
PrincetonUniversity

From application requests to Virtual IOPs:
Provisioned key-value storage with Libra

David Shue* and Michael J. Freedman

(*now at Google)



Shared Cloud

Tenant A Tenant B
VM VM VM VM VM VM

Tenant C
VM VM VM



Shared Cloud Storage

Tenant A Tenant B
VM VM VM VM VM VM

Key-Value 
StorageBlock Storage SQL Database

Tenant C
VM VM VM



Unpredictable Shared Cloud Storage

Tenant A Tenant B
VM VM VM VM VM VM

Key-Value 
StorageBlock Storage SQL Database

Tenant C
VM VM VM

Disk IO-bound Tenants
SSD-backed storage

Key-Value 
Storage



Provisioned Shared Key-Value Storage

Tenant A
VM VM VM

Tenant B
VM VM VM

Tenant C
VM VM VM

Application Requests

Shared Key-Value Storage

Low-level IO

SSDSSD SSD SSD SSD

GET/s
PUT/s

IOPs
BW

ReservationA ReservationB ReservationC 

(1KB normalized) 



Libra Contributions

•Libra IO Scheduler
- Provisions low-level IO allocations for app-request reservations 

w/ high utilization.

- Supports arbitrary object distributions and workloads.

•2 key mechanisms
- Track per-tenant app-request resource profiles.

- Model IO resources with Virtual IOPs.
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Workload-dependent IO Amplification
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Workload-dependent IO Amplification
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Workload-dependent IO Amplification
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Workload-dependent IO Amplification
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Libra Tracks App-request IO Consumption to 
Determine IO Allocations
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Libra Underestimates IO Capacity to Ensure 
Provisionable Throughput
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Provisionable IO throughput = floor(workloads)
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Libra Underestimates IO Capacity to Ensure 
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Provisionable IO throughput = floor(workloads)
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Libra Underestimates IO Capacity to Ensure 
Provisionable Throughput
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Provisionable IO throughput = floor(workloads)
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Non-linear IO Performance
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Non-linear IO Performance
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Libra Uses Virtual IOPs to Model IO Resources
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cording to a non-linear cost model derived directly from the
IOP throughput curves, as shown in Figure 6. Libra calcu-
lates the cost model in terms of VOPs-per-byte by dividing
the max IOP throughput by the achieved (read or write) IOP
throughput, normalized by IOP size.

VOPCPB(IOP-size) =
Max-IOP

Achieved-IOP(IOP-size) ⇥ IOP-size

In this model, the maximum IO throughput in VOP/s is con-
stant for the pure read/write throughput curves.

Internally, Libra’s scheduler threads perform distributed
deficit round robin [21] (DDRR) to e�ciently schedule par-
allel IO requests (up to 32, which corresponds to the SSD
queue depth). For each IO operation, the scheduler computes
the number of VOPs consumed

VOPcost(IOP-size) = VOPCPB(IOP-size) ⇥ IOP-size

and deducts this amount from the associated tenant’s VOP
allocation to enforce resource limits and track resource con-
sumption. DDRR incurs minimal inter-thread synchroniza-
tion and schedules IO tasks in constant time to e�ciently
achieve fair sharing and isolation in a work-conserving fash-
ion. In general, virtual-time [12] and round-robin [29] based
generalized processor sharing approximations are susceptible
to IO throughput fluctuations, since they only provide propor-
tional (not absolute) resource shares. However, Libra’s IO
capacity threshold ensures that each tenant receives at least its
allocated share. Any excess capacity consumed by a tenant
can be charged as overage or used by best-e↵ort tenants.

The VOP cost model allows Libra to charge an IO opera-
tion in proportion to its actual resource usage. For example,
10000 1KB reads, 3000 1KB writes and 160 256KB reads all
represent about a quarter of the SSD IO throughput at their
respective IOP sizes. Hence, Libra charges each workload
the same 10000 VOP/s, or about one quarter of the max IOP
capacity. Thus, barring interference e↵ects, Libra can divide
the full IO throughput arbitrarily among tenant workloads
with disparate IOP sizes. Note that while the shape of the
read and write VOP cost curves are similar, their magnitudes
reflect the relative cost of their operations. Writes are always
more expensive than reads, but the gap diminishes as IOP
sizes increase, due to lower erase block compaction overhead.

Determining the VOP cost model and minimum IO capac-
ity for a particular SSD configuration requires benchmarking
the storage system using a set of experiments similar to the
ones described for the throughput curves. While these ex-
periments are by no means exhaustive, they probe a wide
range of operating parameters and give a strong indication
of SSD performance and the minimum VOP bound. Patho-
logical cases where IO throughput drops below the minimum
can be detected by Libra, but should be resolved by higher-
level mechanisms. Assuming timely resolution, these minor
throughput violations can be absorbed by the provider’s SLA,
e.g., EBS guarantees 90% of the provisioned throughput over
99.9% of the year [4].

5. Implementation
Libra exposes a posix-compliant IO interface, wrapping the
underlying IO system calls to enforce resource constraints and
interpose scheduling decisions. To utilize Libra, applications,
i.e., persistence engines, simply replace their existing IO sys-
tem calls (read, write, send, recv, etc) with the corresponding
wrappers. Libra also provides a task marking API for appli-
cations to tag a thread of execution (task) and its associated
IO calls with the current app-request or internal operation
context. The Libra IO scheduling framework is implemented
in ⇠20000 lines of C code as a user-space library.

Libra employs coroutines to handle blocking disk IO and
inter-task coordination, i.e., mutexes and conditionals. Corou-
tines allow Libra to pause a tenant’s task execution by swap-
ping out processor state, i.e., registers and stack pointer, to a
compact data structure and resume from a di↵erent coroutine.
Libra uses this facility to reschedule an IO task on resource
exhaustion or mutex lock. This allows Libra to delay IO
operations that would otherwise exceed a tenant’s resource al-
location until a subsequent scheduling round when the tenants
resources have been renewed. Libra defaults to synchronous
disk operations (O SYNC), disables all disk page caching
(i.e., O DIRECT on linux). The page cache masks IO la-
tency and queue back pressure, which undermines Libra’s
scheduling decisions and capacity model. We also run Libra
in tandem with a noop kernel IO scheduler to force IOPs to
disk with minimal delay and interruption.

Enabling Libra in our LevelDB-based storage prototype re-
quired less than 30 lines of code for replacing system calls and
marking application requests. However, unlocking LevelDB’s
full performance for synchronous PUTs required extensive
modifications. Our prototype enables parallel writes to take
full advantage of SSD IO parallelism (LevelDB serializes
all client write threads by default). It also issues sequential
writes (e.g., FLUSH) in an asynchronous, io-e�cient manner
(LevelDB defaults to memory mapped IO which is incompati-
ble with O DIRECT). Lastly, our prototype runs FLUSH and
COMPACT operations in parallel (LevelDB schedules both
in the same background task).

We implemented Libra as a user-space library for two main
reasons. First, the model of multi-tenancy model we support
at the storage node is a single process with multiple threads
that handle requests from any tenant, frequently switching
from one tenant to another. This model is commonly used by
high-performance key-value storage servers [7, 11]. Existing
kernel mechanisms for multi-tenant resource allocation, (e.g.,
linux cgroups [22]), work well for the process-per-tenant
model where tasks (processes or threads) are bound to a sin-
gle cgroup (tenant) over their lifetime. Frequent switching
between cgroups, however, is slow due to lock contention in
the kernel. Second, tracking app-request resource consump-
tion across system call boundaries requires additional OS
support for IO request tagging (as described in [24]), which
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throughput, normalized by IOP size.

VOPCPB(IOP-size) =
Max-IOP

Achieved-IOP(IOP-size) ⇥ IOP-size

In this model, the maximum IO throughput in VOP/s is con-
stant for the pure read/write throughput curves.

Internally, Libra’s scheduler threads perform distributed
deficit round robin [21] (DDRR) to e�ciently schedule par-
allel IO requests (up to 32, which corresponds to the SSD
queue depth). For each IO operation, the scheduler computes
the number of VOPs consumed

VOPcost(IOP-size) = VOPCPB(IOP-size) ⇥ IOP-size

and deducts this amount from the associated tenant’s VOP
allocation to enforce resource limits and track resource con-
sumption. DDRR incurs minimal inter-thread synchroniza-
tion and schedules IO tasks in constant time to e�ciently
achieve fair sharing and isolation in a work-conserving fash-
ion. In general, virtual-time [12] and round-robin [29] based
generalized processor sharing approximations are susceptible
to IO throughput fluctuations, since they only provide propor-
tional (not absolute) resource shares. However, Libra’s IO
capacity threshold ensures that each tenant receives at least its
allocated share. Any excess capacity consumed by a tenant
can be charged as overage or used by best-e↵ort tenants.

The VOP cost model allows Libra to charge an IO opera-
tion in proportion to its actual resource usage. For example,
10000 1KB reads, 3000 1KB writes and 160 256KB reads all
represent about a quarter of the SSD IO throughput at their
respective IOP sizes. Hence, Libra charges each workload
the same 10000 VOP/s, or about one quarter of the max IOP
capacity. Thus, barring interference e↵ects, Libra can divide
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with disparate IOP sizes. Note that while the shape of the
read and write VOP cost curves are similar, their magnitudes
reflect the relative cost of their operations. Writes are always
more expensive than reads, but the gap diminishes as IOP
sizes increase, due to lower erase block compaction overhead.

Determining the VOP cost model and minimum IO capac-
ity for a particular SSD configuration requires benchmarking
the storage system using a set of experiments similar to the
ones described for the throughput curves. While these ex-
periments are by no means exhaustive, they probe a wide
range of operating parameters and give a strong indication
of SSD performance and the minimum VOP bound. Patho-
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Libra exposes a posix-compliant IO interface, wrapping the
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wrappers. Libra also provides a task marking API for appli-
cations to tag a thread of execution (task) and its associated
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Libra employs coroutines to handle blocking disk IO and
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tines allow Libra to pause a tenant’s task execution by swap-
ping out processor state, i.e., registers and stack pointer, to a
compact data structure and resume from a di↵erent coroutine.
Libra uses this facility to reschedule an IO task on resource
exhaustion or mutex lock. This allows Libra to delay IO
operations that would otherwise exceed a tenant’s resource al-
location until a subsequent scheduling round when the tenants
resources have been renewed. Libra defaults to synchronous
disk operations (O SYNC), disables all disk page caching
(i.e., O DIRECT on linux). The page cache masks IO la-
tency and queue back pressure, which undermines Libra’s
scheduling decisions and capacity model. We also run Libra
in tandem with a noop kernel IO scheduler to force IOPs to
disk with minimal delay and interruption.

Enabling Libra in our LevelDB-based storage prototype re-
quired less than 30 lines of code for replacing system calls and
marking application requests. However, unlocking LevelDB’s
full performance for synchronous PUTs required extensive
modifications. Our prototype enables parallel writes to take
full advantage of SSD IO parallelism (LevelDB serializes
all client write threads by default). It also issues sequential
writes (e.g., FLUSH) in an asynchronous, io-e�cient manner
(LevelDB defaults to memory mapped IO which is incompati-
ble with O DIRECT). Lastly, our prototype runs FLUSH and
COMPACT operations in parallel (LevelDB schedules both
in the same background task).

We implemented Libra as a user-space library for two main
reasons. First, the model of multi-tenancy model we support
at the storage node is a single process with multiple threads
that handle requests from any tenant, frequently switching
from one tenant to another. This model is commonly used by
high-performance key-value storage servers [7, 11]. Existing
kernel mechanisms for multi-tenant resource allocation, (e.g.,
linux cgroups [22]), work well for the process-per-tenant
model where tasks (processes or threads) are bound to a sin-
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Evaluation

• Does Libra's IO resource model achieve accurate 
resource allocations?

• Does Libra's IO threshold make an acceptable tradeoff 
of performance for predictability in a real storage stack?

• Can Libra ensure per-tenant app-request reservations 
while achieving high utilization?
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Libra Achieves Accurate IO Allocations
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Libra Achieves Accurate IO Allocations
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Libra Achieves Accurate IO Allocations
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Libra Trades-off Nominal IO Throughput For 
Predictability

36
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Libra Trades-off Nominal IO Throughput For 
Predictability
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< 10th percentile covered by SLA and higher-level policies

Workload

PercentilePercentilePercentilePercentile

10th 50th 80th All

99:1

25:75

1:99

1.6% 30.5% 40.5% 45.8%

1.4% 14.9% 25.0% 34.7%

0.7% 12.2% 19.5% 28.1%

Unprovisionable Throughput As a 
Percentage of Total Throughput



Libra Achieves App-request Reservations
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Read Heavy Mixed Write Heavy
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Libra Achieves App-request Reservations
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•Libra IO Scheduler
- Provisions IO allocations for app-request reservations w/ high utilization.

- Supports arbitrary object distributions and workloads.

• 2 key mechanisms
- Track per-tenant app-request resource profiles.

- Model IO resources with Virtual IOPs.

• Evaluation
- Achieves accurate low-level IO allocations. 
- Provisions the majority of IO resources over a wide range of workloads

- Satisfies app-request reservations w/ high utilization.

Conclusion
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