
46 ; L O G I N : V O L . 3 1 , N O . 5

M I C H A E L J . F R E E D M A N

automating server
selection with
OASIS
Michael J. Freedman is a doctoral student at NYU,
currently visiting Stanford University, and received
his M.Eng. and S.B. degrees from MIT. His research
interests are security, distributed systems, and cryp-
tography. He is the author of the Coral Content
Distribution Network (http://www.coralcdn.org/)
and OASIS (http://oasis.coraclcdn.org).

mfreed@cs.nyu.edu

O A S I S P R O V I D E S A P U B L I C LY A V A I L -
able, locality-aware server-selection infra-
structure. Replicated servers adopting
OASIS each run a small application that
communicates with the OASIS infrastruc-
ture, sharing information about their cur-
rent load levels and their measured net-
work response times to selected IP address-
es. OASIS in turn can redirect unmodified
clients to nearby and/or lightly loaded live
replica servers. In this article, I explain how
OASIS works, provide some performance
analysis, and describe how services can
start using OASIS.

OASIS (Overlay Anycast Service InfraStructure)
has been publicly deployed since November 2005
on PlanetLab [10], a distributed testbed running
at over 300 academic and industry sites. It has
already been adopted by a number of services [1,
2, 4, 7, 8, 11, 12]. OASIS supports a variety of
protocols—currently DNS, HTTP, and RPC—that
redirect unmodified clients for server selection
and that expose its geolocation and distance-esti-
mation functionality to OASIS-aware hosts.

Why This Matters

High-volume Web sites are typically replicated at
multiple locations for performance and availabili-
ty. Content distribution networks amplify a Web
site’s capacity by serving clients through a large
network of Web proxies. File-sharing, instant
messaging, and VoIP systems use rendezvous
servers to bridge hosts behind NATs.

In all of these examples, system designers must
tackle the problem of server selection: After de-
ploying servers at various locations throughout
the Internet, they must now direct clients to ones
that are appropriately nearby or unloaded. Or,
posed more concretely, when accessing a replicat-
ed Web site, from which mirror should a user
download?

This server-selection problem is not merely aca-
demic: The performance and cost of such systems
depend highly on clients’ choice of servers. File
download times can vary greatly based on the
locality and load of the chosen replica. A service
provider’s costs may depend on the load spikes
that the selection mechanism produces, as many

; LO G I N : O C TO B E R 2 0 0 6 AUTOM ATI N G S E RV E R S E L E C TI O N W ITH OA S I S 47

data centers charge customers based on the 95th-percentile bandwidth
usage over all five-minute periods in a month.

Unfortunately, common techniques for replica selection produce subopti-
mal results. Asking human users to select the best replica is both incon-
venient and inaccurate. Round-robin and other primitive DNS techniques
spread load, but do little for network locality.

OASIS, however, can automate the process of selecting nearby and/or light-
ly loaded servers, yet it remains easy to integrate into existing applications.

Architecture

Figure 1 shows OASIS’s two-tier architecture. The system consists of a net-
work of core nodes that help clients select appropriate replicas of various
services. All services employ the same core nodes (which we run as a pub-
lic service); we intend this set of infrastructure nodes to be small enough
and sufficiently reliable so that every core node can know most of the oth-
ers. Replicas (which are deployed by service operators seeking to use
OASIS for server selection) also run OASIS-specific code, both to report
their own load and liveness information to the core and to assist the core
with network measurements. Clients need not run any special code to use
OASIS, because the core nodes provide DNS- and HTTP-based redirection
services.

The primary function of the OASIS core is to return a suitable service
replica to a server-selection request. Given that a request only provides
the client’s IP address and the service name (encoded in the domain name
being resolved when using DNS), how does OASIS determine a client’s
location, which is needed to discover nearby replicas?

G E O LO C ATI N G I P A D D R E S S E S

To discover the location of clients, OASIS probes Internet destinations
using the replica servers as vantage points and, in doing so, finds the clos-
est replica. One of OASIS’s main contributions is a set of techniques that
make it practical to measure the entire Internet in advance and therefore
eliminate on-demand probing when clients make requests.

OASIS minimizes probing and reduces its susceptibility to network peculi-
arities by exploiting geographic coordinates as a basis for locality and by
leveraging the locality of the IP prefixes [6] (e.g., NYU has IP prefix
216.165.0.0/17). We assume that every replica knows its own latitude and
longitude, which already provides some information about locality before
any network measurement. Then, in the background, OASIS uses service
replicas as vantage points to probe each IP prefix to discover the replica
with lowest round-trip-time (yet still does so in a manner that minimizes
probing [13]). Finally, OASIS stores the geographic coordinates of the
replica closest to each prefix it maps.

Because the physical location of IP prefixes rarely changes, an accurately
pinpointed network can be safely reprobed infrequently (as rarely as once a
week). Additionally, this approach amortizes bandwidth costs across the
multiple services using OASIS, resulting in an acceptable per-node cost
that only decreases as more services adopt OASIS. Such infrequent, back-
ground probing both reduces the risk of abuse complaints and allows the
system to respond quickly to requests, with no need for on-demand probing.

F I G U R E 1 . O A S I S S Y S T E M C O M P O -
N E N T S

48 ; L O G I N : V O L . 3 1 , N O . 5

R E S O LV I N G S E RV E R-S E L E C TI O N R E Q U E STS

What happens when a client makes a selection request to a core node?
First, a core node maps the client’s IP address to an IP prefix of appropriate
granularity to capture locality properties. It then attempts to map the IP
prefix to geographic coordinates. If successful, OASIS returns the closest
service replicas to that location (unless load-balancing requires further
consideration of load as a primary selection metric). Otherwise, if it cannot
determine the client’s location, it returns random service replicas.

This server-selection process relies on four databases maintained in a dis-
tributed manner by the core: (1) A service table lists all services using
OASIS (and records policy information for each service), (2) a bucketing
table maps IP addresses to prefixes, (3) a proximity table maps prefixes to
coordinates, and (4) one liveness table per service includes all live replicas
belonging to the service and their corresponding information (i.e., coordi-
nates, load, and capacity).

How are these tables managed in a distributed manner? OASIS optimizes
response time by heavily replicating most information. Service, bucketing,
and proximity information need only be weakly consistent; stale informa-
tion only affects system performance, not its correctness. Thus, OASIS uses
gossiping to efficiently disseminate such state—as well as for failure notifi-
cations regarding core nodes—throughout the network.

Replica liveness information, however, must be fresher: DNS resolvers and
Web browsers deal poorly with unavailable replicas, since such client ap-
plications cache stale addresses longer than appropriate. To tolerate replica
failures robustly, replica information is maintained using soft-state: Replicas
periodically send registration messages to core nodes (currently, every 60
seconds). This replica process also regularly connects to the local applica-
tion seeking OASIS service to verify its liveness (i.e., every 15 seconds).
These communications are shown in Figure 2.

OASIS must know most replicas belonging to a service to answer corre-
sponding selection requests. Therefore, OASIS aggregates replica liveness
information for each particular service at a few core nodes known as serv-
ice rendezvous nodes. To provide self-organizing properties within the core,
different sets of core nodes are chosen via consistent hashing [9] to play
the role of rendezvous nodes for each service.

Although all core nodes can map a client’s IP address to geographic coordi-
nates and determine the relevant service policy, when a core node receives
a service request for which it does not play the role of rendezvous node, it
must also send an RPC query to one of the requested service’s rendezvous
nodes. This rendezvous node uses its aggregated list of known replicas to
determine the best-suited replicas for the client. In [5], I describe a variety
of additional optimizations to reduce the load on a service’s rendezvous
nodes for increased scalability.

Evaluation

I now briefly present some wide-area measurements of OASIS on PlanetLab
[10]. This section is meant simply to demonstrate that OASIS can greatly
improve end-to-end latencies and load-balancing for replicated systems.
For a full evaluation of OASIS and a complete explanation of the experi-
ments, please see [5].

Figure 3 shows the end-to-end time for clients to download a Web page
from a domain name being served by OASIS. This time includes a DNS

F I G U R E 2 : O A S I S C O M M U N I C A T I O N
D I A G R A M

; LO G I N : O C TO B E R 2 0 0 6 AUTOM ATI N G S E RV E R S E L E C TI O N W ITH OA S I S 49

lookup and the subsequent TCP transfers. Using 250 PlanetLab hosts, we
compare OASIS to a variety of other state-of-the-art and simplistic server-
selection schemes, include using Meridian for on-demand probing [13],
Vivaldi for virtual coordinates [3], and round-robin selection. The median
response time for OASIS is 290% faster than Meridian and 500% faster
than simple round-robin systems. These end-to-end measurements under-
score OASIS’s true performance benefit, coupling fast DNS response time
(by using cached information) with accurate server selection.

F I G U R E 3 : G R A P H (C D F) O F L O O K U P L A T E N C Y V E R S U S
D O W N L O A D T I M E

Table 1 shows how OASIS can reduce bandwidth costs associated with
95th-percentile billing. When multiple co-located clients (here, all in
California) make requests against our four distributed Web servers,
OASIS’s load balancing ensures that 95% peak load remains evenly bal-
anced. Purely locality-based selection, in contrast, yields a traffic spike at
the nearest Web server.

T A B L E 1 : 9 5 T H - P E R C E N T I L E B A N D W I D T H U S A G E
(I N M B P E R M I N U T E)

I next describe how services can adopt OASIS to enjoy similar performance
benefits.

Using OASIS

Figure 4 shows various ways in which legacy clients and services can use
OASIS to access a service. In our usage scenarios I use CoralCDN [4], an
open content distribution network we have been running since early 2004.
CoralCDN receives about 25 million requests daily from over 1 million
clients; in fact, it motivated us to build OASIS in the first place to provide
better proxy selection.

A C L I E NT ’ S STE P- BY-STE P B E H AV I O R

The top diagram of Figure 4 shows how to make legacy clients select repli-
cas using DNS redirection. The service provider advertises a domain name
served by OASIS (e.g., coralcdn.nyuld.net). (OASIS currently uses the
domain name .nyuld.net for its core nodes.) When a client looks up that
domain name (Step 1), OASIS first redirects the client’s resolver to a nearby

Metric California Texas New York Germany

Latency 23.3 0.0 0.0 0.0

Load 9.0 11.3 9.6 9.2

50 ; L O G I N : V O L . 3 1 , N O . 5

OASIS nameserver (by resolving dns.nyuld.net with respect to the client’s
IP address and returning the results as NS records). The client’s resolver
caches these nameservers for future accesses. Then the resolver queries
this nearby nameserver (Step 2) to determine the address of nearby, un-
loaded CoralCDN Web proxies (returned as the domain’s A records). This
approach can be accurate, provided that clients are near their resolvers.

The bottom diagram shows an alternative based on application-level HTTP
redirection. Here, the CoralCDN replicas are also clients from OASIS’s
point of view. Each replica connects to a nearby OASIS core node that pro-
vides HTTP service, as selected by DNS redirection for http.nyuld.net (Step
0). When a client connects to a replica (Step 1), that replica queries OASIS
to find a better replica (Step 2), now asking for service by explicitly speci-
fying the client’s IP address in an HTTP query string. Finally, an HTTP
redirect is returned to the client, causing it to contact the selected replica
for service (Step 3). Such an approach does not require that clients be
located near their resolvers in order to achieve accurate locality.

In fact, OASIS supports several variations on this same theme: The Coral-
CDN replica can query the OASIS core using RPC, instead of HTTP. Alter-
natively, the replica’s query can simply ask for the estimated distance be-
tween two IP addresses, which only uses the core’s location database and
does not require that it maintain a service-specific replica state (although
the service itself would then need to maintain liveness information). Fur-
thermore, the HTTP server on core nodes can perform HTTP redirection
for clients themselves, avoiding the need for clients to contact the initial
replica proxy (Step 1).

The rest of this section is devoted to the concrete steps a service operator
needs to perform in order to integrate OASIS into their distributed system.

R E G I STE R I N G A S E RV I C E

A service policy must be registered with the core so that OASIS can handle
its server selection. This policy currently includes a service’s name (e.g.,
coralcdn), the number and expiration time of replica addresses returned
per request, and the selection criteria. By default, OASIS selects replicas
based on locality, unless the nearer replica’s load exceeds its capacity. Other
policies support pure locality-based selection or a load-balancing algorithm
meant to reduce costs associated with 95th-percentile billing.

To enable sites to publish their own top-level domain names, OASIS sup-
ports aliases. Thus, in the context of CoralCDN, requests to nyud.net will
be interpreted as coralcdn.nyuld.net or, in the case of the OverCite service
[12], overcite.org gets interpreted as overcite.nyuld.net. To support this
aliasing, however, a server operator must also point the nameserver records
for their top-level domain to some subset of OASIS’s nameservers.

D E P LOY I N G R E P L I C A S A N D I NTE G R ATI N G A P P L I C ATI O N S

On every host running a service application—such as a CoralCDN Web
proxy—the service’s administrator should deploy an OASIS replica. (The
source code is released under the GPLv2 and is available from
http://oasis.coralcdn.org/.) Service replicas should be configured with their
geographic coordinates and, in order to monitor its liveness, the service
name and listening port of their local application.

On the application side, the application (or some stand-alone daemon
monitoring it) simply needs to listen on a TCP server socket on the config-

F I G U R E 4 : U S E S O F O A S I S F O R
A C C E S S I N G A S E R V E R

; LO G I N : O C TO B E R 2 0 0 6 AUTOM ATI N G S E RV E R S E L E C TI O N W ITH OA S I S 51

ured port. Then, when the local OASIS replica connects to the application
(every 15 seconds by default), the application should simply accept the
connection, respond with its application status (a shared secret code for
verification, its current load, and its maximum capacity), and then close
the connection.

We already run OASIS replicas on most PlanetLab hosts [10] as a public
service to the PlanetLab community. Thus, system developers seeking to
deploy their services on PlanetLab need only configure their application to
respond to our local liveness checks and need not deploy replicas them-
selves, as a single OASIS replica can monitor multiple local services and
their applications.

ACC E S S I N G TH E S E RV E R-S E L E C TI O N A N D G E O LO C ATI O N S E RV I C E

Once a service’s policy and some of its replicas are registered with the
OASIS core, core nodes can immediately respond to client server-selection
requests. OASIS currently provides DNS, HTTP, and RPC interfaces for
server selection, as shown in Figure 4, above. To access a CoralCDN Web
proxy via DNS redirection, for example, a client need only connect to the
hostname coralcdn.nyuld.net. To use HTTP redirection, the client simply
accesses the URL http://http.nyuld.net:8096/redir.html?pol=coralcdn&ip=<ip>,
which causes the client first to discover a nearby core node running an
HTTP proxy (via DNS), then to ask that HTTP proxy for a nearby
CoralCDN replica. The optional query string <ip> performs the request
with respect to that specified IP address, as opposed to the client’s own IP
address.

OASIS exposes additional information through its HTTP and RPC inter-
faces. For example, a client can query OASIS for the geographic coordi-
nates of a particular IP address or the distance between any two such
addresses: http://http.nyuld.net:8096/distance.xml?src=<ip1>&dst=<ip2>.

Output from the HTTP proxy can be either in HTML or XML, the latter
allowing for simple integration with third-party Web services.

Conclusion

OASIS is a global, distributed, server-selection system that allows legacy
clients to find nearby or unloaded replicas of distributed services. Two
main features distinguish OASIS from prior systems. First, OASIS allows
multiple application services to share the selection service. Second, OASIS
avoids any on-demand probing when clients initiate requests by geolocat-
ing all IP prefixes in advance.

Publicly deployed since November 2005, OASIS has already been adopted
by a number of distributed services [1, 2, 4, 7, 8, 11, 12]. Experimental
measurements and third-party experiences suggest that OASIS produces
highly accurate results, ensures server liveness, and provides simple system
integration and client use. For more technical information on OASIS’s
design, evaluation, and integration, as well as relevant source code, please
visit http://oasis.coralcdn.org/.

R E F E R E N C E S

[1] F. Annexstein, K. Berman, S. Strunjas, and C. Yoshikawa, “Adaptive
Client-Server Load Balancing Using Persistent Demands,” Technical Report
ECECS-TR-2006-06, University of Cincinnati, July 2006.

52 ; L O G I N : V O L . 3 1 , N O . 5

[2] B.-G. Chun, P. Wu, H. Weatherspoon, and J. Kubiatowicz, “ChunkCast:
An Anycast Service for Large Content Distribution,” Proceedings of the 5th
International Workshop on Peer-to-Peer Systems (February 2006).

[3] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A Decentralized
Network Coordinate System,” Proceedings of SIGCOMM (August 2004).

[4] M. J. Freedman, E. Freudenthal, and D. Mazières, “Democratizing
Content Publication with Coral,” Proceedings of the First Symposium on
Networked Systems Design and Implementation (March 2004).

[5] M. J. Freedman, K. Lakshminarayanan, and D. Mazières, “OASIS:
Anycast for Any Service,” Proceedings of the 3rd Symposium on Networked
Systems Design and Implementation (May 2006).

[6] M. J. Freedman, M. Vutukuru, N. Feamster, and H. Balakrishnan,
“Geographic Locality of IP Prefixes,” Proceedings of the Internet Measure-
ment Conference (October 2005).

[7] R. Grimm, G. Lichtman, N. Michalakis, A. Elliston, A. Kravetz, J.
Miller, and S. Raza, “Na Kika: Secure Service Execution and Composition
in an Open Edge-side Computing Network,” Proceedings of the 3rd
Symposium on Networked Systems Design and Implementation (May 2006).

[8] D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan, I. Stoica, and
K. Wehrle, “OCALA: An Architecture for Supporting Legacy Applications
over Overlays,” Proceedings of the 3rd Symposium on Networked Systems
Design and Implementation (May 2006).

[9] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R.
Panigrahy, “Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web,” in Proceedings
of the Twenty-Ninth Annual ACM Symposium on Theory of Computing (May
1997).

[10] PlanetLab: http://www.planet-lab.org/.

[11] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu, “OpenDHT: A Public DHT Service and Its Uses,”
Proceedings of SIGCOMM (August 2005).

[12] J. Stribling, J. Li, I. Councill, M. F. Kaashoek, and R. Morris, “Over-
Cite: A Cooperative Digital Research Library,” Proceedings of the 3rd
Symposium on Networked Systems Design and Implementation (May 2006).

[13] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: A Lightweight
Network Location Service without Virtual Coordinates,” Proceedings of
SIGCOMM (August 2005).

