.0.0/8

(42N,71W)(42N,71W)

proximityIP prefix (Lat, Lng, RTT distance)

location accuracy

� Two-pronged approach
� Find closest replica proxy

� Use closest replica’s geo-coords + error RTT as location

How to map IP prefix to coords?

:18.0.0.0/8

(42N,71W)

, 6.0 ms

(42N,71W)

proximityIP prefix (Lat, Lng, RTT distance)

location accuracy

� Two-pronged approach
� Find closest replica proxy with less probing

� Use closest replica’s geo-coords + error RTT as location

18.168.0.23

Find replica nearest prefix efficiently

18.0.0.0/8

“Probe 18.0.0.0/8”

� Two-pronged approach
� Find closest replica proxy with less probing

� Use closest replica’s geo-coords + error RTT as location

18.168.0.23

Find replica nearest prefix efficiently

[Meridian 05]

18.168.0.23

Find replica nearest prefix efficiently

[Meridian 05]
� Two-pronged approach

� Find closest replica proxy with less probing

� Use closest replica’s geo-coords + error RTT as location

:18.0.0.0/8 , 6.0 ms(42N,71W)

Geographic distance vs. RTT

� Strong correlation b/w geographical distance and RTT

Geographic distance vs. RTT

� Strong correlation b/w geographical distance and RTT

� RTT accuracy has real-world meaning

� Check if new coordinates improve accuracy vs. old coords

Geographic distance vs. RTT

� Strong correlation b/w geographical distance and RTT

� RTT accuracy has real-world meaning

� Check if new coordinates improve accuracy vs. old coords

[Meridian 05]:18.0.0.0/8 , 6.0 ms(42N,71W):18.0.0.0/8 , 3.0 ms(42N,72W):18.0.0.0/8 , 3.0 ms(42N,72W)

Geographic distance vs. RTT

� Strong correlation b/w geographical distance and RTT

� RTT accuracy has real-world meaning

� Check if new coordinates improve accuracy vs. old coords

[Meridian 05]:18.0.0.0/8 , 6.0 ms(42N,71W):18.0.0.0/8 , 3.0 ms(42N,72W)

:18.0.0.0/8 , 3.0 ms(42N,72W)

Geographic distance vs. RTT

� Strong correlation b/w geographical distance and RTT

� RTT accuracy has real-world meaning

� Check if new coordinates improve accuracy vs. old coords

� Useful for sanity check for network peculiarities

� Do multiple results satisfy constraints (e.g., speed of light) ?

Outline

� Architecture and design decisions

� Detailed design

� Evaluation

� Deployment and integration lessons

� OASIS deployed since November 2005

� Currently in use by 10 services

mycdn opendht

� OASIS core

� Global membership view

� Epidemic gossiping
• Scalable failure detection
• Spread policies, prefix coords

� Consistent hashing
• Divide up responsibility for prefixes

� Service replicas

� Heartbeats to OASIS node

� Form global Meridian
overlay for probing

OASIS core

How to find “nearby” nodes?

replicas

IP prefix

coords

request
IP addr name

servicebucketing

proximity

policy

response

mycdn

mycdn .nyuld.net

18.26.4.9
171.66.3.181

216.165.109.81

18.26.4.9

18.26.4.9

18.0.0.0/8

Local info from gossiping
(stale data okay)

How to find “nearby” nodes?

replicas

IP prefix

coords

request
IP addr name

servicebucketing

proximity

policy

response

mycdn

18.26.4.9Local info from gossiping
(stale data okay)

mycdn .nyuld.net18.26.4.9

18.0.0.0/8

18.26.4.9
171.66.3.181

216.165.109.81

Clients react poorly
to stale data

Aggregate replica information

OASIS

mycdn

� Define service’s rendezvous node via consistent hashing

� Service replicas send keepalives to nearby OASIS nodes

� Update rendezvous when replicas join, leave, large load change

OASIS

H(srv)

Aggregate replica information

OASIS

mycdn

� Define service’s rendezvous node via consistent hashing

� Service replicas send keepalives to nearby OASIS nodes

� Update rendezvous when replicas join, leave, large load change

OASIS

Bottleneck?
H(srv)

Aggregate replica information

OASIS

mycdn

� Aggregate over k nodes for scalability

� Rendezvous gossip liveness state for loose consistency

� k can be dynamic for better scalability

OASIS

H(srv)

A client’s view: Finding a nameserver

OASISOASIS

� Core lookup: Contacts 1 of 13 nameservers for .nyuld.net

� OASIS “uses itself” to discover replica for service dns

H(dns)

Client

A client’s view: Finding a nameserver

OASISOASIS

� Core lookup: Contacts 1 of 13 nameservers for .nyuld.net

� OASIS “uses itself” to discover replica for service dns

� Returns nearby nameservers for subsequent requests

H(dns)

Client

OASISOASIS

H(mycdn)

� Replica lookup: Client contacts nearby nameserver

� OASIS discover replica for service mycdn

� Returns nearby replicas for application

A client’s view: Finding a replica

R

H(dns)

Client

Evaluation

� Deployed on PlanetLab since November 2005

� How much end-to-end benefit from OASIS?

� How accurate is OASIS?

� Effective for load balancing?

� What are OASIS’s bandwidth costs?

E2E download of web page

290% faster than Meridian

500% faster than RR

Cached virtual coords
highly inaccurate

Client RTT to chosen replica

Outperforms Meridian
60% of time

OASIS minimizes bandwidth spikes

Load +
Latency

0.00.00.023.3Latency
Only

GermanyNYTXCA

95% bandwidth usage per replica (MB)

metric
loc

� 8 clients in CA repeatedly request 1 MB file

� Replicas report load as log (95% bandwidth per 1-min slot)

9.29.611.39.0Load +
Latency

0.00.00.023.3Latency
Only

GermanyNYTXCA

95% bandwidth usage per replica (MB)

metric
loc

� 8 clients in CA repeatedly request 1 MB file

� Replicas report load as log (95% bandwidth per 1-min slot)

OASIS minimizes bandwidth spikes

Bandwidth costs: OASIS v. on-demand

1-2 orders of magnitude

DNS reqs
to CoralCDN

Outline

� Architecture and design decisions

� Detailed design

� Evaluation

� Deployment and integration lessons

� OASIS deployed since November 2005

� Currently in use by 10 services

Sanity check for network peculiarities

� Employ measurement redundancy

� Easy visualization significantly helped debugging

� Probing generates abuse complaints

� Your service can get blacklisted!

Keyword frequency on PlanetLab support lists
9 months, 1820 threads, 4682 msgs

Netops have low tolerance for probing

Netops have low tolerance for probing

� Be careful what you probe
� Probe slowly and rarely

� No random ports or obvious attack vectors (TCP port 22/23)

� Be careful whom you probe
� Check blacklist for netblock and target IP (after traceroute)

Make it easy to integrate

replica
proxy

dns

nakika
OASIS
core
node

listen(7060)

ServiceName nakika
LocalPort 7060
SecretCode 555555

ServiceName nakika
ServiceAlias nakika.net
SortType latencycap
MaxAddrs 2
AddrTTLs 120

replica
proxy

dns

nakika
OASIS
core
nodecode

load
cap

ServiceName nakika
LocalPort 7060
SecretCode 555555

ServiceName nakika
ServiceAlias nakika.net
SortType latencycap
MaxAddrs 2
AddrTTLs 120

listen(7060)?

Clients immediate use nakika.nyuld.net

Make it easy to integrate

Current services using OASIS…

� Chunkcast block anycast (Berkeley)

� CoralCDN (NYU)

� Na Kika content distribution (NYU)

� OASIS

� RPC, DNS, HTTP interfaces

� OCALA overlay convergence (Berkeley)

� Separate services for client and server IPs gateways

� OpenDHT public DHT service (Berkeley)

� OverCite distributed library (MIT): Deployed on RON

Summary

� OASIS is a general, open anycast service

� Supports multiple services: more are better

� Performs accurate server selection

� Removes all on-demand probing

� Provides easy integration

� Use OASIS for your distributed system!

http://oasis.coralcdn.org/

