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Introduction. In this era of “Big Data”, there is intense interest in analyzing large networks using sta-
tistical models. Applications range from community detection in online social networks to predicting the
functions of a protein. MMSB [1] is a powerful mixed-membership model for learning communities and
their interactions. It assigns nodes to multiple communities rather than simple clusters. Posterior inference
for MMSB is intractable, and approximate inference algorithms such as variational inference or MCMC
sampling are applied. However, these methods require multiple passes through the data, and do not easily
work with streaming data. Inspired by the recent work on online variationalBayes for LDA [2], we develop
an online variational Bayes algorithm for MMSB based on stochastic optimization.

A mixed-membership model. MMSB is a Bayesian probabilistic model of relational data that assumes
context dependent membership of nodes inK groups, and that each interaction can be explained by two
interacting groups. Given the groups, the generative process drawsa K-dimensional mixed-membership
vectorπa ∼ Dir(α) for each nodea and per-interaction membership indicatorsza→b, za←b for each binary
pair ya,b. The indicators are used to index into a blockmodel matrixBK×K of Bernoulli rates, andya,b is
drawn from it. The only observed variables in this model areya,b.

There is a degree of non-identifiability in MMSB due to bothπp andB competing to explain reciprocated
interactions. If communities are known to be densely connected internally with sparse external interactions,
or have only reciprocated interactions, as is the case with some online socialnetworks, then a simpler model
suffices. We replaceB with K intragroup interaction ratesβk ∼ Beta(ηk) and a small, fixed interaction rate
ε between distinct groups.

Posterior inference. In variational Bayes for MMSB, the true posterior is approximated by a simpler dis-
tributionq(β,π,z→,z←|γ,φ→,φ←,λ). Following [1], we choose a fully factorized distributionq of the form
q(za→b = k) = φa→b,k, q(πp) =Dir(πp;γp) andq(βk) =Dir(βk;λk). We then apply stochastic optimization to
the variation objective. We subsample the interactionsya,b, compute an approximate gradient and follow the
gradient with decreasing step-size. Options for subsampling include selecting a node or a pair of interac-
tions uniformly at random, or sampling by exploration where we first select anode uniformly at random and
then explore its neighbors. We derive a first-order stochastic natural gradient algorithm for MMSB below
assuming random pair sampling.

1: Define f (ya,b,βk) = βya,b
k .(1−βk)

(1−ya,b). Initialize γ, λ.
2: for t = 0 to ∞ do
3: E step ∀ (a,b) in mini-batch S. Initialize φt

a→b, φt
a←b.

4: repeat
5: Setg(φ,k) = ∑i 6=k φt−1

i log f (ya,b,ε)
6: Setφt

a→b,k ∝ exp{Eq[logπa,k]+φt−1
a←b,kEq[log f (ya,b,βk)]+g(φa←b,k)} ∀k

7: Setφt
a←b,k ∝ exp{Eq[logπb,k]+φt−1

a→b,kEq[log f (ya,b,βk)]+g(φa→b,k)} ∀k
8: until convergence
9: M step

10: Computẽγa,k = αk +
N(N−1)
|S| ∑S(φt

a→.,k +φt
.←a,k) ∀k, ∀a

11: Computẽλk,i = ηk,i +
N(N−1)
|S| ∑S(φt

a→b,kφt
a←b,kya,b,i)∀i ∈ (0,1),∀k

12: Setγ = (1−ρ′t)γ+ρ′t γ̃. Setλ = (1−ρt)λ+ρt λ̃
13: end for

Figure 1: Online variational Bayes for MMSB

Despite conceptual and notational similarities with online LDA [2], online MMSB faces unique chal-
lenges. First, the online LDA E step finds locally optimal values of parameters associated with a selected
document holding the topics fixed. In MMSB a given node a’sγa cannot be optimized independently of
other nodes. Therefore, we derive updates for bothγ andλ. Second, the dimension ofγ, the number of
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Figure 2:Perplexity (left) and accuracy (right) comparisons of batch and online MMSB on simulated networks for various node
sizes and learning parameterκ, run for 4 hours each. Accuracy is measured as the RSS between two sets of Hellinger distances,
one based on trueπ and the other based onE[π]. The distances are computed only forya,b = 1. In both plots, the lower the value
the better the performance of the algorithms. For both K=3 and K=5, onlinehas lower perplexity than batch as N increases, and
approximately equal perplexity for N=512. Accuracy becomes significantly poorer for batch as N increases compared to online.
Batch values for N=2048 are unavailable. They took long after 4 hours tocompute.
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Figure 3: (a) and (b) show the convergence and resulting groups (shown are histograms of publications by years) respectively
on a 256 node subgraph of arXiv citation dataset. (c) shows the convergence of held-out likelihood computed over incoming
mini-batches on a 4096 node subgraph of arxiv citation dataset. We set K= 3 in both cases.

nodes, can be very large in contrast to LDA’s topics. Finally, MMSB can leverage efficient subsampling
strategies, such as forest fire sampling, to exploit network structure.

Preliminary results on real datasets We ran online MMSB on a complete subgraph of 256 nodes from
the Arxiv high-energy physics citation graph and obtained reasonable groups. The histogram of publications
by years in each group is shown in Fig 3(b). Group 3 consists of many publications in 1995. The average
frequency of certain top words (Calabi-Yau, string, symmetry etc.) was 150−180% of that in Groups
1 and 2. 1995 marked the beginning of thesecond superstring revolution with a flurry of research activity
spurred by M-theory. There is a greater frequency of singular memberships in group 3. We are currently
evaluating results on a subgraph of 4096 nodes.
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