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Abstract
Today’s web applications rely heavily on caching to re-
duce latency and backend load, using services like Redis
or Memcached that employ inflexible caching algorithms.
But the needs of each application vary, and significant per-
formance gains can be achieved with a tailored strategy,
e.g., incorporating cost of fetching, expiration time, and
so forth. Existing strategies are fundamentally limited,
however, because they rely on data structures to maintain
a total ordering of the cached items.

Inspired by Redis’s use of random sampling for evic-
tion (in lieu of a data structure) and recent theoretical jus-
tification for this approach, we design a new caching algo-
rithm for web applications called hyperbolic caching. Un-
like prior schemes, hyperbolic caching decays item priori-
ties at variable rates and continuously reorders many items
at once. By combining random sampling with lazy evalua-
tion of the hyperbolic priority function, we gain complete
flexibility in customizing the function. For example, we
describe extensions that incorporate item cost, expiration
time, and windowing. We also introduce the notion of a
cost class in order to measure the costs and manipulate the
priorities of all items belonging to a related group.

We design a hyperbolic caching variant for several pro-
duction systems from leading cloud providers. We imple-
ment our scheme in Redis and the Django web framework.
Using real and simulated traces, we show that hyperbolic
caching reduces miss rates by ~10-20% over competitive
baselines tailored to the application, and improves end-to-
end throughput by ~5-10%.

1 Introduction
Web applications and services aggressively cache data
originating from a backing store, in order to reduce both
access latency and backend load. The wide adoption
of Memcached [23] and Redis [44] (key-value caching),
Guava [26] (local object caching), and Varnish [50]
(front-end HTTP caching) speak to this demand, as does
their point-and-click availability on cloud platforms like
Heroku via MemCachier [38], EC2 via ElastiCache [4],
and Azure via Azure Redis Cache [7].

Caching performance is determined by the workload
and the caching algorithm, i.e., the strategy for priori-
tizing items for eviction when the cache is full. All of
the above services employ inflexible caching algorithms,

such as LRU. But the needs of each application vary, and
significant performance gains can be achieved by tailoring
the caching strategy to the application: e.g., incorporating
cost of fetching, expiration time, or other factors [8, 46].
Function-based strategies [2, 52] take this approach, by
devising functions that combine several of these factors.

All of these strategies are fundamentally limited, how-
ever, because they rely on data structures (typically pri-
ority queues) to track the ordering of cached items. In
particular, an item’s priority is only changed when it is
accessed. However, does cache eviction need to be tied to
a data structure? Caches like Redis already eschew order-
ing data structures to save memory [45]. Instead, they rely
on random sampling to evict the approximately lowest-
priority item [42]: a small number of items are sampled
from the cache, their priorities are evaluated (based on
per-item metadata), and the item with lowest priority is
evicted. Can this lack of an ordering data structure enable
us to build a caching framework with vast flexibility? In-
deed, we show that the combination of random sampling
and lazy evaluation allows us to evolve item priorities ar-
bitrarily; thus we can freely explore the design space of
priority functions! Neither Redis nor existing algorithms
exploit this approach, yet we find it outperforms many tra-
ditional and even domain-optimized algorithms.

Armed with this flexibility, we systematically design
a new caching algorithm for modern web applications,
called hyperbolic caching (§2). We begin with a simple
theoretical model for web workloads that leads to an op-
timal solution based on frequency. A key intuition behind
our approach is that caches can scalably measure item fre-
quency only while items are in the cache. (While some
algorithms, e.g., ARC [37], employ ghost caches to track
items not in the cache, we focus on the more practical
setting where state is maintained only for cached items.)
Thus, we overcome the drawbacks of prior frequency-
based algorithms by incorporating the time an item spends
in the cache. This deceptively simple modification already
makes it infeasible to use an ordering data structure, as
pervasively employed today, because item priorities de-
cay at variable rates and are continuously being reordered.
Yet with hyperbolic caching, we can easily customize the
priority function to different scenarios by adding exten-
sions, e.g., for item cost, expiration time, and windowing
(§3). We also introduce the notion of cost classes to man-
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age groups of related items, e.g., items materialized by the
same database query. Classes enable us both to more ac-
curately measure an item’s miss cost (by averaging over
multiple items) and to adjust the priorities of many items
at once (e.g., in response to a database overload).

A quick survey of existing algorithms shows that they
fall short of this flexibility in different ways. Recency-
based algorithms like LRU use time-of-access to order
items, which is difficult to extend: for example, incor-
porating costs requires a completely new design (e.g.,
GreedyDual [53]). Frequency-based algorithms like LFU
are easier to modify, but any non-local change to item
priorities—e.g., changing the cost of multiple items—
causes expensive churn in the underlying data structure.
Some algorithms, such as those based on marking [22],
maintain only a partial ordering, but the coarse resolution
makes it harder to incorporate new factors. Several theo-
retical studies [2,46] formulate caching as an optimization
problem unconstrained by any data structure, but their so-
lutions are approximated by online heuristics that, once
again, rely on data structures.

We design a hyperbolic caching variant for several dif-
ferent production systems from leading cloud providers
(§3), and evaluate them on real traces from those sys-
tems. We implement hyperbolic caching in Redis and
the Django web framework [18], supporting both per-item
costs and cost classes (§4). Overall (§5), we find that
hyperbolic caching reduces miss rates by ~10-20% over
competitive baselines tailored to the application, and im-
proves end-to-end system throughput by ~5-10%. This
improvement arises from changing only the caching al-
gorithms used by existing systems—our modification to
Redis was 380 lines of code—and nothing else.

To summarize, we make the following contributions:

1. We systematically design a new caching algorithm for
modern web applications, hyperbolic caching, that pri-
oritizes items in a radically different way.

2. We define extensions for incorporating item cost and
expiration time, among others, and use them to cus-
tomize hyperbolic caching to three production systems.

3. We introduce the notion of cost classes to manage
groups of related items effectively.

4. We implement hyperbolic caching in Redis and Django
and demonstrate performance improvements for several
applications.

Although we only evaluate medium-to-large web ap-
plications, we believe hyperbolic caching can improve
hyper-scale applications like Facebook, where working
sets are still too large to fit in the cache [6, 49].

2 Hyperbolic Caching
We first describe the caching framework required by hy-
perbolic caching (§2.1). Then, we motivate a simple the-
oretical model for web workloads and show that a clas-
sical frequency approach is optimal in this model (§2.2).
By solving a fundamental challenge of frequency-based
caching (§2.3), we arrive at hyperbolic caching (§2.4).

2.1 Framework
We assume a caching service that supports a standard
get/put interface. We make two changes to the imple-
mentation of this interface. First, we store a small amount
of metadata per cached item i (e.g., total number of ac-
cesses) and update it during accesses; this is done by the
on get and on put methods in Fig. 1. Second, we re-
move any data structure code that was previously used to
order the items. We replace this with a priority function
p(i) that maps item i’s metadata to a real number; thus
p imposes a total ordering on the items. To evict an item,
we randomly sample S items from the cache and evict
the item i with lowest priority p(i), as implemented by
evict which. This approximates the lowest-priority
item [42]; we evaluate its accuracy in §5.3.

The above framework is readily supported by Redis,
which already avoids ordering data structures and uses
random sampling for eviction. The use of metadata and
a priority function is standard in the literature and re-
ferred to as “function-based” caching [8]. What is dif-
ferent about our framework is when this function is eval-
uated. Prior schemes [2, 46, 52] evaluate the function on
each get/put and use the result to (re)insert the item into
a data structure, freezing its priority until subsequent ac-
cesses. Our framework uses lazy evaluation and no data
structure: an item’s priority is only evaluated when it is
considered for eviction, and it can evolve arbitrarily be-
fore that point without any impact on performance.

2.2 Model and frequency-based optimality
In many workloads, the requests follow an item popu-
larity distribution and the time between requests for the
same item are nearly independent [10]. Absent real data,
most systems papers analyze such distributions (e.g., Zip-
fian [20, 56]), and model dynamism as gradual shifts be-
tween static distributions. Motivated by this, we model re-
quests as a sequence of static distributions 〈D1, D2, . . .〉
over a universe of items, where requests are drawn inde-
pendently fromD1 for some period of time, then fromD2,
and so on. The model can be refined by constraining the
transitions (Di, Di+1), but even if we assume they are in-
stantaneous, we can still prove some useful facts (summa-
rized below). Our measure of cost is the miss rate, which
is widely used in practice.
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def evict_which():
sampled_items = random_sample(S)
re turn argmin(p(i) f o r i in sampled_items)

def on_put(item):
item.accessed = 1
item.ins_time = timenow()
add_to_sampler(item)

def on_get(item):
item.accessed += 1

def p(item):
in_cache = timenow - item.ins_time
re turn item.accessed / (in_cache)

Figure 1: Pseudocode for hyperbolic caching in our framework.

Within a distribution Di, a simple application of the
law of large numbers shows that the optimal strategy for
a cache of size k is to cache the k most popular items.
This is closely approximated by the least-frequently-used
(LFU) algorithm: a typical implementation assigns prior-
ity ni/H to item i, where ni is the number of hits to i and
H =

∑
i ni is the sum over all cached items. Whereas

LFU approximates the optimal strategy, one can prove
that LRU suffers a gap. This is in contrast to the traditional
competitive analysis model—which assumes a worst-case
request sequence and use total misses as the cost [47]—in
which LRU is optimal. This model has been widely criti-
cized (and improved upon) for being pessimistic and unre-
alistic [3, 9, 32, 33, 54]. Our model is reminiscent of older
work (e.g., [24]) that studied independent draws from a
distribution but, again, used total misses as the cost.

To validate our theoretical results, we use a static Zip-
fian popularity distribution and compare the miss rates of
LRU and LFU to the optimal strategy, which has perfect
knowledge of every item’s popularity (Fig. 2).1 Until the
cache size increases to hold most of the universe of items,
LRU has a 25-35% higher miss rate than optimal. LFU
fares considerably better, but is far from perfect. We ad-
dress the drawbacks of LFU next.

2.3 Problems with frequency
Even if requests are drawn from a stable distribution, there
will be irregularities in practice that cause well-known
problems for frequency-based algorithms:

New items die. When an item is inserted into the cache,
the algorithm does not have a good measure of it’s pop-
ularity. In LFU, a new item gets a frequency count of 1,
and may not have enough time to build up its count to sur-
vive in the cache. In the worst case, it could be repeatedly
inserted and evicted despite being requested frequently.

1We present miss rate rather than hit rate curves because our focus is
on the penalties at the backend. Higher numbers indicate worse perfor-
mance in most figures, and the last datapoint is 0 because the cache is
large enough to never incur a miss.

Cache Size 3k 10k 30k 100k
Perfect Freq. Miss Rate 0.29 0.19 0.10 0.00

Figure 2: Simulated miss rates1 compared to a strategy with perfect
frequency knowledge. Items are sampled with Zipfian popularity (α ≈
1) from 105 items. The cache is configured to hold a fixed number of
objects (rather than simulating size in bytes).

This problem can be mitigated by storing metadata for
non-cached items (e.g., [37]), but at the cost of additional
memory that is worst-case linear in the universe size.

Old items persist. When items’ relative popularities
shift—e.g., moving fromDi toDi+1 in our model—a fre-
quency approach may take time to correct its frequency
estimates. This results in older items persisting in the
cache for longer than their current popularity warrants.
For example, consider a new item with 1 access and an
older item with 2 accesses. Initially, the new item may be
better to cache, but if time passes without an additional
access, our knowledge of the old item is more reliable.

2.4 Hyperbolic Caching
We solve the above problems by incorporating a per-item
notion of time. Intuitively, we want to compensate for the
fact that caches can only measure the frequency of an item
while it is in the cache. Traditional LFU does not account
for this, and thus overly punishes new items.

In our approach, an item’s priority is an estimate of its
frequency since it entered the cache:

pi =
ni
ti

(1)

where ni is the request count for i since it entered the
cache and ti is the time since it entered the cache. This
state is erased when i is evicted. Fig. 1 provides pseu-
docode for this policy, which we call hyperbolic caching.

Hyperbolic caching allows a new item’s priority to con-
verge to its true popularity from an initially high estimate.
This initial estimate gives the item temporary immunity
(similar to LRU), while allowing the algorithm to improve
its estimate of the item’s popularity. Over time, the prior-
ity of each item drops along a hyperbolic curve. Since
each curve is unique, the ordering of the items is contin-
uously changing. Such reordering is uniquely enabled by
our framework (lazy evaluation, random sampling), and
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Cache Size 3k 10k 30k 100k
HC Miss Rate 0.30 0.21 0.13 0.00

Figure 3: LFU miss rate compared to hyperbolic caching (HC) on a
dynamic Zipfian workload (α ≈ 1), where new items are introduced
into the distribution every 100 requests.

would be very costly to implement with a data structure.2

The strengths of hyperbolic caching over LFU are read-
ily apparent in workloads that slowly introduce new items
into the request pool. Fig. 3 shows that LFU has a sig-
nificantly higher miss rate on a workload that introduces
new items every 100 requests whose popularities are in
the top 10% of a Zipfian distribution. This workload is
artificial and much more dynamic than we would expect
in practice, but serves to illustrate the difference.

Another way to solve the same problem is to multiplica-
tively degrade item priorities (e.g., LRFU [34]) or period-
ically reset them. Both of these are forms of windowing,
which best addresses the problem of old items persisting,
not the problem of new items dying. We compare hyper-
bolic caching to these approaches in §3.4.

3 Customizing Hyperbolic Caching
Our framework allows us to build on the basic hyper-
bolic caching scheme by adding extensions to the prior-
ity function and storing metadata needed by those exten-
sions. This is similar to the way function-based policies
build on schemes like LRU and LFU [2, 46, 52], but in
our case the extensions can freely modify item priorities
without affecting efficiency (beyond the overhead of eval-
uating the function). Which extensions to use and how
to combine them are important questions that depend on
the application. Here, we describe several extensions that
have benefited our production applications (cost, expira-
tion time) and our understanding of hyperbolic caching’s
performance (windowing, initial priority estimates).

3.1 Cost-aware caching
In cost-aware caching, all items have an associated cost
that reflects the penalty for a miss on the item. The goal is
to minimize the total cost of all misses. Cost awareness is

2The basic hyperbolic function in Eq. 1 can be tracked by a kinetic
heap [31], but this is a non-standard structure with O(log2 n) update
time, and it ceases to work if the extensions from §3 are added.

particularly relevant in web applications, because unlike
traditional OS uses of caching (fixed-size CPU instruc-
tion lines, disk blocks, etc.), the cost of fetching different
items can vary greatly: items vary in size, can originate
from different backing systems or stores, or can be the
materialized result of complex database joins.

Much of the prior work on cost-aware caching focuses
on adapting recency-based strategies to cost settings (e.g.,
GreedyDual [11]). This typically requires a new design,
because recency-based strategies like LRU-K [41] and
ARC [37] use implicit priorities (e.g., position in a linked
list) and metrics like time-of-access, which are difficult
to augment with cost. In contrast, frequency-based ap-
proaches like hyperbolic caching use explicit priorities
that can naturally be multiplied by a cost: p′i = cipi,
where ci is the cost of fetching item i and pi is the origi-
nal (cost-oblivious) priority of i. Note that pi may include
other extensions from later sections.

The cost of an item needs to be supplied to the caching
algorithm by the application. It can take many forms.
For example, if the goal is to limit load on a backing
database [35], the cost could be request latency. If the
goal is to optimize the hit rate per byte of cache space
used, the cost could be item size [11].

Real-world applications. Our evaluation studies two
applications which benefit from cost awareness. The first
is a set of applications using Memcachier [38], a produc-
tion cloud-based caching service built on Memcache. We
use costs to account for object size in the eviction deci-
sion, i.e., set ci = 1/si where si is the size of item i. The
second application is Viral Search [25, 51], a Microsoft
internal website that displays viral stories from Twitter in
tree form. Virality is measured by analyzing the diffu-
sion tree of the story as it is shared through the network.
For each story, the website fetches the tree edges and con-
structs and lays them out for display. The final trees are
cached and the cost of each is set to the time required to
construct and lay out the tree.

3.2 Cost classes
In many applications, the costs of items are related to
one another. For example, some items may be created
by database joins, while others are the result of simple in-
dexed lookups. Rather than measuring the cost of each
item individually, we can associate items with a cost class
and measure the performance of each class. We store a
reference to the class in each item’s metadata.

Cost classes have two main advantages. Consider the
example of request latency to a backend database. If costs
are maintained per item, latencies must be measured for
each insertion into the cache. Since these measurements
are stochastic, some requests will experience longer de-
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lays than others and thus be treated as more costly by the
cache, even though the higher cost has nothing to do with
the item itself. What’s more, the higher costs will keep
these items in the cache longer, preventing further updates
because costs are only measured when a miss occurs. By
using cost classes, we can aggregate latency measure-
ments across all items of a class (e.g., in a weighted mov-
ing average), resulting in a less noisy estimate of cost.

The second advantage of cost classes comes from
longer-term changes to costs. In scenarios where a replica
failure or workload change affects the cost of fetching a
whole class of items, existing approaches would only up-
date the individual costs after the items have been evicted,
one by one. However, when using cost classes, a change
to a class’s cost is immediately applied to both newly
cached items and items already in the cache.

In both cases above, a single update to a cost class
changes the priorities of many items at once, possibly
dramatically. Our framework supports this with little ad-
ditional overhead because 1) items store a reference to
the class information, and 2) priorities are lazily evalu-
ated. In contrast, integrating cost classes into existing
caching schemes is prohibitively expensive because it in-
curs widespread churn in the data structures they rely on.

Interestingly, some production systems already employ
cost classes implicitly, via more inflexible and inelastic
means. For example at Facebook, the Memcached ser-
vice is split among a variety of pools, such that keys that
are accessed frequently but for which a miss is cheap do
not interfere with infrequently accessed keys for which a
miss is very expensive [40]. However, this scheme re-
quires much more management and requires tuning pool
sizes; more importantly, it does not automatically adapt to
changes in request frequencies or item costs.

In our experiments, we implement cost classes using
exponentially weighted moving averages. We explored
other techniques such as non-weighted moving averages
and using the most recent cost, but exponentially weighted
moving averages performed the best on our workloads
while requiring little memory overhead for tracking.

While cost classes are useful in many settings, incor-
rectly assigning objects to the same class that do not share
the same underlying cost will degrade caching perfor-
mance. In some settings, objects may be members of
multiple classes concurrently—there are several ways of
handling this, but we do not explore this in our work.

Real-world application. Django is a Python framework
for web apps that includes a variety of libraries and com-
ponents. One such component adds support for whole-
page caching. We modified this middleware to support
cost awareness, as follows. In Django, page requests are

dispatched to “view” functions based on the URL. We as-
sociate a cost class with each view function, and map in-
dividual pages to their view function’s class.
3.3 Expiration-aware caching
Many applications need to ensure that the content con-
veyed to end users is not stale. Developers achieve this
by specifying an expiration time for each item, which
tells the caching system how long the item remains valid.
While many systems support this feature, it is typically
handled by an auxiliary process that has no connection
to the caching algorithm (apart from evicting already-
expired items). But incorporating expiration into caching
decisions makes intuitive sense: if an item is going to ex-
pire soon, it is less costly to evict than a similarly popular
item that expires later (or not at all).

To add expiration awareness to hyperbolic caching, we
need to strike a balance between the original priority of an
item and the time before it expires. Rather than evict the
item least likely to be requested next, we want to evict the
item most likely to be requested the least number of times
over its lifetime. This can be naturally captured by multi-
plying item i’s priority by the time remaining until expiry,
or max((texpi − tcur), 0). However, this scheme equally
prioritizes requests far into the future and those closer to
the present, which is unideal because estimates about the
future are less likely to be accurate (e.g., the item’s popu-
larity may change). Therefore, instead of equally weight-
ing all requests over time, we use a weighting function
that discounts the value of future requests:

p′i = pi · (1− e−λ·max((texpi
−tcur),0))

where pi is the original (expiration-unaware) priority of
item i and λ is a parameter controlling how quickly to
degrade the value of future requests. As an item’s time
until expiration decreases, this weighting function sharply
approaches zero. Thus the function continually reweights
(reorders) item priorities, which is uniquely enabled by
our framework: existing approaches can only account for
expiration time once, on insertion into a data structure.

Real-world application. The Decision Service [1,39] is
a machine learning system for optimizing decisions that
has been deployed in MSN to personalize news articles
shown to users. Given a user request, a particular article
is featured and a reward signal (e.g., click) is recorded.
Since rewards may arrive after a substantial delay, a cache
is used to match the decision to its reward. Rewards are
only valid if they occur within a time window after the
decision, so each cached item is given an expiration time.
3.4 Windowing
Windowing is often used in frequency-based caching to
adapt to dynamic workloads and address the problem of
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Cache Size 3k 10k 30k 100k
HC Miss Rate 0.32 0.22 0.13 0.00

LFU Miss Rate 0.44 0.21 0.13 0.00

Figure 4: Adding perfect windowing to hyperbolic caching and LFU
on a dynamic Zipfian workload (α ≈ 1). Each curve is compared to
the algorithm’s non-windowed performance (given in the table). The
window size is fixed at 104 requests. Every 100 requests, an item is
promoted to the top of the distribution.

“old items persisting”. The idea is to forget requests
older than a fixed time window from the present. Hyper-
bolic caching naturally achieves the benefits of window-
ing, but we investigate it for two reasons. First, one can
show that hyperbolic caching, unlike LRU, is not optimal
in the traditional competitive analysis model [47], but it
can be made optimal if windowing is used. Second, win-
dowing represents alternative solutions, such as resetting
or multiplicatively degrading frequency estimates (e.g.,
LRFU [34]), and so serves as an informative comparison.

We simulate windowing using an idealized (but com-
pletely inefficient) scheme that tracks every request and
forgets those older than the window. This upper bounds
the potential gains of windowing. Fig. 4 shows the perfor-
mance of LFU and hyperbolic caching on a dynamic Zip-
fian workload, with and without windowing. For hyper-
bolic caching, windowing provides limited benefits: 5–
10% reduction in misses on small cache sizes; LFU ben-
efits more but again on small cache sizes. The problem
is that windowing discards measurements that help the
cache estimate item popularity. Even in dynamic work-
loads, we find that large-sized caches can accommodate
newly popular items, so performance depends more on
the ability to differentiate at the long tail of old items.
Fortunately, hyperbolic caching’s measure of time in the
cache achieves some of the benefits of windowing; it out-
performs even recency-based approaches on many of the
highly dynamic workloads we evaluated.

3.5 Initial priorities
Hyperbolic caching protects newly cached items by giv-
ing them an initial priority that tends to be an overes-
timate: for example, an item with true popularity of
1%—placing it among the most popular in most realis-
tic workloads—would remain overvalued for at least 100
timesteps of hyperbolic decay. We found that adjusting

the initial priority based on that of recently evicted items
alleviates this problem, because evicted items tend to have
similar priorities in the tail of the distribution. Thus, we
set a new item’s initial priority to a mixture of its orig-
inal priority (pi) and the last evicted item’s priority (pe):
p′i = βpi+(1−β)pe. Solving this for ni in Eq. 1 gives us
the initial request count to use, after which the extension
can be discarded. β requires some tuning: we found that
β = 0.1 works well on many different workloads; for ex-
ample, on a Zipfian workload (α ≈ 1) it reduced the miss
rate by between 1% and 10% over hyperbolic caching for
all cache sizes.

4 Implementation
Our evaluation uses both simulation and a prototype im-
plementation. For the simulations, we developed a Python
application that generates miss rate curves for different
caching strategies and workloads. For our prototype, we
implemented hyperbolic caching in Redis and developed
Django middleware that uses the modified Redis. Our
code is open-source [28].

Redis. We modified Redis (forked at 3.0) to use the hy-
perbolic caching framework. This was straightforward be-
cause Redis already uses random sampling for eviction.
We included support for per-item costs (and size aware-
ness), cost classes tracked with an exponentially weighted
moving average, and initial priorities. Excluding diagnos-
tic code, this required 380 lines of C code.

We store the following metadata per item, using
double-precision fields: item cost, request count, and time
of entry (from Eq. 1 and §3.1). This is two doubles
of overhead per item compared to LRU. Our prototype
achieved similar miss rates to our simulations, suggest-
ing this precision is adequate. Exploring the trade-offs of
reduced precision in these fields is left to future work.

Django caching middleware. Django is a framework
for developing Python web applications. It includes sup-
port for middleware classes that enable various function-
ality, such as the Django whole-page caching middleware.
This middleware interposes on requests, checking a back-
end cache to see whether a page is cached, and if so, the
content is returned to the client. Otherwise, page process-
ing continues as usual, except that the rendered page is
cached before returning to the client. We added middle-
ware to track cost information for web pages; we mea-
sure cost as the CPU time between the initial miss for
a page and the subsequent SET operation, plus the total
time for database queries. This avoids time lost due to
processor scheduling. We subclassed the Django Redis
caching interface to convey cost information to our Redis
implementation. The interface supports caching a page
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with/without costs, and optionally specifying a cost class
for the former. Cost classes are associated with the par-
ticular Django “view” function that renders the page. In
total, this was implemented in 127 lines of Python code.

5 Evaluation
Our evaluation explores the following questions:

1. How does hyperbolic caching compare to current
caching techniques in terms of miss rate?

2. Does our implementation of hyperbolic caching in
Redis improve the throughput of web applications?

3. What effect does sample size have on the accuracy
and performance of our eviction strategy?

We use real application traces (§5.1) and synthetic
workloads designed to emulate realistic scenarios (§5.2).
We evaluate these questions using simulations as well as
deployments of Django and NodeJS, using our prototype
of hyperbolic caching in Redis. To drive our tests, our ap-
plications run on Ubuntu 14.04 servers located on a single
rack with Intel Xeon E5620 2.40GHz CPUs. Applica-
tions use PostgreSQL 9.3 as their backing database. For
throughput tests, our systems were loaded exclusively by
the test, and to measure max throughput, we increased the
rate of client requests until throughput plateaued and the
application server experienced 100% CPU load.

Methodology. For the majority of our standard work-
loads, we use a Zipfian request distribution with α ≈
1. This is the same parameterization as many well-
studied benchmarks (e.g., YCSB [15]), though some like
linkbench [5] use a heavier-tailed α = 0.9. When measur-
ing miss rates, we tally misses after the first eviction (i.e.,
we allow the cache to fill first). For workloads with associ-
ated item costs, misses are scaled by cost. For real traces,
we run the tests exactly as prescribed; for workloads based
on popularity distributions, we generate enough requests
to measure the steady state performance. When choosing
a cache size to compare performance amongst algorithms,
we use the size given by the trace, or if not given we
use sizes corresponding to high and middle range hit rates
(roughly 90% and 70%), which reflect the cache hit rates
reported in many deployed settings (e.g, [6,27]). In Face-
book [27], of the 35.5% of requests that leave a client’s
browser (the rest are cached locally), ~70% are cached in
either the edge cache or the origin cache. For our random
sampling, unless otherwise noted, we sample 64 items.

5.1 Real-world workloads
We evaluate real applications in two ways. When lack-
ing access to the actual application code or deployment
setting, we evaluate the performance through simulation.
For other applications, we measure the performance using
our prototype implementation of Django caching paired

(a) Simulated miss rates compared to the miss rate of LRU.

App Number 1 2 3 4 5 6 7 8

Mean Obj. Sz. (kB) 79.9 15.4 1.8 149.7 561.7 2.3 1.1 25.0

Stdev Obj. Sz. (kB) 116.5 40.4 9.0 254.5 100.8 3.1 7.9 46.6

App Number 9 10 11 12 13 14 15 16

Mean Obj. Sz. (kB) 5.4 8.1 7.2 5.5 2.2 30.8 26.0 9.0

Stdev Obj. Sz. (kB) 5.1 13.5 17.9 2.0 4.3 52.2 3.1 25.4

(b) Means and stdevs. of object sizes in app traces.

Figure 5: Caching performance on Memcachier app traces.

with Redis. The applications below were described in §3,
when we customized hyperbolic caching to each one.
5.1.1 Memcachier applications (from §3.1)
To evaluate the Memcachier applications, we processed a
trace of GET and SET requests spanning hundreds of ap-
plications, using the amount of memory allocated by each
application as the simulated cache size. We focused our
attention on the 16 applications with over 10k requests
whose allocation could not fit all of the requested objects
(many applications allocated enough memory to avoid any
evictions). We measured the miss rates of plain HC and
LRU, and then used the object sizes to evaluate our size-
aware extension, HC-Size, and the GD-Size [11] algo-
rithm. Fig. 5 show the performance of the algorithms over
a single execution of each application’s trace.

In our evaluation, HC outperforms LRU in many appli-
cations, and HC-Size drastically outperforms LRU. While
GD-Size is competitive with HC-Size, our framework al-
lows for the implementation of HC-Size with only two
lines of code, whereas implementing GD-Size from LRU
requires an entirely new data structure [11].
5.1.2 Decision Service (from §3.3)
The Decision Service [1,39] is a machine learning system
for optimizing decisions that has been deployed in MSN.
The service uses a cache to join information about each
decision with the corresponding reward signal. Because
rewards must be received within a given period of time,
information is cached with an expiration time.
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Decision Service Viral Search

Algo. Miss Rate (∆%) Miss Rate (∆%)

HC 0.60 (+0%) 0.17 (+0%)
HC-Expire 0.55 (-8%) —

LRU/GD 0.55 (-8%) 0.18 (+6%)
ARC 0.55 (-8%) 0.22 (+29%)
LFU 0.99 (+65%) 0.16 (-6%)

Cache Size 1k 35k

Figure 6: Simulated performance on real-world traces.

Cache Alg. Miss Rate (∆) Tput. (∆)

Default 0.681 (+0.0%) 21.1 req/s (+0.0%)
HC 0.637 (-6.5%) 23.7 req/s (+12.3%)

HC-Cost 0.669 (-1.8%) 21.1 req/s (+0.0%)
HC-Class 0.639 (-6.2%) 22.6 req/s (+7.1%)

Obj. Sizes µ = 32.0kB σ = 31.6kB

Figure 7: Performance of Django-Wiki application using HC Redis
compared to default Redis. The cache is sized to 1GB and the work-
load is a 600k trace of Wikipedia article requests.

In this workload, because items have the same expira-
tion time and are accessed only once after insertion (to
join the reward information), recency is roughly equal to
time-until-expiration. Therefore, LFU and HC perform
poorly in comparison to a recency strategy (Fig. 6). How-
ever, our expiration-aware extension allows HC-Expire to
perform just as well as the recency strategies.
5.1.3 Viral Search (from §3.1)
The Viral Search [25,51] application is an interactive web-
site that displays viral stories from a large social network.
Each viral story is represented as a tree that requires vary-
ing amounts of time to construct and layout on the server
side. We use this time as the per-item cost and apply our
cost-aware extension. Items are requested based on a pop-
ularity distribution given by each item’s “virality score”
and we measure performance over 10M requests.

Hyperbolic caching performs well on this cost-aware
workload, beating all algorithms except for LFU (Fig. 6),
and suffering 6% fewer misses than GreedyDual.
5.1.4 Django Wiki application (from §3.2)
We evaluate our caching scheme on an open-source
Django wiki app using our Django caching middleware.
The caching middleware stores cached data using a con-
figurable backend, for which we use either the default Re-
dis or our modified version with hyperbolic caching.

The wiki database serves a full copy of articles on
Wikipedia from Jan. 2008. We measured the throughput
and miss rate of the application using a trace of Wikipedia
article requests from Sept. 1, 2007 (Fig. 7). We see an
improvement in both miss rate and throughput when us-
ing HC rather than default Redis. Note that because the
pages are costly to render, even small improvements in

Trace P1 P2 P3 P4 S1 F WS

Cache Sz (objs) 32k 32k 32k 32k 525k 32k 525k
Miss Rate 0.72 0.73 0.88 0.91 0.81 0.50 0.85

Figure 8: Miss rates compared to HC on traces from the ARC paper
and SPC (HC’s miss rates are in the table). Cache sizes chosen based on
sizes given in the ARC paper.

miss rate increase the throughput of the application. For
this application, requests are only processed by two dif-
ferent Django views.

However, using HC-Cost reduces the system through-
put compared to HC. This is because the time to render
a page is similar across most pages, but has high vari-
ance: for one page, the mean time of fifty requests was
570ms with a deviation of 180ms. This leads a cost-aware
strategy to incorrectly favor some pages over others. HC-
Class alleviates this by reducing some of the variance, but
it still performs worse than the cost-oblivious HC. For this
application, using costs is counter-productive.
5.1.5 ARC and SPC traces
We additionally simulate performance on traces from
ARC [37] and SPC [48] (Fig. 8). The P1-4 traces are
memory accesses from a workstation computer; S1 and
WebSearch are from a server handling web searches; and
the Financial workload is an OLTP system trace. Caches
were sized according to the ARC paper, and these sizes
were used for the SPC traces as well. These traces have
very high miss rates on all eviction strategies. How-
ever, HC performs very well, outperforming LRU in every
workload and underperforming ARC in the P1-4 traces
only. Importantly, on workloads where LFU exhibits poor
performance, HC remains competitive with ARC, demon-
strating the effectiveness of our improvements over LFU.

5.2 Synthetic workloads
In this section, we simulate and compare the perfor-
mance of HC to three popular strategies—ARC, LFU, and
LRU—on synthetic workloads that reflect the demands
of today’s caches. For cost-aware workloads, we extend
LRU with GreedyDual, and we modify LFU by multiply-
ing frequencies by cost. (ARC is not amenable to costs.)

For each synthetic workload, we evaluate the perfor-
mance of each caching algorithm on two cache sizes,
corresponding to a 90% and a 70% hit rate with hyper-
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(a) Cache size fixed where hit rate of HC ≈ 90%.

(b) Cache size fixed where hit rate of HC ≈ 70%.

Figure 9: Miss rates on synthetic workloads with 10M requests. Miss
rates are compared to the performance of HC. For cost-aware strategies
(GD1-GD3), misses are scaled by the cost of the missed item.

bolic caching (Fig. 9). Note that while we simulated rela-
tively small key spaces, we evaluated our Redis prototype
on larger key spaces and found similar improvements in
miss rate and overall system throughput. In general, these
workloads suggest that HC can perform very well in a va-
riety of scenarios.

The most striking improvement relative to ARC is
on workloads GD1-3. These workloads have associ-
ated costs and are based on the workloads described in
GDWheel [35]. Since ARC is a cost-oblivious strategy, it
does poorly on these workloads. However, even in work-
loads without cost, our scheme is competitive with ARC.
5.2.1 Synthetic web application performance.
In order to understand how our improved miss rates affect
end-to-end throughput in modern web servers, we config-
ured a NodeJS web app to use a backing database with Re-
dis as a look-aside cache. We drive HTTP GET requests
to the web app from a client that draws from synthetic
distributions. The web app parses the URL and returns
the requested object. Objects are stored as random 32B
strings in a table with object identifier as the primary key.

Relating cache misses to throughput. To understand
the association between miss rate and throughput, we
scaled the size of our Redis cache to measure system
throughput with different miss rates (Fig. 10). Miss rate
has a direct impact on throughput even when many client
requests can be handled concurrently. Misses not only
cause slower responses from the backend (an effect which
can be mitigated with asynchronous processing), but they

Figure 10: Throughput of NodeJS using Redis as a look-aside cache for
PostgreSQL as the miss rate varies.

Default Redis HC Redis
Cache sz. Mean tput. Miss Mean tput. Miss ∆ tput.

(objs.) (kreq/s) rate (kreq/s) rate

Zipfian (α ≈ 1, N = 105)

39k 18.1± 0.22 0.11 20.2± 0.18 0.09 10.3%
3k 9.1± 0.09 0.38 10.5± 0.06 0.31 13.5%

Zipfian (α = 0.75, N = 106)

125k 7.5± 0.06 0.55 7.7± 0.16 0.49 3.2%
70k 6.8± 0.06 0.64 7.3± 0.12 0.56 6.3%

Zipfian (α ≈ 1, N = 106)

200k 14.6± 0.16 0.17 15.3± 0.13 0.16 4.4%
50k 11.2± 0.11 0.28 12.1± 0.20 0.24 7.1%

Dynamic Intro. (N = 105)

42k 19.3± 0.17 0.10 20.6± 0.16 0.09 6.3%
5k 10.0± 0.15 0.33 11.3± 0.12 0.27 11.6%

Figure 11: Miss rate and throughput of workloads running on NodeJS
with a Redis cache. Each configuration was executed 10 times with
workloads of 5M requests to objects of size 96B.

also require additional processing on the web server—on
a miss, the app issues a failed GET, a SQL SELECT, and
then a PUT request. This adds a direct overhead to the
throughput of the system.

Zipfian distribution. We measured the maximum
throughput of our NodeJS server when servicing requests
sampled from synthetic workloads with zipfian request
distributions (Fig. 11.) Depending on the workload, hy-
perbolic caching outperforms Redis’s default caching al-
gorithm (LRU approximated by random sampling) in miss
rates by 10-37%, and improves throughput by up to 14%
on some workloads. While throughput differences of 5-
10% on some workloads may be modest, they are not in-
significant, and come with little implementation burden.

Cost-aware caching. To measure the potential through-
put benefits of cost-aware caching, we wrote a NodeJS
app that makes two types of queries to the backend: (1) a
simple key lookup and (2) a join. The app measures the
latency of backend operations and uses that as the item’s
cost. In our experiment, the cache can hold 30k objects,
and we drive the app with 1M requests sampled from a
Zipfian distribution (α ≈ 1). When using normal HC, we
measured a throughput of 5.0 kreq/s and a miss rate of
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(a) Throughput measured over 30 second windows.

(b) Tail latency measured over 30 second windows.

Figure 12: Performance of NodeJS app fetching items from two differ-
ent PSQL servers using HC with per-item and per-class costs. After 2
minutes, one PSQL server is stressed and takes longer to fetch items.
The cache holds 30k objects and requests are Zipfian (α ≈ 1).

0.11. When using HC-Cost, the miss rate was 0.17, which
is 57% higher, but the throughput was 9.4 kreq/s, an 85%
improvement over HC. HC-Cost traded off miss rate for
lower overall cost, increasing overall performance.

Responding to backend load with classes. To demon-
strate how cost classes can be used to deal with backend
load, we designed a NodeJS application which performs
key lookups on one of two different PSQL servers. The
application measures the latency of the backend operation
and uses that as the cost in our Redis prototype. Addi-
tionally, it sets the class of each cached object to indicate
which backend served the object. This way, HC-Class
will use a per-class cost estimate (exponentially WMA)
when deciding which items to evict, rather than per-item.
We evaluate the application by driving it with requests
and measuring throughput and tail latency (Fig. 12). Two
minutes into our test, we stress one PSQL backend using
the Unix script stress. When one backend is loaded,
throughput decreases and tail latency increases. By using
per-class costs, HC-Class quickly adjusts to one class be-
ing more costly. With per-item costs, however, HC-Cost
is only able to update the costs of items when they are
(re)inserted. As a result, HC-Cost needs more time to set-
tle to steady state performance as item costs are slowly
updated to their correct values.

5.3 Accuracy of random sampling
Our eviction strategy’s sampling impacts its miss-rate.
Prior work [42] has studied the impact of this sampling in
detail. Using order statistics [17], one can easily show that

Figure 13: Simulated performance of HC for different sampling sizes
compared to finding the true minimum. The request workloads are Zip-
fian distributions with different skew parameters.

Figure 14: Simulation of HC using sampling technique that retains M
items [42] on a Zipfian workload with α ≈ 1.4, compared to the perfor-
mance of finding the true minimum.

the expected rank of an evicted item is n/(S + 1), where
n is the number of items in the cache and S is the sample
size. For example, a cache of n = 10k items and a sample
of S = 64 would evict the 154th lowest item on average.
In practice we found that this loss of accuracy is not prob-
lematic. Specifically, we measured and compared the miss
rate curves for varying sample sizes on two different pop-
ularity skews (Fig. 13). While the smoothness of the pri-
ority distribution impacts this accuracy—and extensions
like expiration may introduce jaggedness into priorities—
the dominating factor is how heavy the tail is and the like-
lihood of sampling an item from it. Sampling performs
worse on the lighter-tailed distribution because there are
fewer tail items in the cache, making them less likely to be
sampled. However, for the sample size we use (S = 64),
the performance gap relative to full accuracy is slight. Al-
though this varies depending on the workload and cache-
size, a sample of 64 items was large enough in all of our
experiments, so the additional improvement of better sam-
pling techniques would be limited. Further increasing the
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sample size is not without cost: each sampled item’s pri-
ority must be evaluated, which could become expensive
depending on the complexity of the priority function.

Psounis and Prabhakar [42] proposed an optimization
to random sampling that retains some number of samples
between evictions. This can boost the accuracy of ran-
dom sampling, however in our tests we found the miss
rate benefits to be minimal. On the light-tail distribution
(Fig. 14), we compare performance to the suggested set-
tings of their technique. While performance does improve
for smaller caches, the benefits are more limited as cache
size increases. We believe this is because tail items in a
large cache tend to be new items that are less likely to
be retained from prior evictions, though a more in-depth
analysis is needed to confirm this. As the benefits are lim-
ited (and parameters are sensitive to cache size and work-
load), we did not use this optimization.

6 Related Work
Our introduction and subsequent discussions survey the
landscape of caching work, including recency-based ap-
proaches (e.g., [16, 41, 53]), frequency-based or hybrid
approaches (e.g., [34,37]), marking algorithms and partial
orderings (e.g., [16, 22]), and function-based approaches
(e.g., [2, 46, 52]). All of these approaches rely on data
structures and thus cannot achieve the flexibility and ex-
tensibility of hyperbolic caching.

Consider the approaches that improve recency caching
by using multiple queues to incorporate some frequency
measures into eviction. LRU-K [41] stores items in k
queues and evicts based on the k-th most recent access.
Other works employing multiple queues include 2Q [30],
MQ [55], and LIRS [29]. ARC [37] automatically tunes
the queue sizes of an LRU-2-like configuration. Several of
these algorithms incorporate ghost caches, which track in-
formation about items no longer in the cache. (This tech-
nique could also be applied to hyperbolic caching, but we
focused our work on caches that store information about
items residing in the cache, as most production caches
do.) All of these strategies incorporate frequency to bal-
ance the downsides of LRU. However, they are difficult to
adapt to handle costs or other factors, due to their use of
time-of-access metrics and priority orderings.

GreedyDual [53] exemplifies this difficulty because it
attempts to incorporate cost into LRU, requiring a re-
design. Cao and Irani [11] implemented GreedyDual us-
ing priority queues for size-aware caching in web proxies,
and GDWheel [35] implemented GreedyDual in Mem-
cached using a more efficient wheel data structure. The
RIPQ system uses size awareness in a flash-based caching
system [49]. Other cost-aware strategies have incorpo-
rated properties such as freshness (e.g., [46]), which is

similar to expiration times but not as strict. In contrast to
these approaches, a priority function based on frequency
can easily adopt cost, expiration, or other factors.

Hyperbolic caching learns from the above and adopts
a function-based approach based on frequency. The
GDSF [13] work incorporates frequency into their priority
function, while Yang and Zhang [52] use a priority func-
tion that is also similar to ours. However, these strategies
build their solution on GreedyDual by setting an item’s
cost equal to its priority. In our tests, we found that the
interaction between GreedyDual’s priority queue and this
frequency led to poor performance (3-4x the miss rate of
LRU). Moreover, using a queue forces these strategies to
“freeze” an item’s priority once it enters the structure; in
contrast, our priorities evolve continuously and freely.

Recent work in the systems community has looked at
other aspects of caching that we do not address, such
as optimizing memory overheads [19, 21], multi-tenant
caching [14, 43], balancing memory slabs [14], cache ad-
mission [19], and reducing flash erasures when using flash
storage [12, 36, 49]. Hyperbolic caching does not require
memory for ordering data structures, but uses space to
store the metadata used to compute item priorities. We
have not studied allocation across multiple caches, but
note that our framework obviates the need for separately
tuned caches in some cases, e.g., by using our cost class
extension to manage the pools of caches described in [40].

7 Conclusion
We have presented the design and implementation of hy-
perbolic caching. Our work combines theoretical insights
with a practical framework that enables innovative, flex-
ible caching. Notably, the priority function we use re-
orders items continuously along hyperbolic curves. We
implemented our work in Redis and Django and applied
it to a variety of real applications and systems. By using
different extensions, we are able to match or exceed the
performance of one-off caching solutions. A deeper anal-
ysis of the described extensions, such as for cost classes
and expiration times, is part of our future work.
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