
Group Therapy for Systems:
Using link attestations to manage failures

Michael J. Freedman, Ion Stoica, David Mazières, and Scott Shenker
New York University, U.C. Berkeley, and Stanford University

Abstract
Managing failures and configuring systems properly are
of critical importance for robust distributed services. Un-
fortunately, protocols offering strong fault-tolerance guar-
antees are generally too costly and insensitive to perfor-
mance criteria. Yet, system management in practice is
often ad-hoc and ill-defined, leading to under-utilized ca-
pacity or adverse effects from poorly-behaving machines.

This paper proposes a new abstraction called link-
attestation groups (LA-Groups) for building robust dis-
tributed systems. Developers specify application-level
correctness conditions or performance requirements for
nodes. Nodes vouch for each other’s acceptability within
small groups of nodes through digitally-signed link attes-
tations, and then apply a link-state protocol to determine
these group relationships.

By exposing such an attestation graph, LA-Groups en-
able the application (1) to make more informed decisions
about its level of fault tolerance, security, or performance,
and (2) to improve such properties by fluidly partitioning
large-scale systems into small, better-suited groups. To
demonstrate how LA-Groups can benefit systems, we out-
line designs for several applications—structured overlay
routing, multicast, file sharing, and worm containment—
that are robust against various failures.

1 Introduction
One of the main challenges in building Internet-scale dis-
tributed systems is handling failure. Traditional, smaller-
scale systems are composed from a fixed set of potential
machines within a single administrative realm. In such a
setting, when nodes fail, the system can compensate by
masking the fault until the nodes can be repaired. Using
protocols such as BFT state-machine replication [4], sys-
tems can even tolerate malicious failures so long as the
fraction of failed nodes remains sufficiently low.

Unfortunately, at the scale of the Internet, there is no
fixed set of potential participant machines and no guaran-
tee that failed nodes can eventually be repaired. Even if a
system could afford the quadratic communications cost of
naı̈vely using BFT, there is no meaningful way to reason
about the fraction of faulty nodes. Moreover, for many

applications, there is not even a globally correct notion of
failure. For example, in the face of a network partition,
it makes sense for a collaborative spam filtering or worm
detection system to continue operating with the nodes in
each partition considering the other set to have failed.

Rather than attempt to mask failures, we argue that
Internet-scale systems should expose the failure behav-
ior of nodes to higher-level applications. Applications
in turn should structure themselves so that each node de-
pends most critically on the nodes it considers most reli-
able. Toward this end, we introduce an abstraction called
link-attestation groups (LA-Groups). The basic idea is to
apply a link-state protocol to determine trust relationships
within small groups of machines participating in a poten-
tially much larger overlay network.

In the simplest case, LA-Groups can simply track net-
work connectivity and liveness so as to allow applica-
tions to avoid problems caused by non-transitive routing.
More generally, however, LA-Groups use an application-
specific notion of reliability and correctness, so as to
map which pairs of nodes consider each other reliable.
Nodes vouch for each other’s acceptability through digi-
tally signed link attestations, allowing nodes to prove trust
paths to other nodes.

The next section describes the LA-Groups abstraction.
We then discuss the potential application of LA-Groups
to three problems: non-transitive routing in structured
routing overlays, grouping well connected nodes in end-
system multicast, and distributed worm detection and fil-
tering. Finally we discuss related work and conclude.

2 Group-oriented monitoring

We consider systems in which a group abstraction can be
applied. Often, large-scale systems naturally decompose
into small groups; other times, system designers can em-
bed groups into seemingly flat systems to achieve desired
fault-tolerance or performance properties.

Within a particular group, nodes actively monitor their
neighbors and attest to each others’ behavior. These link
attestations are shared among group members, so that
each node can generate a directed attestation graph de-
scribing the relationship between all known pairs of nodes

1



// Group management operations
GroupID create ()
void join (GroupID, NodeID[], cb<bool>)

// Current view of group attestations
GroupID[] groups ()
Node[] attestsOut (GroupID, NodeID)
Node[] attestsIn (GroupID, NodeID)
void attestsChange (GroupID, cb<Node>)

// Attest correctness of nodes
void startAttest (GroupID, NodeID, info)
void stopAttest (GroupID, NodeID)

Figure 1: The LA-Groups API

in a group. If a directed edge does not exist between
nodes, either the nodes cannot directly communicate or
one is behaving unacceptably according to the other’s ap-
plication criteria. The set of all nodes that can be reached
from a node along its attestation links is called its view.
We expect groups to be on the scale of tens of nodes.

Possessing such an attestation graph is a powerful tool
for system management. While an attestation may carry
application-specific information, basic graph properties
can be generalized if this link information can be repre-
sented by unit-less costs. Consider how various systems
use graph properties to achieve their desired goal: Quo-
rum systems [10] ensure fault-tolerance by requiring a
graph with some minimum vertex cut (the quorum thresh-
old). Secure gossiping protocols [9] and decentralized
key distribution [13, 16] require multiple vertex-disjoint
paths. Structured routing overlays benefit from strongly-
connected components (§3.1). Multicast systems can op-
timize message transmission using shortest path and max-
flow algorithms (§3.2). Worm or spam filtering can use a
graph to encode trust relationships (§3.3).

LA-Groups assume that nodes can use digital sig-
natures to authenticate communication and that clocks
of mutually-acceptable nodes are loosely synchronized.
Other than that, LA-Groups is designed for the Internet,
in which communication is asynchronous and unreliable,
and nodes may crash or behave arbitrarily at any time (due
to software bugs, misconfiguration, malicious intent, etc).

2.1 The LA-Groups abstraction

In this section, we describe the LA-Group interface and
group membership attestation model. Figure 1 lists the
proposed API for LA-Groups. A node can create a new
group associated with a new globally-unique identifier
(e.g., a random 160-bit value). A node attempts to asyn-
chronously join a group by attesting to certain specified

members and is notified by a callback upon completion.
The join succeeds only if the node received an attestation
from at least one group member.

The API provides three functions for group member-
ship information: all groups to which a node belongs and
all valid attestations from and for a node within a group.
These attestations include the attestee’s node ID (for ex-
ample, a network address or a cryptographic hash of its
public key) as well as optional application-specific info

about that node. This info may include, for example, a
node’s observed throughput or uptime. (We specify that
the API returns node , instead of an attestation, to reflect
that signature and freshness verification is transparently
handled by the LA-Groups layer.) A node can reconstruct
its entire directed attestation graph by recursive calls to
the attestations interface. Finally, a node can register to
be notified whenever it loses an attestation from another
group member.

The API provides a stateful management interface: A
node can start and subsequently stop attesting to another’s
correctness. Application writers can employ arbitrarily
complex failure tests, from general liveness or perfor-
mance target checking, to cryptographic data verification,
and to anomaly- or voting-based detection of invalid re-
sponses. When nodes fail such tests—or pass them in the
case of pending members—an application simply records
this state change with the LA-Groups API.

LA-Groups can provide API support for popular prop-
erties on the attestation graphs when info can be repre-
sented by a unit-less cost. Such common properties in-
clude shortest path to a node, number of vertex-disjoint
paths (of length ≤ l), max-flow min-cut of a subgraph,
strongly-connected subgraphs, clustering coefficient, etc.
The next section includes applications based on some of
these properties.

Refreshing, disseminating, and verifying attestations
occurs transparently to the application. As long as the
application does not stop attesting to a group member,
the LA-Groups layer will resend a fresh attestation ev-
ery < Ta seconds, where Ta is the period for which the
attestation is valid. Given that liveness checking requires
continuous communication in the first place, these attes-
tations may be piggybacked on existing messages.

Attestations and membership transcripts. The funda-
mental building-block of LA-Groups is the attestation.
Each attestation is comprised of the group identifier, the
identity of the attester and attestee, any optional info, and
an expiration time (generated as now + Ta). The attesta-
tion is signed by the attester’s private signature key.

LA-Groups allow nodes to demonstrate attestations
from a group, even to non-members, through member-
ship transcripts. A membership transcript of size k is
comprised of k attestations. To verify a membership tran-

2



A B

(a) Attestation graph

A B

DC D

(b) Join attempt

A B

D

DC

D

D

D

(c) Flood attestation

A B

DC

(d) Testing new node

Figure 2: Managing the attestation graph

script, a node checks whether (1) the k signatures are valid
and (2) the attestations are not yet expired. This basic
scheme requires k signature verifications. We describe a
cryptographic optimization in Section 2.2 to decrease its
length and cost to that of a single signature.

We do not require any special public-key-distribution
system. LA-Groups is designed to work in fully-
decentralized environments. As described, a node ID may
simply be a node’s network address or the cryptographic
hash of its public key. Of course, LA-Groups do not pre-
clude other key-management approaches, such as using a
certificate authority or trusted out-of-band distribution.

We note that symmetric-key message authentication
codes (MACs) can instead be used to authenticate com-
munication between directly-connected nodes; a perfor-
mance optimization that can have especial benefit for
densely-connected networks. Specifically, a node need
not necessarily verify the signed link attestations it re-
ceives from a neighbor if the two nodes have previously
negotiated a MAC key (for instance, during the first ex-
change of attestations).

Views and link-state announcements. LA-Groups
provide weak consistency within groups. A node’s view is
defined by the directed attestation graph rooted out from
itself, call this node B. Node B is added to node A’s
group view as soon as A receives a valid attestation from
an existing node in A’s view. In other words, there exists
an attestation path from A to B.

We use two techniques to ensure that attestation
changes are reflected across nodes’ views in a timely man-
ner. First, the expiration time of attestations bounds the
period with which attestations may be stale by Ta. Sec-
ond, LA-Groups uses a link-state protocol to actively dis-
seminate attestations among group members.

Figure 2 demonstrates LA-Groups’ membership and at-
testation dissemination protocols. Fig. 2a shows the un-
derlying attestation graph, where a solid arrow is drawn
from a node attesting to a group member. Node A is part
of a clique with four nodes, but also has a link to the stub
node B. In Fig. 2b, a new node D joins by sending an at-
testation to an existing group member C. C begins mon-
itoring D (as shown by the dotted arrow in Fig. 2c) and
proceeds to propagate a link-state announcement to all
reachable nodes in its attestation graph. We omit describ-
ing various optimizations to reduce the network overhead
of this operation. Finally, when nodes hear about a new
node D, they begin monitoring it (Fig. 2d) to determine
whether they should generate attestations for it.

While attestations may represent complex application-
or context-specific decisions, the simplest type of attes-
tation expresses reachability and liveness, i.e., that a node
continues to respond to application-level pings. We expect
that such attestation graphs in many overlay networks will
have very high degree and short path lengths, and thus at-
testation announcements will propagate quickly and result
in a low incidence of routing instabilities.

2.2 Discussion
Stateful end-to-end monitoring. The LA-Groups ap-
proach allows for end-to-end monitoring that can expose
system properties to applications. While some types of
failures can be detected using only application-agnostic
stateless monitoring (e.g., process crashes, message cor-
ruption), a large class of failure detection mechanisms
require state and/or application-level knowledge. Such
stateful monitoring includes anomaly detection for per-
formance faults (e.g., disk throughput, network latency
or throughput, packet flooding and denial-of-service at-
tacks, or application delays). Or, application-specific
monitoring may use a voting-based approach to determine
the probable correctness of nodes’ responses (e.g., for
DNS resolution, name-to-public-key bindings, HTTP re-
sponses, or network-file-system operations) and then gen-
erate or withdraw attestations accordingly.

Correctness, not failure, attestations. LA-Group
nodes propagate timed correctness attestations to other
group members, instead of explicit failure reports. Fail-
ure reports could simply be dropped by a faulty node:
the onus must be for a node to prove membership, not to
prove a lack of non-membership. This is especially impor-
tant when providing membership transcripts to non-group
nodes, who do not receive link-state announcements. LA-
Groups’ transcripts provide such a proof without requir-
ing any third-party interaction. In using expiration peri-
ods, LA-Groups provide a relaxed consistency model of
membership, as some nodes’ views may still express an

3



attestation link up to Ta time after a node stops attesting
to one of its neighbors.

Compact signature representation. We can provide a
more compact representation of membership transcripts
and decrease verification overhead through the use of
multi-signatures [3]. Multi-signatures are a variation of
normal signatures by which groups of nodes, each holding
a unique signing key, can produce a single signed message
bearing the endorsement of all group members.

Informally, nodes individually generate signatures,
which are aggregated by multiplying their signatures to-
gether to a compact representation with length equal to a
single signature. A node can verify the signature using the
corresponding aggregated public verification key, formed
by multiplying together the individual keys of each signer.
A node can compute this aggregated key a single time
(and amortize subgroup computations) to perform a sin-
gle verification when refreshing k attestations. Multi-
signatures are practical; for example, there exists a simple
construction based on Gap Diffie-Helman groups [3].

LA-Groups can leverage this compact representation in
two ways: First, it greatly reduces the overhead needed to
transfer entire views to new nodes, i.e., so it can imme-
diately receive a snapshot of the attestation graph, as op-
posed to waiting until receiving individual link-state an-
nouncements. Second, it can help improve the efficiency
of link-state announcements, as intermediate nodes may
collect individual announcements from neighbors before
retransmitting aggregated ones.

A t-robust group membership protocol. A conceptu-
ally simple use of LA-Groups is to generate a t-robust
group membership protocol: If attestations represent a
node’s belief in another’s continued correctness, then
a group corresponds to k nodes that have attestations
for and from at least t other group members. A static
threshold of t allows the group to withstand t−1 faults
over its lifetime and is traditionally used in quorum sys-
tems [4, 10]. A dynamic threshold, on the other hand,
enables the group to enforce properties as a function of
group size as it grows or shrinks, although requires con-
sensus on group membership during view changes. An
earlier form of this work restricted itself to precisely this
problem; the LA-Groups approach provides a more flexi-
ble generalization.

3 Applications
This section attempts to demonstrate that the process of
building and managing distributed systems can be aided
by using the LA-Groups abstraction. We outline the de-
sign of several potential applications: (1) a structured
routing overlay robust against non-transitive connectiv-
ity, (2) a multicast system that tolerates poorly-connected

s

kk

Figure 3: Structured overlay routing: Staggered LA-
Groups share link-state information for robust routing.

nodes, and (3) a file-sharing system resistant to mislabeled
data and cooperative worm containment resistant to in-
valid worm signatures. These examples show three gen-
eral classes of applications—flat, hierarchical, and par-
titioned systems—to which LA-Groups can be naturally
applied.

3.1 Flat: Structured routing overlays
Problem statement. Nodes in structured routing over-
lays [14, 15] claim “ownership” of some sequential range
of a semantic-free identifier space. Each node peers with
other nodes selected from a specific ID distribution. Rout-
ing to the node controlling some target identifier proceeds
by greedily visiting nodes whose IDs are progressively
closer to the target.

In the Chord overlay [15], which uses a ring-like ID
space of the integers modulo 2160, there are two types
of connections. Fingers are selected from an exponential
distribution and ensure that routing is short in expectation
(O(log n) hops for n-node networks). Successors imme-
diately follow a node in the ID space and help ensure the
correctness of routing.

In all existing structured routing overlays, non-
transitive connectivity or inconsistent routing views can
cause greedy routing to hit a local minimum and never
reach the identifier’s immediate successor [6].

LA-Groups for robust routing. We propose using LA-
Groups’ link-state information to improve the correctness
of routing under non-transitive conditions or inconsisten-
cies. For this application, attestations only express reach-
ability and liveness.

Figure 3 shows an arc of the Chord ring: Nodes are ar-
ranged sequentially based on their random, unique node
IDs. Each node is a member of at least two LA-Groups,
each of size approximately k (say, 20). These groups
can be seen as stretching clockwise and counter-clockwise
with respect to a node, overlapping at s ≈ k

2
nodes. They

replace the traditional successor lists in Chord (or the leaf
sets in Pastry [14]).

The strongly-connected graph property of an LA-
Group ensures that all group nodes can robustly commu-
nicate, either directly or through some intermediate that
relays packets. The two “staggered” groups ensure robust

4



communication between groups, provided that any single
pair of nodes in the overlap set can communicate. This
simple LA-Group-based approach may replace the vari-
ous mechanisms we describe in [6] with which deployed
routing overlays handle non-transitivity.

This construction can adapt to naturally handle churn.
When a node leaves the network, existing group mem-
bers extend the group along the Chord ring, attempting to
maintain a group size of approximately k. When several
new nodes join the group, nodes near the group’s edges
leave it, possibly joining its immediate neighbor. To han-
dle large-scale system growth or shrinkage—as opposed
to fluctuations around a steady-state network size—a node
may belong to more than two groups, albeit usually only
temporarily: a new group is created by a node in the over-
lap when its current group is detected to be too large (> k

members), while groups merge when they are too small.

LA-Groups for robust storage. Structured routing
overlays were proposed as a building block for distributed
hash tables: Data can be stored under a key ID and sub-
sequently retrieved. The central challenge of distributed
storage applications is to ensure that data can be retrieved
robustly under membership changes.

Most systems propose replicating data at a node’s suc-
cessors with a fixed replication factor [14, 15]. LA-
Groups offers an interesting twist to this approach. Ap-
plications can dynamically tune the replication factor to
achieve some desired level of fault-tolerance, based on
the minimum vertex cut of the subgraph. For example,
if two of a node’s successors are both reachable only via
a single group member due to routing problems, the sys-
tem must replicate data to three nodes, not two, in order
to withstand any single node failing.

3.2 Hierarchical: Multicast
Problem statement. The desired property of an end-
user multicast system is straightforward: parents in a mul-
ticast tree should reliably transmit packets to their chil-
dren, ideally at high throughput rates. The traditional de-
sign of such systems is for new nodes to join as leaf nodes,
growing the depth of the tree. While this approach pro-
vides an intuitive and elegant design, poorly-connected in-
termediate nodes—those having low upstream bandwidth
or high latency—can cause significant delays at all the
nodes’ children [2]. Tree management becomes a central
and challenging problem.

LA-Groups for optimizing multicast. Each node at-
tests to others’ reachability (and hence a willingness to
relay packets to them), as well as additional network infor-
mation such as latency, throughput, and uptime (or mean-
time-to-failure for long-lived systems [17]).

Nodes form a multicast tree with approximate degree k

at each level. We define an LA-Group as a parent and its
children; call this a level-i group if the parent is depth i

from the root. Internal tree nodes belong to two groups;
leaves belong to exactly one group. Of course, a par-
ent cannot maintain high throughput to every child for
larger values of k. Instead, a parent sends packets directly
to some fraction of these children and appends routing
information telling its children to which siblings to re-
lay the packets. Given link-state information about the
paths between siblings, the parent can directly optimize
the data transmission based on network conditions (at the
timescale equal to the refresh period of attestations). Fi-
nally, nodes near the root do not attest to nodes with short
uptimes or poor mean-times-to-failure. Therefore, such
nodes are forced to remain at tree’s leaves, and the system
can statistically minimize interruptions due to failures.

3.3 Partitioned: Trust networks
Problem statement. Securing applications presents
special challenges when normal cryptographic techniques
cannot be used to verify the correctness of data. For
example, participants in file-sharing systems have com-
plete freedom to associate any metadata with files and
thus can pollute the system’s searchable index with mis-
labeled files. In cooperative worm containment, once a
firewall detects a worm, it disseminates the worm’s sig-
nature to other firewalls, which in turn block the pack-
ets containing the signature [8]. Unfortunately, if a fire-
wall distributes incorrect signatures, this can amount to
a denial-of-service attack. In both cases, applying a tra-
ditional consensus protocol requires a node to wait for τ

matching responses before taking action, where τ must
exceed the total number of colluding nodes.

LA-Groups for trust graphs. Nodes generate an attes-
tation graph that correlates to the trust relationships in
the system. In many contexts, such trust relationships al-
ready exist. Organizations are likely more willing to en-
gage in cooperative worm containment or spam filtering
with existing partners (such as peering ISPs, collaborat-
ing research universities, business partners, and the like).
Several studies of file-swapping and e-mail networks have
demonstrated the natural development of interest commu-
nities [7]. Systems such as IRC, Waste, and BitTorrent ex-
plicitly join nodes into smaller communication groups—
even while physical nodes may belong to multiple such
groups—for precisely this reason.

Given an attestation graph from LA-Groups, a node can
quantify its trust in a protocol answer using various met-
rics. For example, it may simply require consensus among
t immediate neighbors (for 1 ≤ t � τ ) or instead may
check that t attestation paths to a single member are ver-

5



tex disjoint [13, 16]. The former provides robustness up to
t−1 faulty nodes, while the latter claims that, historically,
this member appears correct to ≥ t nodes.

The application must perform some type of response
verification to ensure other nodes’ continued compliance.
In our examples, humans can check a file’s validity af-
ter download, while dynamic taint analysis [12] can help
verify worm signatures. If verification fails, a node stops
attesting to a neighbor, limiting the duration for which
incorrect metadata remains in such systems. Such veri-
fication is costly, however: LA-Groups improve system
behavior by helping to achieve a low false-positive rate.

4 Related work

The distributed systems community has proposed a num-
ber of fault-tolerance protocols over the years that attempt
to mask failures. Classic examples are virtual synchrony
communication [1], replicated quorum systems [10], and
replicated state machines [4]. The community also has de-
veloped the theoretical underpinnings of unreliable failure
detectors [5] that enable group membership and consen-
sus protocols. Largely, these protocols focus on abstrac-
tion generality and correctness guarantees, at the cost of
high communication overhead and limited scalability.

Link-state protocols [11] are used by intra-domain rout-
ing such as OSPF in order to find all-pairs shortest paths.
An LA-Group node is concerned about enumerating the
strongly-connected subgraph that includes itself, not sim-
ply calculating the shortest path to all nodes.

We sketched various applications that may benefit from
applying LA-Groups in Section 3. Due to space limita-
tions, we omit the vast body of work associated with these
applications. We are unaware, however, of any prior work
that has proposed using application-level attestations to
expose distributed system health and even embracing par-
titions to resist failures in large-scale systems.

5 Summary

Handling failures and organizing nodes are central chal-
lenges when building Internet-scale distributed systems.
Rather than attempt to mask failures, we argue that sys-
tems should expose the process behavior of nodes to
higher-level applications. Applications in turn should
structure themselves into process groups that reflect
nodes’ observed reliability and correctness.

This paper introduces an abstraction called link-
attestation groups. Nodes vouch for each other’s accept-
ability through digitally-signed link attestations, then ap-
ply a link-state protocol to determine trust relationships
in a group. By exposing such an attestation graph, the
application can make more informed decisions that di-
rectly impact its fault tolerance, security, or performance:

with whom to peer, from where to download a security
filter, the extent with which to replicate data, and so forth.
We believe that LA-Groups can help system designers di-
rectly reason about desired graph properties and, from do-
ing so, build more robust systems.

References
[1] K. P. Birman. Replication and fault-tolerance in the ISIS system.

In SOSP, Dec 1985.
[2] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and

Y. Minsky. Bimodal multicast. ACM Trans. Computer Systems, 17
(2), 1999.

[3] A. Boldyreva. Efficient threshold signatures, multisignatures and
blind signatures based on the gap-diffie-hellman-group signature
scheme. In PKC, Jan 2003.

[4] M. Castro and B. Liskov. Practical byzantine fault tolerance. In
OSDI, Feb 1999.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for reli-
able distributed systems. J. ACM, 43(2), 1996.

[6] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Stoica.
Non-transitive connectivity and DHTs. In WORLDS, Dec 2005.

[7] A. Iamnitchi, M. Ripeanu, and I. Foster. Small-world file-sharing
communities. In INFOCOM, Mar 2001.

[8] J. Kannan, L. Subramanian, I. Stoica, and R. Katz. Analyzing
cooperative containment of fast scanning worms. In SRUTI, Jul
2005.

[9] D. Malkhi, Y. Mansour, and M. Reiter. On diffusing updates in a
byzantine environment. In IEEE SRDS, Oct 1999.

[10] D. Malkhi and M. Reiter. Byzantine quorum systems. J. Distrib-
uted Computing, 11(4), 1988.

[11] J. McQuillan, I. Richer, and E. Rosen. The new routing algorithm
for the Arpanet. IEEE Trans. Communications, May 1980.

[12] J. Newsome and D. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on com-
modity software. In NDSS, Feb 2005.

[13] M. K. Reiter and S. G. Stubblebine. Resilient authentication using
path independence. IEEE Trans. Computers, 47(12), 1998.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems. In
IFIP/ACM Middleware, Nov 2001.

[15] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup protocol for Internet applications. In IEEE/ACM Trans. on
Networking, 2002.

[16] L. Subramanian, V. Roth, I. Stoica, and S. Shenker. Listen and
whisper: Security mechanisms for BGP. In NSDI, Mar 2004.

[17] P. Yalagandula, S. Nath, H. Yu, P. B. Gibbons, and S. Sesha. Be-
yond availability: Towards a deeper understanding of machine fail-
ure characteristics in large distributed systems. In WORLDS, Dec
2004.

6


