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Abstract

To improve performance, large-scale Internet systems re-
quire clients to access nearby servers. While centralized
systems can leverage static topology maps for rough net-
work distances, fully-decentralized systems have turned
to active probing and network coordinate algorithms to
scalably predict inter-host latencies. Internet applications
seeking immediate adoption, however, must inter-operate
with unmodified clients running existing protocols such
as HTTP and DNS.

This paper explores a variety of active probing algo-
rithms for locality prediction. Upon receiving an exter-
nal client request, peers within a decentralized system are
able to quickly estimate nearby servers, using a minimum
of probes from multiple vantages. We find that, while net-
work coordinates may play an important role in scalably
choosing effective vantage points, they are not directly
useful for predicting a client’s nearest servers.

1 Introduction

Many replicated Internet systems can improve perfor-
mance by servicing clients at nearby hosts. The perfor-
mance of a distributed web mirror, for example, is highly
dependent on the network distance between client and
server. Commercial content distribution networks like
Akamai [1] build large maps of the Internet topology and
use this information to redirect clients to nearby hosts.
These hosts are carefully deployed at specific access sites
or behind bottleneck links. This technique for locality pre-
diction, however, requires centralized mapping, aggrega-
tion, extensive network knowledge, and often ISP-specific
heuristics. But by using existing protocols like HTTP
and DNS, these systems can achieve immediate and wide-
spread use.

More recent distributed systems use self-organizing
techniques to reduce the infrastructure’s administrative
and operational overhead, while still providing service to
unmodified clients. Such peer-to-peer systems include
static and dynamic content distribution networks [5, 6],
distributed hash storage services [7], and new Internet
naming systems [13, 14]. Such decentralized systems,

however, cannot easily produce aggregated static topol-
ogy maps nor specify host deployments [4].

Active probing provides a simple alternative to static
topology mapping that can be readily realized in a de-
centralized system. In its simplest form, when an un-
modified client contacts any system peer, this ingress peer
probes the client and directs other so-called landmarks to
do the same. By collecting these round-trip-time (RTT)
measurements, the ingress concludes which correspond-
ing peer is closest to the client in terms of network dis-
tance, requiring no a priori knowledge of a client’s lo-
cation. Coupled with some application-level mechanism
such as DNS redirection, this approach can be leveraged
to service clients from nearby hosts.

Recent network coordinate systems [8, 10, 12, 9, 2, 3]
offer new methodologies for active probing. These sys-
tems allow peers to estimate inter-host latency without
topological maps or explicit all-pairs measurements, by
assigning synthetic coordinates to each peer. The distance
between peers in the coordinate space accurately predicts
their RTT. Thus, for example, by combining active prob-
ing with network coordinates, a peer can map its client
onto the system’s underlying coordinate space. Then, it
can use these coordinates to estimate the client’s loca-
tion and redirect it accordingly, potentially to a destina-
tion other than from among the landmarks.

This paper explores various methodologies for local-
ity prediction using active probing. We concentrate our
analysis on four main properties: (1) the method used for
landmark selection, (2) the number of landmarks selected,
(3) the method used for destination determination, and (4)
the number of redirection iterations performed by a client.

We present and analyze several algorithms for land-
mark selection, destination determination, and methods of
iterative redirection. We find that network coordinates en-
able landmark-selection algorithms that yield better client
redirection, but are not as useful in directly finding a
client’s nearby hosts via coordinate distance estimation.

2 Design

In an abstract model, we consider a network comprised of
a core decentralized system and external clients. Internal
system peers communicate with one another, sharing live-
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Figure 1: Redirection architecture. When an oblivious client
c contacts any system peer (step 1), this ingress peer directs
other known landmark peers to probe the client to determine
RTT (step 2). The ingress accumulates these measurements
and selects some destination peer that is closest to c. It returns
this peer (step 3), which the client can subsequently contact for
application-level operation (step 4). The destination may or may
not be restricted to the set of landmarks (latter condition shown).

ness information and measuring internal round-trip-times,
potentially as part of a network coordinate system.

We assume that an external client has some method
of contacting a random system peer, via DNS for exam-
ple.1 As shown in Figure 1, upon receiving a request, this
ingress peer selects some subset of system peers to act
as landmarks for probing the client. All landmark peers
probe the client after receiving a corresponding request
from the ingress. Landmarks respond to the ingress with
all measured RTTs to the client.

2.1 Network coordinates

In network coordinate systems, peers derive synthetic
coordinates based on measurements to a limited sub-
set of other peers, either using a fixed set of public
landmarks [8, 10, 12] or in a fully-decentralized fash-
ion [9, 2, 3]. Given another peer’s coordinates, a peer can
accurately predict its RTT without physical measurement.

In our decentralized model, hosts within the core peer-
to-peer infrastructure can easily maintain and disseminate
network coordinates as a by-product of other communica-
tion: (1) A peer includes its coordinates in all application-
level messages it sends. (2) Whenever communication is
two-way, the sender learns the RTT to the recipient using
packet timestamps.

1For example, if the system is named with a particular domain and
every peer runs a DNS server authoritative for the name, clients initially
contact one of 13 or so peers listed with a registrar. Nameserver caching
from prior requests can increase the client’s view to the entire system.

For concreteness, we use the decentralized Vivaldi al-
gorithm [3] for our network coordinate system. Vivaldi
coordinates are represented by a (x, y, h, e) tuple, cor-
responding to a two-dimensional Euclidean coordinate
space (x, y), with an additional height scalar h and an
error term e. Conceptually, the Euclidean coordinates
model the peer’s location in the high-speed Internet back-
bone, the height models the additional access link la-
tency at the Internet’s edge, and the error term captures
the host’s confidence in its coordinates. The distance
Da,b = ‖Ca−Cb‖ between two peers’ coordinates Ca, Cb

approximates their RTT; it is calculated by taking the Eu-
clidean distance of their (x, y) coordinates and adding the
height vectors. A peer updates its own coordinates when-
ever communicating with other peers, taking the others’
error estimates into account.

External unmodified clients cannot themselves engage
in the network coordinate algorithms. However, an
ingress can estimate a client’s coordinates, if desired, by
collecting the landmarks’ RTT measurements and coordi-
nates. Then, it can synthesize client coordinates by run-
ning the centralized Vivaldi algorithm repeatedly on these
measurements.2

2.2 Design considerations

The landmark selection and redirection mechanisms we
explore rely on two assumptions. First, all internal peers
can select a random subset of other peers from the net-
work. Second, peers can obtain a subset of those peers
closest to a specific distance from a particular peer.

The second assumption requires some practical consid-
eration. Without using network coordinates, each peer
must maintain complete O(n2) network state, and each
peer must continually probe all others to generate these
RTTs. Network coordinates, however, allow peers to pre-
dict all pair-wise latencies with only O(n) state. In fact,
each peer need only continually probe a small number of
others, independent of n. To learn all n coordinates, a peer
can then perform some gossiping protocol in an unstruc-
tured overlay. Alternatively, new distributed data struc-
tures may be designed to support closest-point queries
(like a dynamic Voronoi diagram) using significantly less
communication. We leave this as an open problem.

Based on having n2 RTT estimates via n network co-
ordinates, our results serve as an upper-bound for the per-
formance benefit of more complex redirection algorithms
over mere random selection. If less state is available at an
ingress, this performance gap shrinks. System designers
should therefore weigh this benefit in locality prediction
against its usage and maintenance cost.

2The Vivaldi algorithm is analogous to a mass spring network, which
does not converge immediately, but rather has a period of oscillation
before resting at the (locally) lowest energy-level configuration.
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System designers must consider other practical issues
when performing active probing. To handle packet losses
or excessive queuing delays, an ingress peer may choose
to use k + α landmarks to ensure k timely results. Sec-
ond, clients may be behind firewalls or NATs, where UDP
probes, TCP requests to high ports, or ICMP packets have
varied success. If client requests use connection-based
protocols, RTTs can be measured directly during con-
nection establishment. Or, fast traceroute-like scans can
at least report timing information to the client’s firewall.
Still, the system should seek to use a minimal number
of probes whenever possible, as additional probing in-
creases network traffic, response time, and the probability
of abuse complaints.

2.3 Selecting landmarks

We consider three different metrics for choosing k land-
marks with which to probe the client.

Random. k peers are selected uniformly at random
from the system, fresh for each query.

Well-distributed. This approach attempts to select
landmarks that have good coverage throughout the
network—e.g., spread across North America, Europe, and
Asia—without requiring static configuration. Thus, our
algorithm works by selecting random subsets of k peers,
then choosing the subset that minimizes the following:

|mean(Dn) − mean(Dk)|2 + var(Dk)

where Dk is the set of all pair-wise distances for the k

peers in the subset (resp. n peers in the network).
Intuitively, minimizing the difference in mean distances

ensures that landmarks are not clustered together. Min-
imizing variance ensures that peers are approximately
equidistant from one another. Taken together, these prop-
erties attempt to spread landmarks evenly throughout the
network. Experimental analysis (not included) shows that
minimizing only one property yields strictly worse perfor-
mance than that obtained using this given metric.

While this well-distributed metric is computationally
more expensive, an ingress peer need not perform this se-
lection process online nor upon each client request. For
example, it may only reselect the set of well-distributed
landmarks once every five minutes.

Sphere. In our third metric, the ingress attempts to
choose landmarks that are likely to be closer to the
client. Specifically, an ingress selects landmarks whose
distances from the ingress are closest to the distance be-
tween ingress and client. This implies, of course, that the
ingress must first calculate the RTT r to the client before
choosing k−1 other such landmarks. We select k−1 non-
ingress landmarks in order to fairly compare this metric

with the former two, based on the total number of vantage
points probing the client (k).

Intuitively, if one is working in a three-dimensional co-
ordinate space, the resulting set of k − 1 landmarks and
the client are located on the surface of a sphere with radius
r, centered about the ingress peer. Thus, any particular
landmark on this sphere is ≤ 2r from the client, provided
the triangle inequality holds. While Vivaldi uses instead
a 2-D space with a height vector, (x, y, h), we use this
nomenclature for illustrative clarity.

Note that neither the sphere nor the well-distributed
metrics strictly require network coordinates: The dis-
tance calculations used when selecting landmarks could
be based on measured RTTs instead of coordinate dis-
tances, although this practice would significantly limit the
system’s scalability.

2.4 Selecting destinations

We consider two different metrics for determining the des-
tination peer to which the client is redirected.

Direct RTT measurements. Given the k RTTs between
landmarks and the client, based on direct network probes,
the ingress peer chooses the landmark with the smallest
measured RTT.

Estimated coordinate distance. After collecting the k

RTT measurements from landmarks, as well as the land-
marks’ latest coordinates, the ingress peer synthesizes the
client’s coordinates Cc per Section 2.1. Then, given the
coordinates of all other system peers, the ingress chooses
the peer d that is closest to the client in the coordinate
space, i.e., minimizes Dc,d = ‖Cc − Cd‖. Note that, un-
like the direct measurement approach, this destination is
not restricted to the set of landmarks.

2.5 Iterating redirection

Finally, we consider whether repetitions of the redirection
mechanism will improve the system’s predictive accuracy,
where each step of the algorithm attempts to find a desti-
nation closer to the client.3 Thus, the destination from it-
eration i−1 is contacted by the client as an ingress peer for
iteration i. Although such iteration does not make sense
for random landmark selection, we can consider iteration
for the latter selection metrics.

For the well-distributed landmark metric, we attempt to
decrease the mean distance between peers by half during
each iteration, using |2−i · mean(Dn) − mean(Dk)|2 +
var(Dk) for the ith iteration. The ingress peer must in-
clude itself among the landmark set for i > 0, given that

3An iterative redirection mechanism is readily feasible even for un-
modified clients. For example, custom DNS servers can synthesize
artificially-hierarchical hostnames, as in [5], causing DNS resolvers to
resolve the names recursively.
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Figure 2: Coordinate predictive error vs. network RTTs

the algorithm should select some set of well-distributed
peers that are closer to the client at each iteration.

For the sphere metric, each iteration proceeds as ex-
pected. Intuitively, the ingress from iteration i selects
landmarks from a sphere with radius ri ≤ ri−1. To en-
sure forward progress, landmarks should not be reused
between iterations. As the ingress of iteration i can use
its measured RTT to the client from i−1 whenever pos-
sible, it selects k other landmarks for i > 0, not k−1 as
described for i=0 above.

3 Evaluation

This section evaluates the proposed selection metrics for
choosing both landmarks and destinations, as well as the
effect of the number of landmarks and of iterations.

3.1 Methodology and terminology

We performed wide-area experiments on the PlanetLab
testbed [11] and then simulated client-system interactions.
On 105 randomly-chosen PlanetLab hosts (as of Novem-
ber 2004), we ran peers that implemented the Vivaldi net-
work coordinate algorithm [3], where each peer regularly
probed 32 others. These peers functioned as landmarks to
allow the collection of RTT measurements accompanied
by their sources’ network coordinates. Peers sent ICMP
echo messages as probes; we used the response’s kernel
timestamp to minimize the effect of scheduling latency.

A non-PlanetLab server directed all peers to probe each
client once, with a 25 ms delay between each probe re-
quest to reduce congestion at the specified client. These
clients were restricted to the same set of PlanetLab peers,
although peers did not simultaneously play the roll of
client and landmark. Each peer was simulated as a client
three times. We collected the resulting ˜30,000 RTT mea-
surements for subsequent analysis.

Figure 2 briefly characterizes the predictive error of
our Vivaldi implementation, defined by the difference
between predicted distance in network coordinate space
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Figure 3: Comparison of landmark selection metrics

and the measured RTT for any two peers a, b: |Da,b −
RTTa,b|. This is plotted alongside the cumulative distri-
bution function (CDF) of all measured pair-wise RTTs.
Additionally, we plot the error of the client coordinates
synthesized by the ingress using only 3 landmarks, against
all peers as before. Thus, we find that client coordinates
can achieve relatively good accuracy, even though these
coordinates are “fitted” against only a few points. Using
32 landmarks yielded client results indistinguishable from
that of internal peers.

For our analysis, we consider how effectively a mecha-
nism can predict the system’s optimal destination o. Given
that our experiments calculate RTTs between a client c

and all system peers, we call the peer with minimum
RTT optimal. We say that the metric’s predictive error
is the absolute RTT difference between the client with
the predicted destination d and with the optimal peer:
|RTTc,d − RTTc,o|.4

3.2 Results

We now evaluate the specified metrics and parameters for
active probing. For predictive sphere selection, a ran-
dom peer was selected as an ingress peer for each client
test. For random landmark selection, a random subset was
selected for each client test. For the distributed metric,
10,000 subsets were considered, chosen uniformly at ran-
dom with replacement.5 The subset that minimized the
well-distributed metric (per Section 2.3) was used for the
duration of the experiment. The following figures are the
combined results from 10 such evaluations on all clients.
As a baseline, each graph includes the error CDF of using
one randomly-selected destination.

4We note that an alternate metric to consider is the relative RTT dif-
ference, or stretch, which normalizes the absolute difference by the op-
timal RTT. We do not include such analysis in this paper, however, due
to our interest in the system’s absolute performance: An increase from
2ms to 5ms, while having high stretch, is irrelevant in practice.

5Testing all
�
n

k � possible subsets was computationally infeasible.
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Figure 4: The effect of the multiple landmarks
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Figure 5: Comparison of destination selection metrics

Landmark selection metrics. Figure 3 compares the
efficacy of the three landmark selection metrics for de-
creasing predictive error. All three CDFs shown use three
landmarks and the direct RTT measurement approach for
selecting a destination. An error of 0 ms corresponds
to predicting the optimal destination. The sphere metric
makes the most accurate predictions, with a median error
of 25.9 ms and optimal selection of 6.8%. The distributed
metric has a median error of 42.8 ms and optimal selection
of 2.1%. Randomly selected landmarks have a median er-
ror of 45.9 ms and optimal selection of 2.3%.

Number of landmarks. Figure 4 shows the effect of
multiple landmarks on predictive error. Increasing the
number of landmarks improves the accuracy of destina-
tion selection, with decreasing returns as the set size in-
creases. Thus, even a moderate number of landmarks
greatly improves performance: Using 3 landmarks results
in a destination with median predictive error that is 4x bet-
ter than that of random selection (i.e., 1 landmark).

Destination selection metrics. Figure 5 compares the
two methods for selecting destinations, that of direct RTT
measurement versus using network coordinates to esti-
mate a client’s location and predict a nearby peer. Some-
what surprisingly, we find that the coordinate prediction
approach yields strictly worse performance. These results
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Figure 6: Redirection iteration vs. landmark number

are shared across all landmark selection metrics and all
evaluated landmark set sizes (up to 11).

A (strong) form of the destination selection problem is
the following: generate a sorted list of peers with increas-
ing distance from the client. The RTT metric samples
from this list in some (possibly biased) manner. The coor-
dinate metric uses the same set of peers, but sorts on coor-
dinate distance. Therefore, any inaccuracy in the coordi-
nate system—which is inherent whenever mapping the In-
ternet onto a lower-dimensional space—is reflected in the
differences between the orderings of these two lists and
hence in their first elements. This intuition is reflected by
the data: the median error in destination prediction when
using coordinates is 35.5 ms, while the median error in
the coordinates’ accuracy themselves (Figure 2) is 29.4
ms. Lower-error coordinate systems can potentially im-
prove the accuracy of destination selection based on net-
work coordinates.

Number of iterations. Next, we examine the effect of
iteratively repeating the redirection mechanism. Each it-
eration uses a set of k landmarks not included in previ-
ous iterations. We find that iteration improves accuracy,
but again with diminishing results. The results are similar
across all evaluated selection metrics (noting that random
selection cannot be expressed as an iteration problem).

One must consider whether these benefits are simply
caused by increasing the total number of landmarks, in-
stead of any additional “forward progress” made during
each iteration step. Figure 6 compares the predictive er-
ror of k landmarks against i iterations of j landmarks
each, where i · j = k, again using the sphere and RTT
metrics. We find that iterations do have some additional
benefit beyond merely increasing the number of land-
marks, although it is quite small. Thus, system designers
must weigh whether the gain from iteration (in returning
a closer destination) outweighs its cost (in added latency
during the redirection protocol) for their particular appli-
cation domain.
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Figure 7: Simple random vs. iterative distance metrics

Repeated probing. Additionally, one might consider
the effect of taking multiple probes versus using only a
single probe per landmark, given that any transient net-
work congestion can cause queuing delays and affect RTT
measurements. However, we found no real difference in
predictive errors between the two cases.

Minimizing complexity. In summary, Figure 7 shows
the benefit of using the more complex locality prediction
mechanisms explored in this paper. We compare the sim-
ple random approach to our “best” solution, which cou-
ples iteration with the sphere landmark metric. We see
that 6 random landmarks achieve a median predictive er-
ror of 26.7 ms and a 90th percentile of 105.4 ms. Using
two iterations of three sphere-chosen landmarks, we de-
crease the median error to 12.0 ms (a 2.2x improvement)
and the 90th percentile to 61.5 ms (1.7x better). Certainly,
both are better than random selection, with its median of
101.1 ms and 90th percentile of 230.5 ms. Thus, while the
advantage of the more complex redirection mechanism is
significant, we also conclude that the simplest approach
can in fact achieve reasonable results.

4 Conclusions

To improve performance, large-scale Internet systems re-
quire clients to access nearby servers. Unfortunately,
the techniques usually associated with generating static
topology maps—centralized mapping, trustworthy aggre-
gated results, extensive network knowledge, ISP-specific
heuristics, infrastructure deployment, etc.—are not read-
ily available to fully-decentralized systems. Thus, such
systems have turned to active probing and network coor-
dinate algorithms to scalably predict inter-host latencies.

This paper explores various methodologies for locality
prediction using active probing, showing that a distributed
system can achieve high accuracy with minimal prob-
ing. We concentrate on four properties. (1) We conclude
that, when selecting landmarks, a peer should choose ones
that are more likely to be close to the client (the so-
called sphere metric). If such selection is not feasible,

well-distributed landmarks perform better than randomly-
selected peers, but only when using smaller numbers of
landmarks. (2) Increasing the number of landmarks im-
proves the system’s predictive accuracy, although with di-
minishing returns. (3) Iteratively redirecting clients pro-
vides minimal improvements over that obtained only from
increasing the number of landmarks. (4) Choosing a
client’s destination based on coordinate distances yields
worse accuracy than simply using the landmark with
smallest RTT. Thus, network coordinates enable certain
landmark-selection algorithms—like the sphere metric—
to scale to large systems, but are not as directly useful for
determining a client’s nearest hosts.
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