
Michael J. Freedman
NYU / Stanford

Ion Stoica, David Mazieres, Scott Shenker

Group Therapy for Systems:

Using link attestations
to manage failure

� I built and manage

� CoralCDN is an open, P2P content distribution network

� http://cnn.com/ http://cnn.com.nyud.net:8080/

� Publicly deployed for 2 years on PlanetLab

� 25 M requests from 1 M clients for 2-3 TB daily

� Nodes rarely crash

� Nodes often don’t behave “correctly”

� How do I cope with this problem?

A little background…

Problems running CoralCDN

� Non-transitive or asymmetric routing
� Interdomain routing failures, I2-only peering, firewalls,

egress filtering, proxies, …

� Performance faults
� Network queuing and high packet loss, slow disks, long

context switches, memory leaks, …

� Buggy code
� File-descriptor leaks, race conditions, versioning issues, …

� File-system errors
� Disk quota exceeded, disk corruption, wrong file perms, …

� Problem: Failures are not fail stop!

How do we manage today?

How do we manage today?

How do we manage today?

How do we manage today?

� Lots of logging

� Lots of test scripts

� Centralizing monitoring

� Manual intervention

A maze of twisty little passages, all different

Something is needed…

� When running systems, weird stuff happens

� Once identify class of problems, write tests for them

� Give application more information
System makes more intelligent decision to work around

� Graceful degradation
� Give us time to go back and fix problem
� Right now we don’t utilize info systematically

� Today: Abstraction that collects and exposes
information in structured way

� Goal: Simplify application design & implementation

Towards better system manageability

� Propose Link-Attestation Groups abstraction
� Software abstraction to aid in management

� “Group membership” subsystem

� Applying LA-Groups
� DHTs

� Multicast

� File-sharing

� Only one point in design space

Link attestations

� Attestation: “A.app says B.app is correct”
� Group identifier
� Identities of attester (A) and attestee (B)
� Expiration time (now + t secs)
� Signed by attester (A)

LA-Groups layer

Application

Node A

LA-Groups layer

Application

Node B

A B

The LA-Groups API

GID create()
void join(GID, nodeID[])

void startAttest(GID, nodeID, info)
void stopAttest(GID, nodeID)

GID[] groups()
Graph attestations (GID)

LA-Groups layer

Application

Node A

LA-Groups layer

Application

Node B

A B

Graph of link attestations

Node A
Node B

Node C

A C

A B

� Application calls startAttest()

� Subsystem generates, gossips,
periodically refreshes attestations

A knows for GID:

Think link-state

…

C B

A C

A B

C B

LA-Groups for robust multicast

� Build fat multicast tree

� Goal:
� Good nodes towards root

� LA-Group for parents and children
� Correctness property:

Child says “Parent sent traffic at sufficient rate”

� Level-i requires membership transcript from level i+1

� If children fail to forward, must restart at bottom

i

i+1

When to startAttest() ?

� Unreliable failure detectors
� Answers heartbeat: startAttest()
� Fail to respond: stopAttest()
� Yet applications aren’t fail-stop!

� Application performs own battery of tests

� Stateful anomaly detection

• Network latency, application thruput, DoS attacks

� Voting-based verification

• Name resolution (DNS, pub keys), HTTP responses

vs. traditional membership systems

Group membership

� Layer tests liveness

� Uses failure reports

� Exports membership list

LA-Groups approach

� Application tests “correctness”

� Uses correctness attestations

� Exports attestation graph

Group layer

Application

Node A

Correctness, not failure, attestations

� Correctness attestations

� Either both are correct or both are failed

� More explicit that failure reports

• Are failures per-link or global?

• Either one or both are failed, but can’t differentiate

• Failure to receive report does not imply correctness

� Attestations form membership transcript

� Node can show membership to non-group member

� Crypto optimizations for aggregating signatures

vs. traditional membership systems

Group membership

� Layer tests liveness

� Uses failure reports

� Exports membership list

LA-Groups approach

� Application tests “correctness”

� Uses correctness attestations

� Exports attestation graph

Group layer

Application

Node A

LA-Groups for robust routing

� Partition flat DHT ring into overlapping groups
� Correctness test: heartbeats for link-level connectivity
� Attestation graph gives topology at minimum

� Solves: Non-transitive routing
� Use indirect hop to continue routing

LA-Groups for robust storage

� DHTs store key-values on multiple successors

� Say only reachable via

� If fails, key-value is lost

� Replicas experience correlated failures

� Attestation graph captures correlation

� Tune replication for desired fault-tolerance

LA-Groups for f2f

� Trust in partitionable systems

� Backup, file sharing, cooperative IDS, …

� “Trust, but verify”

� Correctness test: successfully returns content

� Use attestation graph to:

� Tune replication

� Verify result from k disjoint paths upon failures

Using graph properties…

� Multiple vertex-disjoint paths
� Secure gossiping protocols
� Decentralized key distribution

� Minimum vertex cut
� Quorum systems

� Strongly-connected components
� Structured routing overlays
� Multi-hop wireless protocols

� Shortest path or max-flow on link capacity
� Optimizing multicast transmission
� Handling selfish peers in BitTorrent swarms

� LA-Groups makes these properties explicit

What’s been traditional proposals?

� Mask arbitrary failures
� Virtual synchrony [Birman, …]
� Replicated quorum systems [Malkhi/Reiter,…]
� BFT replicated state machines [Liskov, …]

+ abstraction generality and correctness

– systems don’t experience uncorrelated failure:
> f nodes can fail simultaneously

– often no global notion of failure

Future work: LA-Groups for CoralCDN

� Move all testing code to testing module, e.g.,
� Receives incoming and sends outgoing relevant pkts
� Compare GET responses with others’ responses

� Group clusters of nearby proxies

� Redirect clients only to nodes with valid membership

Summary

� Presented LA-Groups

� Software abstraction to simplify system design

� Supports application-level notion of correctness

� Exposes attestation graphs

� Reason about system function vis-à-vis graph properties

