Online Learning for Mixed Membership Network Models
Prem Gopalan, David Mimno, Michael J. Freedman and David M. Blei
9 September 2011

Introduction. In this era of “Big Data”, there is intense interest in analyzing large netsvading sta-
tistical models. Applications range from community detection in online social mk$nto predicting the
functions of a protein. MMSBI] is a powerful mixed-membership model for learning communities and
their interactions. It assigns nodes to multiple communities rather than simple slURtsterior inference
for MMSB is intractable, and approximate inference algorithms such astiesahinference or MCMC
sampling are applied. However, these methods require multiple passesthiheugata, and do not easily
work with streaming data. Inspired by the recent work on online variatidagés for LDA 2], we develop

an online variational Bayes algorithm for MMSB based on stochastic optimizatio

A mixed-membership model. MMSB is a Bayesian probabilistic model of relational data that assumes
context dependent membership of nodeKigroups, and that each interaction can be explained by two
interacting groups. Given the groups, the generative process @r&adimensional mixed-membership
vectorTy ~ Dir(a) for each nodex and per-interaction membership indicatass,, Za., for each binary
pair yap. The indicators are used to index into a blockmodel maixx of Bernoulli rates, ang,p, is
drawn from it. The only observed variables in this modelyalig

There is a degree of non-identifiability in MMSB due to bathandB competing to explain reciprocated
interactions. If communities are known to be densely connected internally patises external interactions,
or have only reciprocated interactions, as is the case with some onlinerseiwialrks, then a simpler model
suffices. We replacB with K intragroup interaction ratex ~ Betank) and a small, fixed interaction rate
€ between distinct groups.

Posterior inference. In variational Bayes for MMSB, the true posterior is approximated by a sindige
tributionq(B, 0z, z |y, @, ,A). Following [1], we choose a fully factorized distributianof the form
d(Za—b = K) = @asb k. A(TTp) =Dir (11, yp) andq(Bx) =Dir (Bk; Ak). We then apply stochastic optimization to
the variation objective. We subsample the interactigs compute an approximate gradient and follow the
gradient with decreasing step-size. Options for subsampling includdisglecnode or a pair of interac-
tions uniformly at random, or sampling by exploration where we first seleotla uniformly at random and
then explore its neighbors. We derive a first-order stochastic nattadiegt algorithm for MMSB below
assuming random pair sampling.

1: Define f (yap, Bx) = B (1 — Br) 1 Ya0) . Initialize y, A.
2: fort =0to do
3:  EstepV(ab)inmini-batch S Initialize ¢}, ¢, .
repeat
Setg(@,k) = Y@ 109 f (Yap,€)
Setd, p,; 0 exp{Eq[logTax] + ¢} Eq[10g f (Yab, B)] +9(@ac 5. K) } VK
Setd,,_p,; 0 exp{Eq[logTox] + @55 Eq[10g f (Ya, B)] +9(@assb. K) } VK
until convergence
M step
10:  Computeyak = Ok
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1L CompUt@\kl = Nkii + ‘3 ZS((p(a—mk a«b, kyab')VI € (0 1) vk

12:  Sety= (1—p)y+piy. Seth = (1— p)A+ prA
13: end for

Figure 1: Online variational Bayes for MMSB

Despite conceptual and notational similarities with online L2 pnline MMSB faces unique chal-
lenges. First, the online LDA E step finds locally optimal values of paramessciated with a selected
document holding the topics fixed. In MMSB a given nodeyg'sannot be optimized independently of
other nodes. Therefore, we derive updates for lyodimdA. Second, the dimension gf the number of
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Figure 2: Perplexity (left) and accuracy (right) comparisons of batch and onliMSH on simulated networks for various node
sizes and learning parameterrun for 4 hours each. Accuracy is measured as the RSS betweemetsvof $Hellinger distances,
one based on true and the other based @&/r. The distances are computed only fai, = 1. In both plots, the lower the value
the better the performance of the algorithms. For both K=3 and K=5, ohsdower perplexity than batch as N increases, and
approximately equal perplexity for N=512. Accuracy becomes sigmiflg poorer for batch as N increases compared to online.
Batch values for N=2048 are unavailable. They took long after 4 howsrtpute.
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Figure 3: (a) and (b) show the convergence and resulting groups (showristogitams of publications by years) respectively
on a 256 node subgraph of arXiv citation dataset. (c) shows the gmnes of held-out likelihood computed over incoming
mini-batches on a 4096 node subgraph of arxiv citation dataset. We=s8tiK both cases.

nodes, can be very large in contrast to LDA's topics. Finally, MMSB caerlege efficient subsampling
strategies, such as forest fire sampling, to exploit network structure.

Preliminary resultson real datasets We ran online MMSB on a complete subgraph of 256 nodes from
the Arxiv high-energy physics citation graph and obtained reasonadulg@g. The histogram of publications
by years in each group is shown in Fig 3(b). Group 3 consists of mancptibns in 1995. The average
frequency of certain top word€4l abi - Yau, string, symetry etc.) was 156- 180% of that in Groups
1 and 2. 1995 marked the beginning of #seond superstring revolution with a flurry of research activity
spurred by M-theory. There is a greater frequency of singular meshipsrin group 3. We are currently
evaluating results on a subgraph of 4096 nodes.
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