
PrincetonUniversity

From application requests to Virtual IOPs:
Provisioned key-value storage with Libra

David Shue* and Michael J. Freedman

(*now at Google)

Shared Cloud

Tenant A Tenant B
VM VM VM VM VM VM

Tenant C
VM VM VM

Shared Cloud Storage

Tenant A Tenant B
VM VM VM VM VM VM

Key-Value
StorageBlock Storage SQL Database

Tenant C
VM VM VM

Unpredictable Shared Cloud Storage

Tenant A Tenant B
VM VM VM VM VM VM

Key-Value
StorageBlock Storage SQL Database

Tenant C
VM VM VM

Disk IO-bound Tenants
SSD-backed storage

Key-Value
Storage

Provisioned Shared Key-Value Storage

Tenant A
VM VM VM

Tenant B
VM VM VM

Tenant C
VM VM VM

Application Requests

Shared Key-Value Storage

Low-level IO

SSDSSD SSD SSD SSD

GET/s
PUT/s

IOPs
BW

ReservationA ReservationB ReservationC

(1KB normalized)

Libra Contributions

•Libra IO Scheduler
- Provisions low-level IO allocations for app-request reservations

w/ high utilization.

- Supports arbitrary object distributions and workloads.

•2 key mechanisms
- Track per-tenant app-request resource profiles.

- Model IO resources with Virtual IOPs.

6

Related Work

7

Storage
Type

App-
requests

Work
Conserving Media

Maestro Block N N HDD

mClock Block N Y HDD

FlashFQ Block N Y SSD

DynamoDB Key-Value Y N SSD

Provisioned Distributed Key-Value Storage

Tenant A Tenant B
VM VM VM VM VM VM

ReservationA ReservationB
Tenant B
VM VM VM

Storage
Node N

Storage
Node 1 ...Shared Key-Value Storage

Global Reservation Problem

Local Reservation Problem

[Pisces OSD1 ’12]

Storage
Node N

Provisioned Distributed Key-Value Storage

9

ReservationA ReservationB

Storage
Node 1

data partitions

de
m

an
d

...

Tenant A
VM VM VM

Tenant B
VM VM VM

Storage
Node N

Storage
Node 1

Provisioned Distributed Key-Value Storage

10

ReservationA ReservationB

...

ReservationA ReservationB

Storage
Node N

Storage
Node 1

Provisioned Distributed Key-Value Storage

11

...

ResAn ResBnResA1 ResB1 ReservationA
ReservationB

ReservationA
ReservationB

12

Key-Value Protocol

Persistence Engine

IO Scheduler

Physical Disk

Retrieve K

Read l337

IO operation

Provisioned Local Key-Value Storage

GET K

GET 1001100

Libra IO Scheduler

blah

blah

Libra Design

13

Libra
Provisioning

Policy

Libra IO
Scheduler

G
ET PU

T

How much IO
to consume?

Reservation
Distribution

Policy

How much IO to
provision?

Persistence Engine

Physical Disk

DRR

Provision IO allocations for
tenant app-request reservations

14

Provisioning App-request Reservations is Hard

IO Amplification

IO Interference

Non-linear IO
Performance

1 KB PUT ≥ 1 KB Write

Variable IO throughputUnderestimate provisionable IO

Non-linear cost per KB Model IO with Virtual IOPs

Track tenant app-request resource profiles

Workload-dependent IO Amplification

15

PU
T PUT K,V3

V3V2

FL
U

SH

V3 index
A M

LevelDB (LSM-Tree)

 0

 5

 10

 15

 20

 25

 30

1KB
4KB

8KB
16KB

32KB
64KB

128KB

IO
 T

hr
ou

gh
pu

t (
ko

p/
s)

GET/PUT Request Size

PUT write IO

C
O

M
PA

C
T

V1 index
H V

V0 index
F O

V3 index

A O

Workload-dependent IO Amplification

16

PU
T

FL
U

SH
C

O
M

PA
C

T

PUT K,V3

V3V2

V3 index
A M

V1 index
H V

V0 index
F O

V3 index

A O

LevelDB (LSM-Tree)

 0

 5

 10

 15

 20

 25

 30

1KB
4KB

8KB
16KB

32KB
64KB

128KB

IO
 T

hr
ou

gh
pu

t (
ko

p/
s)

GET/PUT Request Size

PUT write IO

FLUSH write IO

Workload-dependent IO Amplification

17

PU
T

FL
U

SH
C

O
M

PA
C

T

PUT K,V3

V3V2

V3 index
A M

V1 index
H V

V0 index
F O

V3 index

A O

LevelDB (LSM-Tree)

 0

 5

 10

 15

 20

 25

 30

1KB
4KB

8KB
16KB

32KB
64KB

128KB

IO
 T

hr
ou

gh
pu

t (
ko

p/
s)

GET/PUT Request Size

PUT write IO

FLUSH write IO

COMPACT write IO

COMPACT read IO

Workload-dependent IO Amplification

18

GET K

index
A M

index
H V

index
F O

K index
G Z

 0

 5

 10

 15

 20

 25

 30

1KB
4KB

8KB
16KB

32KB
64KB

128KB

IO
 T

hr
ou

gh
pu

t (
ko

p/
s)

GET/PUT Request Size

GET read IO

PUT write IO

FLUSH write IO

COMPACT write IO

COMPACT read IO

Libra Tracks App-request IO Consumption to
Determine IO Allocations

19

5 GET

25 PUT

FLUSH

COMPACT

Per-PUT

Per-GET

Compute app-request
IO profiles

G
ETx

x PU
T IO=

Tenant A
5 IO units

PUT

FLUSH

Track IO
consumption

Provision IO
allocations

blah

blah

Libra
Provisioning

Policy

IO Tenant A
500 IO/s

5

100
50

1

+
6

1
0.5

80

70 500

1:1 Pure Read/Pure Write

 1 2 4 8 16 32 64 128 256
Read IOP Size (KB)

 1
 2
 4
 8

 16
 32
 64

 128
 256

W
rit

e
IO

P
Si

ze
 (K

B)

 50

 60

 70

 80

 90

 100

Pc
t o

f I
de

al
 T

hr
ou

gh
pu

t

Unpredictable IO Interference

20

Die-level parallelism, low
latency IOPs

4 read/4 write tenants

Shared-controller and bus
contention
Erase-before-write
overhead
FTL and read-modify-write
garbage colleciton

1:1 Pure Read/Pure Write

 1 2 4 8 16 32 64 128 256
 1
 2
 4
 8

 16
 32
 64

 128
 256

W
rit

e
IO

P
Si

ze
 (K

B)

75:25 Read/Write Ratio

 1 2 4 8 16 32 64 128 256
 1
 2
 4
 8

 16
 32
 64

 128
 256

 50
 60
 70
 80
 90
 100

Pc
t o

f I
de

al
 T

hr
ou

gh
pu

t

50:50 Read/Write Ratio

 1 2 4 8 16 32 64 128 256
Read IOP Size (KB)

 1
 2
 4
 8

 16
 32
 64

 128
 256

25:75 Read/Write Ratio

 1 2 4 8 16 32 64 128 256
 1
 2
 4
 8

 16
 32
 64

 128
 256

 50
 60
 70
 80
 90
 100

Unpredictable IO Interference

21

Unpredictable IO Interference

Libra Underestimates IO Capacity to Ensure
Provisionable Throughput

22

Provisionable IO throughput = floor(workloads)
(18 Kop/s)

Pr
ov

is
io

na
bl

e
IO

 li
m

it

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 20 25 30 35 40 45

Pc
t o

f R
ea

d/
W

rit
e

Ex
pe

rim
en

ts

Normalized IO Throughput

75:25 Read/Write
50:50 Read/Write
25:75 Read/Write

1:1 Pure Read/Pure Write

Libra Underestimates IO Capacity to Ensure
Provisionable Throughput

23

Provisionable IO throughput = floor(workloads)
(18 Kop/s)

Pr
ov

is
io

na
bl

e
IO

 li
m

it

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 20 25 30 35 40 45

Pc
t o

f R
ea

d/
W

rit
e

Ex
pe

rim
en

ts

Normalized IO Throughput

75:25 Read/Write
75:25 m = 4K

75:25 m = 32K
75:25 m = 256K

50:50 Read/Write
25:75 Read/Write

1:1 Pure Read/Pure Write

Libra Underestimates IO Capacity to Ensure
Provisionable Throughput

24

Provisionable IO throughput = floor(workloads)
(18 Kop/s)

Pr
ov

is
io

na
bl

e
IO

 li
m

it

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 20 25 30 35 40 45

Pc
t o

f R
ea

d/
W

rit
e

Ex
pe

rim
en

ts

Normalized IO Throughput

75:25 m = 256K
50:50 m = 256K
25:75 m = 256K

1:1 Pure Read/Pure Write

Non-linear IO Performance

25

IOP Cost = linear decrease
until 6 KB, then constant

IOP Cost = constant until 6
KB, then linear increase

 0

 50

 100

 150

 200

 250

 1 2 4 8 16 32 64 128 256

Ba
nd

wi
dt

h
(M

B/
s)

IOP Size (KB)

IO Bandwidth

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 4 8 16 32 64 128 256

IO
P

(k
op

/s
)

IOP Size (KB)

IOP Throughput
Max BW Max IOP/s

Non-linear IO Performance

26

 0

 50

 100

 150

 200

 250

 1 2 4 8 16 32 64 128 256

Ba
nd

wi
dt

h
(M

B/
s)

IOP Size (KB)

IO Bandwidth

Read Rand
Read Seq

Write Rand
Write Seq

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 4 8 16 32 64 128 256

IO
P

(k
op

/s
)

IOP Size (KB)

IOP Throughput
Max BW Max IOP/s

Libra Uses Virtual IOPs to Model IO Resources

27

cording to a non-linear cost model derived directly from the
IOP throughput curves, as shown in Figure 6. Libra calcu-
lates the cost model in terms of VOPs-per-byte by dividing
the max IOP throughput by the achieved (read or write) IOP
throughput, normalized by IOP size.

VOPCPB(IOP-size) =
Max-IOP

Achieved-IOP(IOP-size) ⇥ IOP-size

In this model, the maximum IO throughput in VOP/s is con-
stant for the pure read/write throughput curves.

Internally, Libra’s scheduler threads perform distributed
deficit round robin [21] (DDRR) to e�ciently schedule par-
allel IO requests (up to 32, which corresponds to the SSD
queue depth). For each IO operation, the scheduler computes
the number of VOPs consumed

VOPcost(IOP-size) = VOPCPB(IOP-size) ⇥ IOP-size

and deducts this amount from the associated tenant’s VOP
allocation to enforce resource limits and track resource con-
sumption. DDRR incurs minimal inter-thread synchroniza-
tion and schedules IO tasks in constant time to e�ciently
achieve fair sharing and isolation in a work-conserving fash-
ion. In general, virtual-time [12] and round-robin [29] based
generalized processor sharing approximations are susceptible
to IO throughput fluctuations, since they only provide propor-
tional (not absolute) resource shares. However, Libra’s IO
capacity threshold ensures that each tenant receives at least its
allocated share. Any excess capacity consumed by a tenant
can be charged as overage or used by best-e↵ort tenants.

The VOP cost model allows Libra to charge an IO opera-
tion in proportion to its actual resource usage. For example,
10000 1KB reads, 3000 1KB writes and 160 256KB reads all
represent about a quarter of the SSD IO throughput at their
respective IOP sizes. Hence, Libra charges each workload
the same 10000 VOP/s, or about one quarter of the max IOP
capacity. Thus, barring interference e↵ects, Libra can divide
the full IO throughput arbitrarily among tenant workloads
with disparate IOP sizes. Note that while the shape of the
read and write VOP cost curves are similar, their magnitudes
reflect the relative cost of their operations. Writes are always
more expensive than reads, but the gap diminishes as IOP
sizes increase, due to lower erase block compaction overhead.

Determining the VOP cost model and minimum IO capac-
ity for a particular SSD configuration requires benchmarking
the storage system using a set of experiments similar to the
ones described for the throughput curves. While these ex-
periments are by no means exhaustive, they probe a wide
range of operating parameters and give a strong indication
of SSD performance and the minimum VOP bound. Patho-
logical cases where IO throughput drops below the minimum
can be detected by Libra, but should be resolved by higher-
level mechanisms. Assuming timely resolution, these minor
throughput violations can be absorbed by the provider’s SLA,
e.g., EBS guarantees 90% of the provisioned throughput over
99.9% of the year [4].

5. Implementation
Libra exposes a posix-compliant IO interface, wrapping the
underlying IO system calls to enforce resource constraints and
interpose scheduling decisions. To utilize Libra, applications,
i.e., persistence engines, simply replace their existing IO sys-
tem calls (read, write, send, recv, etc) with the corresponding
wrappers. Libra also provides a task marking API for appli-
cations to tag a thread of execution (task) and its associated
IO calls with the current app-request or internal operation
context. The Libra IO scheduling framework is implemented
in ⇠20000 lines of C code as a user-space library.

Libra employs coroutines to handle blocking disk IO and
inter-task coordination, i.e., mutexes and conditionals. Corou-
tines allow Libra to pause a tenant’s task execution by swap-
ping out processor state, i.e., registers and stack pointer, to a
compact data structure and resume from a di↵erent coroutine.
Libra uses this facility to reschedule an IO task on resource
exhaustion or mutex lock. This allows Libra to delay IO
operations that would otherwise exceed a tenant’s resource al-
location until a subsequent scheduling round when the tenants
resources have been renewed. Libra defaults to synchronous
disk operations (O SYNC), disables all disk page caching
(i.e., O DIRECT on linux). The page cache masks IO la-
tency and queue back pressure, which undermines Libra’s
scheduling decisions and capacity model. We also run Libra
in tandem with a noop kernel IO scheduler to force IOPs to
disk with minimal delay and interruption.

Enabling Libra in our LevelDB-based storage prototype re-
quired less than 30 lines of code for replacing system calls and
marking application requests. However, unlocking LevelDB’s
full performance for synchronous PUTs required extensive
modifications. Our prototype enables parallel writes to take
full advantage of SSD IO parallelism (LevelDB serializes
all client write threads by default). It also issues sequential
writes (e.g., FLUSH) in an asynchronous, io-e�cient manner
(LevelDB defaults to memory mapped IO which is incompati-
ble with O DIRECT). Lastly, our prototype runs FLUSH and
COMPACT operations in parallel (LevelDB schedules both
in the same background task).

We implemented Libra as a user-space library for two main
reasons. First, the model of multi-tenancy model we support
at the storage node is a single process with multiple threads
that handle requests from any tenant, frequently switching
from one tenant to another. This model is commonly used by
high-performance key-value storage servers [7, 11]. Existing
kernel mechanisms for multi-tenant resource allocation, (e.g.,
linux cgroups [22]), work well for the process-per-tenant
model where tasks (processes or threads) are bound to a sin-
gle cgroup (tenant) over their lifetime. Frequent switching
between cgroups, however, is slow due to lock contention in
the kernel. Second, tracking app-request resource consump-
tion across system call boundaries requires additional OS
support for IO request tagging (as described in [24]), which

8

Unifies IO cost into a single
metric
Captures non-linear IO
performance
Provides IO insulation

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 4 8 16 32 64 128 256

IO
Ps

 (k
op

/s
)

IOP Size (KB)

IOP Throughput at 1/2 Max VOPs
Max Read
Max Write

Half Read IO
Half Write IO

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 1 2 4 8 16 32 64 128 256

Vi
rtu

al
 IO

P
Co

st
 (o

p/
KB

)

IOP Size (KB)

Libra IO Cost Model
Read IO cost
Write IO cost

2 equal-allocation tenants
IO Insulation = 1/2 Max Read/Write

Libra Uses Virtual IOPs to Model IO Resources

28

2 equal-allocation tenants
IO Insulation = 1/2 Max Read/Write

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 4 8 16 32 64 128 256

IO
Ps

 (k
op

/s
)

IOP Size (KB)

IOP Throughput at 1/2 Max VOPs
Libra Read IO Model
Libra Write IO Model

Max Read
Max Write

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 1 2 4 8 16 32 64 128 256

Vi
rtu

al
 IO

P
Co

st
 (o

p/
KB

)

IOP Size (KB)

Libra IO Cost Model
Read IO cost
Write IO cost

cording to a non-linear cost model derived directly from the
IOP throughput curves, as shown in Figure 6. Libra calcu-
lates the cost model in terms of VOPs-per-byte by dividing
the max IOP throughput by the achieved (read or write) IOP
throughput, normalized by IOP size.

VOPCPB(IOP-size) =
Max-IOP

Achieved-IOP(IOP-size) ⇥ IOP-size

In this model, the maximum IO throughput in VOP/s is con-
stant for the pure read/write throughput curves.

Internally, Libra’s scheduler threads perform distributed
deficit round robin [21] (DDRR) to e�ciently schedule par-
allel IO requests (up to 32, which corresponds to the SSD
queue depth). For each IO operation, the scheduler computes
the number of VOPs consumed

VOPcost(IOP-size) = VOPCPB(IOP-size) ⇥ IOP-size

and deducts this amount from the associated tenant’s VOP
allocation to enforce resource limits and track resource con-
sumption. DDRR incurs minimal inter-thread synchroniza-
tion and schedules IO tasks in constant time to e�ciently
achieve fair sharing and isolation in a work-conserving fash-
ion. In general, virtual-time [12] and round-robin [29] based
generalized processor sharing approximations are susceptible
to IO throughput fluctuations, since they only provide propor-
tional (not absolute) resource shares. However, Libra’s IO
capacity threshold ensures that each tenant receives at least its
allocated share. Any excess capacity consumed by a tenant
can be charged as overage or used by best-e↵ort tenants.

The VOP cost model allows Libra to charge an IO opera-
tion in proportion to its actual resource usage. For example,
10000 1KB reads, 3000 1KB writes and 160 256KB reads all
represent about a quarter of the SSD IO throughput at their
respective IOP sizes. Hence, Libra charges each workload
the same 10000 VOP/s, or about one quarter of the max IOP
capacity. Thus, barring interference e↵ects, Libra can divide
the full IO throughput arbitrarily among tenant workloads
with disparate IOP sizes. Note that while the shape of the
read and write VOP cost curves are similar, their magnitudes
reflect the relative cost of their operations. Writes are always
more expensive than reads, but the gap diminishes as IOP
sizes increase, due to lower erase block compaction overhead.

Determining the VOP cost model and minimum IO capac-
ity for a particular SSD configuration requires benchmarking
the storage system using a set of experiments similar to the
ones described for the throughput curves. While these ex-
periments are by no means exhaustive, they probe a wide
range of operating parameters and give a strong indication
of SSD performance and the minimum VOP bound. Patho-
logical cases where IO throughput drops below the minimum
can be detected by Libra, but should be resolved by higher-
level mechanisms. Assuming timely resolution, these minor
throughput violations can be absorbed by the provider’s SLA,
e.g., EBS guarantees 90% of the provisioned throughput over
99.9% of the year [4].

5. Implementation
Libra exposes a posix-compliant IO interface, wrapping the
underlying IO system calls to enforce resource constraints and
interpose scheduling decisions. To utilize Libra, applications,
i.e., persistence engines, simply replace their existing IO sys-
tem calls (read, write, send, recv, etc) with the corresponding
wrappers. Libra also provides a task marking API for appli-
cations to tag a thread of execution (task) and its associated
IO calls with the current app-request or internal operation
context. The Libra IO scheduling framework is implemented
in ⇠20000 lines of C code as a user-space library.

Libra employs coroutines to handle blocking disk IO and
inter-task coordination, i.e., mutexes and conditionals. Corou-
tines allow Libra to pause a tenant’s task execution by swap-
ping out processor state, i.e., registers and stack pointer, to a
compact data structure and resume from a di↵erent coroutine.
Libra uses this facility to reschedule an IO task on resource
exhaustion or mutex lock. This allows Libra to delay IO
operations that would otherwise exceed a tenant’s resource al-
location until a subsequent scheduling round when the tenants
resources have been renewed. Libra defaults to synchronous
disk operations (O SYNC), disables all disk page caching
(i.e., O DIRECT on linux). The page cache masks IO la-
tency and queue back pressure, which undermines Libra’s
scheduling decisions and capacity model. We also run Libra
in tandem with a noop kernel IO scheduler to force IOPs to
disk with minimal delay and interruption.

Enabling Libra in our LevelDB-based storage prototype re-
quired less than 30 lines of code for replacing system calls and
marking application requests. However, unlocking LevelDB’s
full performance for synchronous PUTs required extensive
modifications. Our prototype enables parallel writes to take
full advantage of SSD IO parallelism (LevelDB serializes
all client write threads by default). It also issues sequential
writes (e.g., FLUSH) in an asynchronous, io-e�cient manner
(LevelDB defaults to memory mapped IO which is incompati-
ble with O DIRECT). Lastly, our prototype runs FLUSH and
COMPACT operations in parallel (LevelDB schedules both
in the same background task).

We implemented Libra as a user-space library for two main
reasons. First, the model of multi-tenancy model we support
at the storage node is a single process with multiple threads
that handle requests from any tenant, frequently switching
from one tenant to another. This model is commonly used by
high-performance key-value storage servers [7, 11]. Existing
kernel mechanisms for multi-tenant resource allocation, (e.g.,
linux cgroups [22]), work well for the process-per-tenant
model where tasks (processes or threads) are bound to a sin-
gle cgroup (tenant) over their lifetime. Frequent switching
between cgroups, however, is slow due to lock contention in
the kernel. Second, tracking app-request resource consump-
tion across system call boundaries requires additional OS
support for IO request tagging (as described in [24]), which

8

blah

blah

Libra Design

29

Libra
Provisioning

Policy

Libra IO
Scheduler

Persistence Engine

Physical Disk

Provision IO allocations for
tenant app-request reservations

Charge tenant IOPs
based on VOP cost

Track app-request
VOP consumption

Provision VOPs within
provisionable limit

Update tenant VOP
allocations

Evaluation

• Does Libra's IO resource model achieve accurate
resource allocations?

• Does Libra's IO threshold make an acceptable tradeoff
of performance for predictability in a real storage stack?

• Can Libra ensure per-tenant app-request reservations
while achieving high utilization?

30

31

Interference-free Ideal

Libra Achieves Accurate IO Allocations

Throughput Ratio = Actual / Expected (IO Insulation)

Read 1 KB

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

W 1KB
W 4KB

W 8KB
W 16KB

W 32KB
W 64KB

W 128KB
W 256KB

Th
ro

ug
hp

ut
 R

at
io

Read-Write IOP Throughput Ratio

Read Tenants
Write Tenants

even

32

Interference-free Ideal

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

Th
ro

ug
hp

ut
 R

at
io

Read-Write IOP Throughput Ratio

R 1KB R 4KB R 8KB R 16KB R 32KB R 64KB R 128KBR 256KB

Read Tenants
Write Tenants

Libra Achieves Accurate IO Allocations

Write 1-256 KB

Throughput Ratio = Actual / Expected (IO Insulation)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

W 1KB
W 4KB

W 8KB
W 16KB

W 32KB
W 64KB

W 128KB
W 256KB

Th
ro

ug
hp

ut
 R

at
io

Read-Write IOP Throughput Ratio

Read Tenants
Write Tenants

33

Libra Achieves Accurate IO Allocations

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1 2 4 8 16 32 64 128 256

VO
P

Co
st

 (o
p/

KB
)

IOP Size (KB)

Read IO Cost Models

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 1 2 4 8 16 32 64 128 256
VO

P
Co

st
 (o

p/
KB

)

IOP Size (KB)

Write IO Cost Models

libra
constant

fixed

34

Libra Achieves Accurate IO Allocations

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1 2 4 8 16 32 64 128 256

VO
P

Co
st

 (o
p/

KB
)

IOP Size (KB)

Read IO Cost Models

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 1 2 4 8 16 32 64 128 256
VO

P
Co

st
 (o

p/
KB

)

IOP Size (KB)

Write IO Cost Models

libra
constant

fixed
linear

35

Libra Achieves Accurate IO Allocations

Min-Max Ratio =
Min Throughput Ratio / Max Throughput Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

rw rr ww

Ac
cu

ra
cy

 (M
M

R)
IOP Insulation Accuracy

Write-WriteRead-ReadRead-Write

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

rw rr ww

Ac
cu

ra
cy

 (M
M

R)

Virtual IOP Allocation Accuracy

libra linear constant fixed
Write-WriteRead-ReadRead-Write

Libra Trades-off Nominal IO Throughput For
Predictability

36

75:25 GET-PUT, Variance 4K

 1 2 4 8 16 32 64 128 256

GET Request Size (KB)

 1
 2
 4
 8

 16
 32
 64

 128
 256

PU
T

Re
qu

es
t S

ize
 (K

B)

50:50 GET-PUT, Variance 4K

 1 2 4 8 16 32 64 128

GET Request Size (KB)

 1
 2
 4
 8

 16
 32
 64

 128
 256

25:75 GET-PUT, Variance 4K

 1 2 4 8 16 32 64 128 256

GET Request Size (KB)

 1
 2
 4
 8

 16
 32
 64

 128
 256

 16
 18
 20
 22
 24
 26
 28
 30

VO
P

(k
op

/s
)

Libra Trades-off Nominal IO Throughput For
Predictability

37

< 10th percentile covered by SLA and higher-level policies

Workload

PercentilePercentilePercentilePercentile

10th 50th 80th All

99:1

25:75

1:99

1.6% 30.5% 40.5% 45.8%

1.4% 14.9% 25.0% 34.7%

0.7% 12.2% 19.5% 28.1%

Unprovisionable Throughput As a
Percentage of Total Throughput

Libra Achieves App-request Reservations

38

Read Heavy Mixed Write Heavy

 0
 1
 2
 3
 4
 5
 6
 7

Th
ro

ug
hp

ut
 (k

re
q/

s)

Libra Normalized GET (1KB)

 0
 1
 2
 3
 4
 5
 6
 7

Libra Normalized PUT (1KB)

 0
 1
 2
 3
 4
 5
 6
 7

 100 150 200 250 300

Th
ro

ug
hp

ut
 (k

re
q/

s)

Time (s)

No Profile Normalized GET (1KB)

 0
 1
 2
 3
 4
 5
 6
 7

 100 150 200 250 300
Time (s)

No Profile Normalized PUT (1KB)

1.5x0.5x

Work-conserving
consumption of
unprovisioned

resources

Fully provisioned
allocations

Libra Achieves App-request Reservations

39

 0
 1
 2
 3
 4
 5
 6
 7

Th
ro

ug
hp

ut
 (k

re
q/

s)

Libra Normalized GET (1KB)

 0
 1
 2
 3
 4
 5
 6
 7

Libra Normalized PUT (1KB)

 0
 1
 2
 3
 4
 5
 6
 7

 100 150 200 250 300

Th
ro

ug
hp

ut
 (k

re
q/

s)

Time (s)

No Profile Normalized GET (1KB)

 0
 1
 2
 3
 4
 5
 6
 7

 100 150 200 250 300
Time (s)

No Profile Normalized PUT (1KB)

Read Heavy Mixed Write Heavy

•Libra IO Scheduler
- Provisions IO allocations for app-request reservations w/ high utilization.

- Supports arbitrary object distributions and workloads.

• 2 key mechanisms
- Track per-tenant app-request resource profiles.

- Model IO resources with Virtual IOPs.

• Evaluation
- Achieves accurate low-level IO allocations.
- Provisions the majority of IO resources over a wide range of workloads

- Satisfies app-request reservations w/ high utilization.

Conclusion

40

