
Journal of Network and Systems Management manuscript No.
(will be inserted by the editor)

HONE: Joint Host-Network Traffic Management in
Software-Defined Networks

Peng Sun, Minlan Yu, Michael J. Freedman,
Jennifer Rexford, David Walker

Received: Oct 17th, 2013 / Accepted: May 3rd, 2014

Abstract Applications running in modern datacenters interact with the underlying network
in complex ways, making administrators run multiple traffic-management tasks to tune the
system. However, today’s traffic-management solutions are limited by an artificial division be-
tween the hosts and the network. While network devices only have knowledge of the network
layer, the hosts can provide more visibility into how applications interact with the network.
This paper proposes to extend the scope of traffic management to the end-host network stack.
We present a Software-Defined Networking (SDN) platform for joint HOst-NEtwork (HONE)
traffic management. HONE presents a uniform view of a diverse collection of measurement
data, minimizes measurement overhead by performing lazy materialization of fine-grained
statistics, and scales the analysis by processing data locally on the end hosts. HONE offers
a simple and expressive programming framework for network and service administrators.
We evaluate HONE by implementing several canonical traffic-management applications,
measuring its efficiency with micro-benchmarks, and demonstrating its scalability with larger
experiments on Amazon EC2.

Keywords Traffic Management, Host Network Stack, Programmable Management

1 Introduction

Modern datacenters run a wide variety of applications that generate large amount of traffic.
These applications have a complex relationship with the underlying network, including vary-
ing traffic patterns [1], TCP incast [2], suboptimal TCP parameters [3], and elephant flows

Peng Sun, Michael J. Freedman, Jennifer Rexford, David Walker
Princeton University
35 Olden Street, Princeton, NJ 08540
E-mail: pengsun, mfreed, jrex, dpw@cs.princeton.edu

Minlan Yu
University of Southern California
941 Bloom Walk, SAL 228, Los Angeles, CA 90089
E-mail: minlanyu@usc.edu

2 Peng Sun, Minlan Yu, Michael J. Freedman, Jennifer Rexford, David Walker

that overload certain paths [4]. To optimize application performance, datacenter administra-
tors perform various traffic-management tasks, such as performance monitoring, server load
balancing [5], rate limiting [6], and traffic engineering [7, 8].

However, today’s traffic-management solutions are constrained by an artificial division
between the end hosts and the network. Most existing solutions only rely on network devices.
Without access to the application and transport layers, network devices cannot easily associate
traffic statistics with applications. For instance, it is difficult to infer the root causes of
application performance problems or infer the backlog of application traffic in the send
socket buffer, when just analyzing network-level statistics. Furthermore, traffic-management
solutions are limited by the CPU and memory resources of network devices.

Compared to network devices, hosts have better visibility into application behavior,
greater computational resources, and more flexibility to adopt new functionality. Increasingly,
datacenter traffic management capitalizes on the opportunity to move functionality from
network devices to end hosts [3, 9, 10, 11, 12, 13, 14, 15, 16]. But, in these works, the hosts
are just used as software network devices (e.g., soft switches). The unique advantages of
hosts in traffic management are not fully harnessed.

Instead, the scope of traffic management should expand further, into the host network
stack, to measure and analyze fine-grained traffic information. The host network stack can
provide detailed data about how applications interact with the underlying network, while
remaining application-agnostic. By combining host and network data, traffic-management
solutions can understand the applications better in order to improve application performance
and efficiency of network resource usage.

Bringing the host network stack into traffic management, we face multiple challenges:
First, today’s end-hosts have numerous interfaces for performing network-related functions.
Datacenter administrators use heterogeneous tools to collect TCP logs and kernel network
statistics from hosts (e.g., Windows ETW [17], Web10G [18], and vCenter [19]), and they
have multiple tools for controlling network behavior (e.g., Linux tc [20], iptables [21],
and Open vSwitch [22]). To simplify traffic management, we need to provide a uniform
interface for datacenter administrators to collect measurement data from hosts and switches.

Furthermore, datacenter administrators do not settle on a fixed set of data to measure in
advance. Multiple traffic-management tasks need to run at the same time, and they need to
measure different data from the hosts and switches. Additionally, new solutions will adopt
new measurement data as the application mix and the network design evolve. However, the
overhead of measuring all data blindly is prohibitive, especially when the detailed statistics
of host stacks are included in traffic management. Thus, we need a flexible way to selectively
collect measurements, tailored to the demands of the management tasks.

A final challenge is the efficiency and scalability of traffic management. Although hosts
provide us with detailed statistics, the sheer volume of data poses a scalability challenge for
the real-time analysis of the measured data. At the same time, the computational resources
of hosts provide an opportunity to execute the analysis logic locally on the same hosts that
collect the measurements. To utilize the hosts’ resources, the analysis logic of management
tasks should be partitioned into two parts: one that runs locally with monitoring on the hosts,
and the other that runs on a controller with a global view of all the hosts and switches.

In this paper, we present a scalable and programmable platform for joint HOst-NEtwork
(HONE) traffic management. As shown in Figure 1, the architecture includes a logically
centralized controller, HONE agents running on each host, and a module interacting with
network devices, following the recent trend of Software Defined Networking (SDN). HONE
performs monitoring and analysis on streams of measurement data in a programmable fashion.
A management program can easily define the measurement of various data on hosts and

HONE: Joint Host-Network Traffic Management in Software-Defined Networks 3

Network

Server OS

HONE
Agent

APP

Controller

HONE Runtime System

Management
Program

Hosts

Legend:
 Programmer’s
 work
 HONE
 Component

Fig. 1: Overview of HONE System

network with minimum collection overhead. The data-analysis logic can be divided into
local parts that execute together with measurement on hosts, and global parts running on the
controller. To be more specific, two key technical contributions underlie HONE:

Lazy measurement of various data on hosts and network: HONE first abstracts the
heterogeneous data on hosts and switches into a uniform representation of database-like
tables. Using our query language on top of the uniform interface, administrators can easily
specify what data to measure from various sources. Collecting many statistics for many
connections at arbitrary time granularity would be too expensive to support directly. Instead,
HONE enables lazy materialization of the measurement data, i.e., the controller and the host
agents analyze the queries to collect only the necessary statistics for multiple management
tasks at the appropriate frequencies.

Partitioning of analysis logic for local execution on hosts: We design a set of data-
parallel streaming operators for programming the data-analysis logic. With these operators,
programmers can easily link the measurement queries with the analysis logic in a streaming
fashion. Our design of the operators further enables partitioning of the analysis logic between
the host agents and the controller. To further boost scalability, we also design operators for
programmers to hierarchically aggregate/process analysis results among multiple hosts.

HONE combines and extends techniques in stream programming and distributed systems
in a unique way to offer programmable and scalable platform for joint host-network traffic
management in SDN. To demonstrate the effectiveness of our design, we have built a prototype
of HONE. Our prototype host agent collects socket activities by intercepting Linux system
calls, and measures TCP statistics with Web10G [18, 23]. Our controller interacts with
switches using OpenFlow [24]. The micro-benchmark experiments show that HONE can
measure and calculate an application’s throughput, and aggregate the results across 128 EC2
machines within a 90th-percentile latency of 58ms.

To further demonstrate the power of HONE programming framework, we build a collec-
tion of canonical management applications, such as flow scheduling [4, 25], distributed rate
limiting [6, 26], network diagnosis [3], etc. These examples demonstrate the expressiveness
of our language, as well as the scalability of our data collection and analysis techniques.

HONE focuses on different contexts and problems than prior works in streaming database
[27, 28] and MapReduce [29, 30, 31]. Compared to streaming databases which operate

4 Peng Sun, Minlan Yu, Michael J. Freedman, Jennifer Rexford, David Walker

Measure servers’

utilization and request
incoming rates

Compute total request
rate and a target

distribution of requests

Reconfigure load
balancing policies to

enforce the target

Server Load Balancing

Measure sockets’
backlog traffic

demand

Detect elephant flows.
Compute routes for

them

Install routing rules
in network

Elephant Flow Scheduling

Measurement Analysis Control

Fig. 2: Three Stages of Traffic Management

on existing data, HONE focuses on how to lazily monitor a minimum necessary set of
statistics on hosts, and dynamically generate streams of measurement data for later analysis.
MapReduce’s key-value programming model fits well with naturally parallelizable data with
multiple keys, and it uses data shuffling by keys for reduce operations. In contrast, HONE
focuses on the measurement data which are inherently associated with hosts that collected
them. HONE partitions and places the analysis logic together with monitoring to consume
data locally and reduce data-transmission overhead.

2 HONE Programming Framework

HONE’s programming framework is designed to enable a wide range of traffic-management
tasks. Traffic management is usually oriented around a three-stage “control loop” of measure-
ment, data analysis, and control. Figure 2 presents two representative applications that serve
as running examples throughout the paper:

Server load balancing: The first application distributes incoming requests across multi-
ple server replicas. After measuring the request rate and the server load (e.g., CPU, memory,
and bandwidth usage) at each host, the application estimates the total request rate, computes
a new target division of requests over the hosts, and configures switches accordingly.

Elephant flow scheduling: The second application is inspired by how Hedera [4] and
Mahout [25] schedule large flows. After measuring the backlog in the socket buffer for each
TCP connection, the application identifies the elephant flows and directs them over paths that
minimize network congestion.

2.1 Measurement: Query on Global Tables

HONE’s data model unifies the representation of statistics across a range of formats, locations,
types of devices, and modes of access. The HONE controller offers a simple abstraction of
a central set of database tables. Programmers can launch sophisticated queries, and rely on
HONE to distribute the monitoring to the devices, materialize the necessary tables, transform
the data to fit the schema, perform local computations and data reduction, and aggregate the
data. The data model reduces a complex and error-prone distributed programming task to a
set of simple, tabular queries that can usually be crafted in just tens of lines of code.

The HONE data model is organized around the protocol layers and the available data
sources. Table 1 shows the tables that our current prototype supports. On the hosts, HONE

HONE: Joint Host-Network Traffic Management in Software-Defined Networks 5

Table Name Row for each Columns

Connections Connection App, TCP/UDP five-tuple, TCP-stack statistics.

Applications Process Host ID, PID, app’s name, CPU/memory usage.

Machines Host Host ID, total CPU usage, total memory usage, IP.

Links Link IDs/ports of two ends, capacity.

SwitchStats Switch interface Switch ID, port, timestamp, per-port counters.

Table 1: Global Tables Supported in HONE Prototype

Query := Select(Stats) *
From(Table) *
Where(Criteria) *
Groupby(Stat) *
Every(Interval)

Table := Connections | Applications |Machines | Links | SwitchStats

Stats := Columns of Table

Interval := Integer in Seconds or Milliseconds

Criteria := Stat Sign value

Sign := > | < | ≥ | ≤ | = | ,

Table 2: Measurement Query Language Syntax

collects socket logs and TCP connection statistics, in order to capture the relationship
between applications and the network stack while remaining application-agnostic. On the
switches, HONE collects the topology, the routing configurations, and per-port counters using
OpenFlow. However, we can easily extend our prototype to support more interfaces (e.g.,
NetFlow, SNMP) by adding new tables, along with implementations for collecting the data.

HONE offers programmers a familiar, SQL-like query language for collecting the data, as
summarized in Table 2 1. The query language gives programmers a way to state declaratively
what data to measure, rather than how. More sophisticated analysis, transformation, filtering,
and aggregation of the data take place in the analysis phase. To illustrate how to create a
HONE program, consider the three example queries needed for elephant-flow scheduling:

Backlog in socket buffer: This query generates the data for computing the backlog in
the socket buffers:

def ElephantQuery():
return (
Select([SrcIp, DstIp, SrcPort, DstPort, BytesWritten, BytesSent]) *
From(Connections) *
Every(Seconds 1))

The query produces a stream of tables, with one table every second. In each table, each row
corresponds to a single connection and contains the endpoint IP addresses and port numbers,
as well as the amount of data written into the socket buffer and sent into the network. Later, the
analysis phase can use the per-connection BytesWritten and BytesSent to compute
the backlog in the socket buffer to detect elephant flows.

1 In the syntax, the star operator (*) glues together the various query components. Each query term generates
a bit of abstract syntax that our runtime system interprets.

6 Peng Sun, Minlan Yu, Michael J. Freedman, Jennifer Rexford, David Walker

Connection-level traffic by host pair: This query collects the data for computing the
traffic matrix:

def TrafficMatrixQuery():
return(

Select([SrcIp, DstIp, BytesSent, Timestamp]) *
From(Connections) *
Groupby([SrcIp,DstIp]) *
Every(Seconds 1))

The query uses the Groupby operator to convert each table (at each second) into a list of
tables, each containing information about all connections for a single pair of end-points.
Later, the analysis phase can sum the BytesSent across all connections in each table in the
list, and compute the difference from one time period to the next to produce the traffic matrix.

Active links and their capacities: This query generates a stream of tables with all
unidirectional links in the network:

def LinkQuery():
return(

Select([BeginDevice, EndDevice, Capacity]) *
From(Links) *
Every(Seconds 1))

Together, these queries provide the information needed for the elephant-flow application.
They also illustrate the variety of different statistics that HONE can collect from both hosts
and switches—all within a simple, unified programming framework. Under the hood, the
HONE controller analyzes these queries to merge overlapping parts. Then the host agents or
the network module will lazily collect only the queried statistics at appropriate frequencies to
minimize the measurement overhead.

2.2 Analysis: Data-Parallel Operators

HONE enables programmers to analyze data across multiple hosts, without worrying about
the low-level details of communicating with the hosts or tracking their failures. HONE’s
functional data-parallel operators allow programmers to say what analysis to perform, rather
than how. Programmers can associate their own functions with the operators to apply these
functions across sets of hosts, as if the streams of tabular measurement data were all available
at the controller. Yet, HONE gives the programmers a way to express whether their functions
can be (safely) applied in parallel across data from different hosts, to enable the runtime
system to reduce the bandwidth and processing load on the controller by executing these
functions at the hosts. HONE’s data-parallel operators include the following:

– MapSet(f): Apply function f to every element of a stream in the set of streams,
producing a new set of streams.

– FilterSet(f): Create a new set of streams that omits stream elements e for which
f (e) is false.

– ReduceSet(f,i): “Fold” function f across each element for each stream in the
set, using i as an initializer. In other words, generate a new set of streams where
f (. . . f (f (i, e1), e2) . . . , en) is the nth element of each stream when e1, e2, ..., en were
the first n elements of the original stream.

– MergeHosts(): Merge a set of streams on the hosts into one single global stream.
(Currently in HONE, the collection of switches already generate a single global stream of

HONE: Joint Host-Network Traffic Management in Software-Defined Networks 7

measurement data, given that our prototype integrates with an SDN controller to access
data from switches.)

MapSet, FilterSet, and ReduceSet are parallel operators. Using them indicates
that the analysis functions associated with the operators can run in a distributed fashion. It
offers HONE knowledge of how to partition the analysis logic into the local part that can run
in parallel on each host and the global part that sits on the controller. HONE also enables
analysis on a single global stream with corresponding operators, such as MapStream,
FilterStream, and ReduceStream. To combine queries and analysis into a single
program, the programmer simply associates his functions with the operators, and “pipes” the
result from one query or operation to the next (using the >> operator).

Consider again the elephant-flow scheduling application, which has three main parts in
the analysis stage:

Identifying elephant flows: Following the approach suggested by Curtis et al. [25], the
function IsElephant defines elephant flows as the connections with a socket backlog (i.e.,
the difference between bytes bw written by the application and the bytes bs acknowledged
by the recipient) in excess of 100KB:

def IsElephant(row):
[sip,dip,sp,dp,bw,bs] = row
return (bw-bs > 100)

def DetectElephant(table):
return (FilterList(IsElephant, table))

EStream = ElephantQuery() >>
MapSet(DetectElephant) >>
MergeHosts()

DetectElephant uses FilterList (the same as filter in Python) to apply Is-
Elephant to select only the rows of the connection table that satisfy this condition. Finally,
DetectElephant is applied to the outputs of ElephantQuery, and the results are
merged across all hosts to produce a single stream EStream of elephant flows at the
controller.

Computing the traffic matrix: The next analysis task computes the traffic matrix, start-
ing from aggregating the per-connection traffic volumes by source-destination pair, and then
computing the difference across consecutive time intervals:

TMStream = TrafficMatrixQuery() >>
MapSet(MapList(SumBytesSent) >>
ReduceSet(CalcThroughput, {}) >>
MergeHosts() >>
MapStream(AggTM)

The query produces a stream of lists of tables, where each table contains the per-connection
traffic volumes for a single source-destination pair at a point in time. MapList (i.e., the built-
in map in Python) allows us to apply a custom function SumBytesSent that aggregates
the traffic volumes across connections in the same table, and MapSet applies this function
over time. The result is a stream of tables, which each contains the cumulative traffic volumes
for every source-destination pair at a point in time. Next, the ReduceSet applies a custom
function CalcThroughput to compute the differences in the total bytes sent from one
time to the next. The last two lines of the analysis merge the streams from different hosts and
apply a custom function AggTM to create a global traffic matrix for each time period at the
controller.

8 Peng Sun, Minlan Yu, Michael J. Freedman, Jennifer Rexford, David Walker

Policy := [Rule]+

Rule := if Criteria then Action

Criteria := Predicate [(and | or) Predicate]*

Predicate := Field = value

Field := AppName | SrcHost | DstHost | Headers

Headers := SrcIP | DstIP | SrcPort | DstPort | · · ·

Action := rate-limit value | forward-on-path path

Table 3: Control Policy in HONE Prototype

Constructing the topology: A last part of our analysis builds a network topology from
the link tables produced by LinkQuery, which is abstracted as a single data stream collected
from the network:

TopoStream = LinkQuery() >>
MapStream(BuildTopo)

The auxiliary BuildTopo function (not shown) converts a single table of links into a graph
data structure useful for computing paths between two hosts. The MapStream operator
applies BuildTopo to the stream of link tables to generate a stream of graph data structures.

2.3 Control: Uniform and Dynamic Policy

In controlling hosts and switches, the datacenter administrators have to use various interfaces.
For example, administrators use tc, iptables, or Open vSwitch on hosts to manage traffic,
and they use SNMP or OpenFlow to manage the switches. For the purpose of managing
traffic, these different control interfaces can be unified because they share the same pattern
of generating control policies: for a group of connections satisfying criteria, define what
actions to take. Therefore, HONE offers administrators a uniform way of specifying control
policies as criteria + action clauses, and HONE takes care of choosing the right control
implementations, e.g., we implement rate-limit using tc and iptables in the host agent.

The criteria can be network identifiers (e.g., IP addresses, port numbers, etc.). But this
would force the programmer to map his higher-level policies into lower-level identifiers, and
identify changes in which connections satisfy the higher-level policies. Instead, we allow
programmers to identify connections of interest based on higher-level attributes, and HONE
automatically tracks which traffic satisfies these attributes as connections come and go. Our
predicates are more general than network-based rule-matching mechanisms in the sense that
we can match connections by applications with the help of hosts. Table 3 shows the syntax of
control policies, each of which our current prototype supports.

Continuing the elephant-flow application, we define a function Schedule that takes
inputs of the detected elephant flows, the network topology, and the current traffic matrix. It
assigns a routing path for each elephant flow with a greedy Global First Fit [4] strategy, and
creates a HONE policy for forwarding the flow along the picked path. Other non-elephant
flows are randomly assigned to an available path. The outputs of policies by Schedule will
be piped into RegisterPolicy to register them with HONE.

def Schedule(elephant, topo, traffic):
routes = FindRoutesForHostPair(topo)
policies = []

HONE: Joint Host-Network Traffic Management in Software-Defined Networks 9

for four_tuples in elephant:
path = GreedilyFindAvailablePath(four_tuples, routes, traffic)
criteria = four_tuples
action = forward-on-path path
policies.append([criteria, action])

return policies

2.4 All Three Stages Together

Combining the measurement, analysis, and control phases, the complete program merges the
data streams, feeds the data to the Schedule function, and registers the output of policies.
With this concrete example of an elephant-flow detection and scheduling application, we
have demonstrated the simple and straightforward way of designing traffic-management tasks
in HONE programming framework.

def ElephantFlowDetectionScheduling():
MergeStreams([EStream, TopoStream, TMStream]) >>
MapStream(Schedule) >>
RegisterPolicy()

3 Efficient & Scalable Execution

Monitoring and controlling many connections for many applications on many hosts could
easily overwhelm a centralized controller. HONE overcomes this scalability challenge in
four main ways. First, a distributed directory service dynamically tracks the mapping of
management tasks to hosts, applications, and connections. Second, the HONE agents lazily
materialize virtual tables based on the current queries. Third, the controller automatically
partitions each management task into global and local portions, and distributes the local part
over the host agents. Fourth, the hosts automatically form a tree to aggregate measurement
data based on user-defined aggregation functions to limit the bandwidth and computational
overhead on the controller.

3.1 Distributed Directory Service

HONE determines which hosts should run each management task, based on which applica-
tions and connections match the queries and control policies. HONE has a directory service
that tracks changes in the active hosts, applications, and connections. To ensure scalability,
the directory has a two-tiered structure where the first tier (tracking the relatively stable set
of active hosts and applications) runs on the controller, and the second tier (tracking the large
and dynamic collection of connections) runs locally on each host. This allows the controller
to decide which hosts to inform about a query or control policy, while relying on each local
agent to determine which connections to monitor or control.

Tracking hosts and applications: Rather than build the first tier of the directory service
as a special-purpose component, we leverage the HONE programming framework to run a
standing query:

10 Peng Sun, Minlan Yu, Michael J. Freedman, Jennifer Rexford, David Walker

def DirectoryService():
(Select([HostID, App]) *
From(Applications) *
Every(Seconds 1)) >>
ReduceSet(GetChangeOfAppAndHealth,[]) >>
MergeHosts() >>
MapStream(NotifyRuntime)

which returns the set of active hosts and their applications. GetChangeOfAppAndHealth
identifies changes in the set of applications running on each host, and the results are aggre-
gated at the controller. The controller uses its connectivity to each host agent as the host’s
health state, and the host agent uses ps to find active applications.

Tracking connections: To track the active connections, each host runs a Linux kernel
module we build that intercepts the socket system calls (i.e., connect, accept, send,
receive, and close). Using the kernel module, the HONE agent associates each appli-
cation with the TCP/UDP connections it opens in an event-driven fashion. This avoids the
inevitable delay of poll-based alternatives using Linux lsof and /proc.

3.2 Lazily Materialized Tables

HONE gives programmers the abstraction of access to diverse statistics at any time granular-
ity. To minimize measurement overhead, HONE lazily materializes the statistics tables by
measuring only certain statistics, for certain connections, at certain times, as needed to satisfy
the queries. The HONE controller analyzes the queries from the management programs, and
identifies what queries should run on hosts or switches. For queries to run on hosts, the host
agents merge the collection of overlapping statistics to share among management programs.
The agents collect only the statistics as specified in the queries with appropriate measurement
techniques, instead of measuring all statistics in the virtual tables. The network module also
merges the collection of shared statistics among queries, and collects the requested statistics
from switches using OpenFlow.

Returning to the elephant-flow application, the controller analyzes the ElephantQuery
and decides to run the query on the hosts. Since the query does not constrain the set of hosts
and applications, the controller instructs all local agents to run the query. Each HONE
agent periodically measures the values of SrcIP, DstIP, SrcPort, DstPort, and
BytesSent from the network stack (via Web10G [18]), and collects the BytesWritten
from the kernel module discussed earlier in §3.1. Similarly, HONE queries the switches for
the LinkQuery data; in our prototype, we interact with network devices using the Open-
Flow protocol. HONE does not collect or record any unnecessary data. Lazy materialization
supports a simple and uniform data model while keeping measurement overhead low.

3.3 Host-Controller Partitioning

In addition to selectively collecting traffic statistics, the hosts can significantly reduce the
resulting data volume by filtering or aggregating the data. For example, the hosts could
identify connections with a small congestion window, sum throughputs over all connections,
or find the top k flows by traffic volume.

However, parallelizing an arbitrary controller program would be difficult. Instead, HONE
provides a MergeHosts operator that explicitly divides a task into its local and global parts.
Analysis functions before MergeHosts run locally on each host, whereas functions after

HONE: Joint Host-Network Traffic Management in Software-Defined Networks 11

MergeHosts

ToController

Hosts’ Execution Plans

Controller Execution Plan

Estream
TMStream
TopoStream ToController

MergeHosts

MapSet
DetectElephant()

ReduceSet
CalcThroughput()

Measure

MapStream
AggTM()

MergeStreams

Network
Measure

MapStream
BuildTopo()

MapStream
Schedule() RegisterPolicy

MapSet
SumBytesSent()

Fig. 3: Partitioned Execution Plan of Elephant-Flow Scheduling Program

MergeHosts run on the controller. HONE hides the details of distributing the computation,
communicating with end devices, and merging the results. Having an explicit MergeHosts
operator obviates the need for complex code analysis for automatic parallelization.

HONE coordinates the parallel execution of tasks across a large group of hosts.2 We
first carry out industry-standard clock synchronization with NTP [32] on all hosts and the
controller. Then the HONE runtime stamps each management task with its creation time
tc. The host agent dynamically adjusts when to start executing the task to time tc + nT + ε,
where n is an integer, ε is set to 10ms, and T is the period of task (as specified by the Every
statement). Furthermore, the host agent labels the local execution results with a logical
sequence number (i.e., n), in order to tolerate the clock drift among hosts. The controller
buffers and merges the data bearing the same sequence number into a single collection,
releasing data to the global portion of task when either receiving from all expected hosts or
timing out after T .

Using our elephant-flow-scheduling application, Figure 3 shows the partitioned execu-
tion plan of the management program. Recall that we merge EStream, TMStream, and
TopoStream to construct the program. The measurement queries are interpreted as parallel
Measure operations on the host agents, and the query of switch statistics from the network
module. HONE executes the EStream and TMStream tasks on each host in parallel (to
detect elephant flows and calculate throughputs, respectively), and streams these local results
to the controller (i.e., ToController). The merged local results of TMStream pass through a
throughput aggregation function (AggTM), and finally merge together with the flow-detection
data and the topology data from TopoStream to feed the Schedule function.

3.4 Hierarchical Data Aggregation

Rather than transmit (filtered and aggregated) data directly to the controller, the hosts construct
a hierarchy to combine the results using user-specified functions. HONE automatically

2 The HONE controller ships the source code of the local portion of management tasks to the host agent.
Since HONE programs are written in Python, the agent can execute them with its local Python interpreter, and
thus avoids the difficulties of making the programs compatible with diverse environments on the hosts.

12 Peng Sun, Minlan Yu, Michael J. Freedman, Jennifer Rexford, David Walker

H1 H2 H3 H4 H8 H7 H6 H5

H1 H3 H5 H7

H1 H5

Controller Branching = 2
Total Hosts = 8

Level 0

Level 1

Level 2

Level 3

Fig. 4: Aggregation Tree: 8 Hosts with Branching of 2

constructs a k-ary tree rooted at the controller3 and applies a TreeMerge operator at each
level. All hosts running the task are leaves of the tree. For each group of b hosts, HONE
chooses one to act as their parent in the tree. These parents are grouped again to recursively
build the tree towards the controller. User-defined functions associated with TreeMerge
are applied to all non-leaf nodes of the tree to aggregate data from their children. HONE is
unique among research efforts on tree-based aggregation [33, 34], since prior works focus
on aggregating data with a priori knowledge of the data structure, and don’t allow users to
specify their own aggregation functions.

Many aggregation functions used in traffic management are both commutative and
associative; such functions can be applied hierarchically without compromising correctness.
For example, determining the top k values for heavy-hitter analysis is amenable to either
direct processing across all data or to breaking the data into subsets for intermediate analysis
and combining the results downstream. Calculating the total throughput of connections across
all hosts can also be calculated in such a distributed manner, as the arithmetic sum is also a
commutative and associative function.

Making the user-defined aggregation functions be associative and commutative ensures
that HONE can apply them correctly in a hierarchical manner. Using TreeMerge, HONE
assumes that the associated functions have the required properties, avoiding the semantics
analysis. TreeMerge is similar to MergeHosts in the sense that they both combine local
data streams from multiple hosts into one data stream on the controller, and intermediate hosts
similarly buffer data until they receive data from all their children or a timeout occurs. But with
TreeMerge, HONE also applies a user-defined aggregation function, while MergeHosts
simply merges all hosts’ data at the controller without reduction.

The algorithm of constructing the aggregation tree is an interesting extensible part of
HONE. We can group hosts based on their network locality, or we can dynamically monitor
the resource usage on hosts to pick the one with most available resource to act as the
intermediate aggregator. In our prototype, we leave those interesting algorithms to future
works, but offer a basic one of incrementally building the tree by when hosts join the HONE
system. Subject to the branching factor b, the newly joined leaf greedily finds a node in
one level up with less than b children, and links with the node if found. If not found, the
leaf promotes itself to one level up, and repeats the search. When the new node reaches the
highest level and still cannot find a place, the controller node moves up one level, which
increases the height of the aggregation tree. Figure 4 illustrates an aggregation tree under the
basic algorithm when 8 hosts have joined and b is 2.

3 The runtime uses information from the directory service to discover and organize hosts.

HONE: Joint Host-Network Traffic Management in Software-Defined Networks 13

4 Performance Evaluation

In this section, we present micro-benchmarks on our HONE prototype to evaluate mea-
surement overhead, the execution latency of management programs, and the scalability;
§5 will demonstrate the expressiveness and ease-of-use of HONE using several canonical
traffic-management applications.

We implement the HONE prototype in combination of Python and C. The HONE
controller provides the programming framework and runtime system, which partitions the
management programs, instructs the host agents for local execution, forms the aggregation
hierarchy, and merges the data from hosts for the global portion of program execution. The
host agent schedules the installed management tasks to run periodically, executes the local part
of the program, and streams the serialized data to the controller or intermediate aggregators.
We implement the network part of the prototype as a custom module in Floodlight [35] to
query switch statistics and install routing rules.

Our evaluation of the prototype focuses on the following questions about our design
decisions in §2 and §3.

1. How efficient is the host-based measurement in HONE?
2. How efficiently does HONE execute entire management tasks?
3. How much overhead does lazy materialization save?
4. How effectively does the controller merge data from multiple hosts using hierarchical

aggregation?

We run the HONE prototype and carry out the experiments on Amazon EC2. All instances
have 30GB memory and 8 virtual cores of 3.25 Compute Units each.4

4.1 Performance of Host-Based Measurement

The HONE host agent collects TCP connection statistics using the Web10G [18] kernel
module. We evaluate the measurement overhead in terms of time, CPU, and memory usage
as we vary the number of connections running on the host. To isolate the measurement
overhead, we run a simple management task that queries a few randomly-chosen statistics of
all connections running on the host every one second (we choose the four tuples, bytes of sent
data, and the congestion window size). Our experiment consists of three EC2 instances—one
for the controller, and two running the HONE agent.

To collect the statistics, the host agent must first identify what connections to measure.
Then the agent queries the kernel via Web10G to retrieve the statistics. Finally, the agent
organizes the statistics in the schema specified by the query and feeds the result to the
management program. In Figure 5, we break down the latency in each portion. For each
fixed number of connections, we run the management task for five minutes (i.e., about 300
iterations), and plot the average and standard deviation of time spent in each portion.

Figure 5 shows that the agent performs well, measuring 5k connections in an average
of 532.6ms. The Web10G measurement takes the biggest portion–432.1ms, and the latency
is linear in the number of active connections. The time spent in identifying connections to
measure is relatively flat, since the agent tracks the relevant connections in an event-driven
fashion via the kernel module of intercepting socket calls. The time spent in organizing the

4 One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or Xeon
processor.

14 Peng Sun, Minlan Yu, Michael J. Freedman, Jennifer Rexford, David Walker

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

Number of connections to measure

T
im

e
 (

m
s
)

Measure statistics of the connections
Organize measurement results for analysis phase
Identify connections to measure

Fig. 5: Overhead of Collecting Connection Statistics

statistics rises slowly as the agent must go through more connections to format the results
into the query’s schema. The results set lower limit for the periods of management tasks that
need measurement of different numbers of connections. The CPU and memory usage of the
agent remain stable throughout the experiments, requiring an average of 4.55% CPU of one
core and 1.08% memory of the EC2 instance.

4.2 Performance of Management Tasks

Next, we evaluate the end-to-end performance of several management tasks. To be more
specific, we evaluate the latency of finishing one round of a task: from the agent scheduling
a task to run, measuring the corresponding statistics, finishing the local analysis, sending
the results to the controller, the controller receiving the data, till the controller finishing the
remaining parts of the management program. We run three different kinds of management
tasks which have a mix of leverages of hosts, switches, and the controller in HONE, in
order to show the flexibility of HONE adapting to different traffic-management tasks. All
experiments in this subsection run on a 8-host-10-switch fat-tree topology [36]. The switches
are emulated by running Open vSwitch on an EC2 instance.

– Task1 calculates the throughputs of all iperf connections on each host, sums them up,
and aggregates the global iperf throughput at the controller. This task performs most
of the analysis at the host agents, leaving relatively little work for the controller. Each
host launches 100 iperf connections to another randomly chosen host.

– Task2 queries the topology and switch statistics from the network, and uses the per-port
counters on the switches to calculate the current link utilization. This task uses the
network module in HONE a lot to measure data, and runs computation work on the
controller. Task2 is performed under the same setting of running iperf as Task1.

– Task3 collects measurement data from the hosts to detect connections with a small
congestion window (i.e., which perform badly). It also queries the network to determine

HONE: Joint Host-Network Traffic Management in Software-Defined Networks 15

20 40 80 160 320 640
0

0.2

0.4

0.6

0.8

1

Time (ms)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n
 f
u
n
c
ti
o
n

Task1: sum throughputs of application
Task2: calculate network utilization
Task3: diagnose network for bottlenecks

Fig. 6: Latency of One Round of Execution

the forwarding path for each host pair. The task then diagnoses the shared links among
those problematic flows as possible causes of the bad network performance. Task3 is
a joint host-network job, which runs its computation across hosts, network, and the
controller. Task3 is still under the same setting, but we manually add rules on two links
to drop 50% of packets for all flows traversing the links, emulating a lossy network.

Figure 6 illustrates the cumulative distribution function (CDF) of the latency for finishing
one round of execution, as we run 300 iterations for each task. We further break down the
latency into three parts: the execution time on the agent or the network, the data-transmission
time from the host agent or network module to the controller, and the execution time on the
controller. In Figure 7, we plot the average latency and standard deviation for each part of
the three tasks. Task1 finishes one round with a 90th-percentile latency of 27.8ms, in which
the agent takes an average of 17.8ms for measurement and throughput calculation, the data
transmission from 8 hosts to the controller takes another 7.7ms, and the controller takes
the rest. Having a different pattern with Task1, Task2’s 140.0ms 90th-percentile latency is
consisted of 87.5ms of querying the switches via Floodlight and 8.9ms of computation on the
controller (the transmission time is near zero since Floodlight is running on the controller
machine). Task3’s latency increases as it combines the data from both hosts and the network,
and its CDF also has two stairs due to different responsiveness of the host agents and the
network module.

Table 4 summarizes the average CPU and memory usage on the host agent and the
controller when running the task. The CPU percentage is for one core of 8 cores of our
testbed machines. The results show that HONE’s resource usage are bind to the running
management tasks: Tasks3 is the most complex one with flow detection/rate calculation on
the hosts, and having the controller join host and network data.

16 Peng Sun, Minlan Yu, Michael J. Freedman, Jennifer Rexford, David Walker

Task1 Task2 Task3
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
)

 Agent/Network Execution
 Data Transmission
 Controller Execution

Fig. 7: Breakdown of Execution Latency

CPU Agent Memory Agent CPU Controller Memory Controller

Task1 3.71% 0.94% 0.67% 0.10%

Task2 N/A N/A 0.76% 1.13%

Task3 7.84% 1.64% 1.03% 0.11%

Table 4: Average CPU and Memory Usage of Execution

4.3 Effects of Lazy Materialization

HONE lazily materializes the contents of the statistics tables. We evaluate how much overhead
the feature can save for measurement efficiency in HONE.

We set up two applications (A and B) with 1k active connections each on a host. We
run multiple management tasks with different queries over the statistics to evaluate the
measurement overhead in terms of latency. Figure 8 illustrates the average and standard
deviation of the latencies for different queries. The first program queries all 122 TCP-stack
statistics available in Web10G of all 2k connections, and all applications’ CPU and memory
usage. The following ones query various statistics of Connections or Applications
tables with details shown on Figure 8.

The lazy materialization of the tables lowers the measurement overhead by either measur-
ing a subset of tables (Query1 vs. others), rows (number of connections in Query1 vs. Query2
and Query3), and columns (number of statistics in Query2 vs. Query3). The high overhead of
Query4 is due to the implementation of CPU measurement, which is, for each process, one of
the ten worker threads on the agent keeps running for 50ms to get a valid CPU usage.

HONE: Joint Host-Network Traffic Management in Software-Defined Networks 17

Query1 Query2 Query3 Query4 Query5 Query6
0

200

400

600

800

1000

1200
L
a
te

n
c
y
 o

f
o
n
e
 m

e
a
s
u
re

m
e
n
t
ro

u
n
d
 (

m
s
)

Query1: All 2k conns. All 122 stats.
 CPU and memory of all ~120 apps.
Query2: App A’s 1k conns. 7 stats.
Query3: App A’s 1k conns. All 122 stats
Query4: CPU of all ~120 apps.
Query5: Memory of all ~120 apps.
Query6: App A’s CPU and memory.

Fig. 8: Effects of Lazy Materialization

4.4 Evaluation of Scalability in HONE

We will evaluate the scalability of HONE from two perspectives. First, when HONE controller
partitions the management program into local and global parts of execution, the controller
will handle the details of merging the local results processed in the same time period from
multiple hosts, before releasing the merged result to the global part of execution. Although
the host clocks are synchronized via NTP as mentioned in §3.3, the clocks still drift slightly
over time. It results in a buffering delay at the controller. Now we will evaluate how well the
buffering works in terms of the time difference between when the controller receives the first
piece of data and when the controller receives all the data bearing the same sequence number.

To focus on the merging performance, we use the Task1 in §4.2. All hosts will directly
send their local results to the controller without any hierarchical aggregation. Each run of
the experiment lasts 7 minutes, containing about 400 iterations. We repeat the experiment,
varying the number of hosts from 16 to 128.

Figure 9 shows the CDFs of the latencies for these experiments. The 90th-percentile of
the controller’s buffering delay is 4.3ms, 14.2ms, 9.9ms, and 10.7ms for 16, 32, 64, and 128
hosts respectively. The results show that the synchronization mechanism on host agents work
well in coordinating their local execution of a management task, and the controller’s buffering
delay is not a problem in supporting traffic-management tasks whose execution periods are
typically in seconds.

After evaluating how the controller merges distributed collection of data, we would
evaluate another important feature of HONE for scalability, which is the hierarchical ag-
gregation among the hosts. We continue using the same management task of summing the
application’s throughputs across hosts. But we change to use the TreeMerge operator to
apply the aggregation function. In this way, the task will be executed by HONE through a
k-ary tree consisted of the hosts.

In this experiment, we fix the branching factor k of the hierarchy to 4. We repeat the
experiment with 16, 32, 64, and 128 hosts, in which case the height of the aggregation tree
is 2, 3, 3, and 4 respectively. Figure 10 shows the CDFs of the latencies of one round of

18 Peng Sun, Minlan Yu, Michael J. Freedman, Jennifer Rexford, David Walker

0.5 2 8 32
0

0.2

0.4

0.6

0.8

1

Time (ms)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n
 f
u
n
c
ti
o
n

Number of Hosts: 16
Number of Hosts: 32
Number of Hosts: 64
Number of Hosts: 128

Fig. 9: Controller’s Buffering Delay of Merging Data from Multiple Host Agents

Num of Hosts CPU Agent Memory Agent CPU Controller Memory Controller

16 4.19% 0.96% 1.09% 0.05%

32 4.93% 0.96% 1.27% 0.05%

64 5.26% 0.97% 1.31% 0.06%

128 4.80% 0.97% 2.36% 0.07%

Table 5: Average CPU and Memory Usage in Hierarchical Aggregation Experiments

execution, which captures the time difference from the earliest agent starting its local part to
the controller finishing the global part. The 90th-percentile execution latency increases from
32.2ms, 30.5ms, 37.1ms, to 58.1ms. Table 5 shows the average CPU and memory usage on
the controller and the host agent. The host agent’s CPU and memory usage come from the
agent that multiplexes as local-data generator and the intermediate aggregators in all levels of
the k-ary tree. It shows the maximum overhead that the host agent incurs when running in a
hierarchy.

From the results above, we can conclude that HONE’s own operations pose little overhead
to the execution of management tasks. The performance of management tasks running in
HONE will be mainly bound by their own program complexities, and the amount of data they
need to process or transmit.

5 Case Studies

We have shown the micro-benchmark evaluation of HONE to demonstrate its efficiency and
scalability. Now we will illustrate the expressiveness and ease-of-use of HONE by building a
diversity of traffic-management tasks in data centers. Table 6 lists all the management tasks
that we have built, ranging from conventional management operations in data centers (e.g.,

HONE: Joint Host-Network Traffic Management in Software-Defined Networks 19

20 25 32 40 51 64
0

0.2

0.4

0.6

0.8

1

Time (ms)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n
 f
u
n
c
ti
o
n

Number of Hosts: 16
Number of Hosts: 32
Number of Hosts: 64
Number of Hosts: 128

Fig. 10: End-to-end Latency of Execution under Hierarchical Aggregation

Management Task Lines of Code

Summing application’s throughputs 70

Monitoring CPU and memory usage 24

Collecting connection TCP statistics 19

Calculating traffic matrix 85

Calculating link utilizations 48

Discovering network topology 51

Network performance diagnosis 56

HONE’s directory service 31

Elephant flow scheduling 140

Distributed rate limiting 74

Table 6: HONE-based Traffic-Management Tasks. Check http://hone.cs.princeton.edu/

calculating link utilizations) to recent proposals (e.g., network performance diagnosis [3]).
Those conventional traffic-management tasks can actually serve as basic building blocks
for more complex management tasks. The administrators can compose the code of those
HONE programs to construct their own. HONE is an open-source project, and code for
the management programs are also available at http://hone.cs.princeton.edu/
examples.

In the following subsections, we pick two management tasks as case studies to illustrate
more details, and evaluate the HONE-based solutions.

http://hone.cs.princeton.edu/examples
http://hone.cs.princeton.edu/examples

20 Peng Sun, Minlan Yu, Michael J. Freedman, Jennifer Rexford, David Walker

5.1 Elephant Flow Scheduling

In data centers, it is important to detect elephant flows with high traffic demands and properly
route them to minimize network congestion. With HONE, we can easily build such an
application to schedule the elephant flows. This example takes the scheduling strategies and
the elephant-flow detection threshold from Hedera [4] and Mahout [25]. We implement
Hedera’s Global-first-fit routing strategy with 140 lines of code in HONE. The code of the
management task has been already shown in previous sections as an example.

We deploy HONE on EC2 instances to emulate a data-center network with a 8-host-10-
switch fat-tree topology (the switches are instances running Open vSwitch). We repeat an
all-to-all data shuffle of 500MB (i.e., a 28GB shuffle) for 10 times. The HONE-based solution
finishes the data shuffle with an average of 82.7s, compared to 103.1s of using ECMP. The
improvement over shuffle time is consistent with Hedera’s result.

5.2 Distributed Rate Limiting

Distributed rate limiting in data centers is used to control the aggregate network bandwidth
used by an application, which runs on multiple hosts. It can help the application’s owner to
control the total cost of using a pay-per-use cloud provider.

Prior works [6, 26] proposed mechanisms to make distributed rate-limiters collaborate as
a single, aggregate global limiter inside the network. HONE enables distributed rate limiting
from the host side, which would introduce less overhead as the hosts have more computational
power than the switches, and better visibility into the traffic demand of applications.

In HONE, the administrators do not need to worry about the complexity of collecting
throughputs from multiple hosts in a synchronized way. Instead, they just need to write
a simple program that sums up throughputs of an application’s connections on each host,
aggregates the throughputs across hosts, and then calculates their rate-limiting policies
accordingly. The code written in HONE are shown below:

def DistributedRateLimiting():
(Select([App, SrcIp, DstIp,

BytesSent, Timestamp]) *
From(Connections) *
Where(App == X) *
Every(Seconds 1)) >>
ReduceSet(CalculateThroughput, {}) >>
MapSet(LocalAgg) >>
ReduceSet(MovingAverage, initValue) >>
MergeHosts() >>
MapStream(GenerateRateLimitPolicy) >>
RegisterPolicy()

We run the task to limit the aggregate throughput of application X to 100Mbps. The
application X is set to send traffic on each host for 80 seconds with a default rate of 50Mbps.
We launch X on 5 hosts, one by one every 10 seconds. Figure 11 shows the time series of
the aggregate and individual traffic rates of X. The management task succeeds in limiting the
total rate of X running on a distributed set of hosts to 100Mbps. Note that it takes one round
of execution for the management task to discover new traffic and update the rate-limiting
policies. That is why there are several 1-second spikes when X starts on new hosts.

HONE: Joint Host-Network Traffic Management in Software-Defined Networks 21

0 10 30 50 70 90 110 130 150
0

20

40

60

80

100

120

140

Time (second)

R
a
te

 (
M

b
p
s
)

Aggregate
Host 1
Host 2
Host 3
Host 4
Host 5

Fig. 11: Time Series of Application Throughput. One Host Starts the App Every 10s.

6 Related Works

Recent projects have sought to incorporate end hosts into network management [9, 10]. But
these solutions view the hosts only as software switches or as trusted execution environments
for the network. Cooke et al. [37] use hosts to collect socket activities for a better understand-
ing of network. However, their solution cannot selectively collect statistics, and the statistics
at the transport layer are not covered. OpenTCP [38] dynamically adapts the configuration of
TCP on the end hosts based on traffic conditions. Lee et al. [39] propose joint optimization
across the application and network layers for better application throughput. In contrast,
HONE supports diverse traffic-management tasks, and thus provides more measurement, data
analysis, and control functionalities across hosts and switches.

There have also been industry efforts in simplifying cloud management, such as various
commercial tools from vendors [19, 40, 41]. They aim at enabling better visualization and
infrastructure control at hosts and switches in the cloud. HONE is complementary to these
systems by focusing more on monitoring and analysis in traffic-management tasks and
providing programmable interfaces for these tasks.

Prior works also adopt the stream abstraction for network traffic analysis [27, 28]. But they
mainly focus on extending the SQL language, while we use functional language constructs to
define traffic-management mechanisms more easily. Further, some of these works [27, 42]
focus on a specific problem (e.g., intrusion detection) when designing their programming lan-
guage, while HONE aims for a more generic programming interface for traffic management.

Finally, there are recent works proposing network programming languages [11, 43, 44,
45, 46, 47]. Their programming abstraction is the raw packets or traffic counters on a single
switch. HONE mainly moves the programmability to the end hosts, provides an extensible
platform for various types of measurement, and spans both the hosts and the switches.

22 Peng Sun, Minlan Yu, Michael J. Freedman, Jennifer Rexford, David Walker

7 Conclusion

HONE is a programmable and scalable platform for joint host-network traffic management.
HONE expands the scope of traffic management to the host network stacks, in order to
harness the detailed network-related statistics and the computational resources on the hosts.
We design an integrated data model for diverse fine-grained measurement from hosts and
network. The programming framework further offers data-parallel streaming operators to de-
fine measurement and analysis logic of traffic-management tasks. The system can selectively
measure the data as needed by the management programs, and it divides the analysis logic
to execute locally on hosts in real time. Thus the HONE system is efficient and scalable for
traffic management with integration of host stacks. Micro-benchmarks and experiments with
real management tasks demonstrate the performance and expressiveness of our system.

In our future work, we plan to build a wider range of management tasks, both to further
demonstrate HONE’s expressiveness and to continue optimizing our prototype’s performance.
We will specifically consider the tasks for datacenter infrastructure management, such as
failure mitigation and switch power management. In addition, we plan to make HONE
suitable for a multi-tenant cloud environment, where tenants may not want the cloud provider
to collect measurement data within the virtual machine’s guest operating system. Instead, we
plan to collect measurement data from the hypervisor to infer the application’s behaviors.
Besides extending the functionalities, we also plan to further improve the performance of
HONE, and seek deployment into real datacenter environment for larger-scale experiments.
We believe that these future works, along with our existing support for programmable
and scalable traffic management, can make HONE an invaluable platform for the research
community and datacenter administrators.

Acknowledgment

This work is supported by grants NSF NETS 1162112 and DARPA MRC 2012-00310-02. It
is also partially supported by Cisco, Google, Software R&D Center at Samsung Electronics,
and USC Zumberge Research and innovation fund.

References

1. Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie
Chaiken. The Nature of Datacenter Traffic: Measurements & Analysis. In ACM IMC,
2009.

2. Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and Yongguang Zhang. ICTCP: Incast
Congestion Control for TCP in Data Center Networks. In ACM CoNEXT, 2010.

3. Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rexford, Lihua Yuan, Srikanth
Kandula, and Changhoon Kim. Profiling Network Performance for Multi-tier Data
Center Applications. In USENIX NSDI, 2011.

4. Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and
Amin Vahdat. Hedera: Dynamic Flow Scheduling for Data Center Networks. In USENIX
NSDI, 2010.

5. Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Greenberg, David A.
Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu, Changhoon Kim, and
Naveen Karri. Ananta: Cloud Scale Load Balancing. In ACM SIGCOMM, 2013.

HONE: Joint Host-Network Traffic Management in Software-Defined Networks 23

6. Barath Raghavan, Kashi Vishwanath, Sriram Ramabhadran, Kenneth Yocum, and Alex C.
Snoeren. Cloud Control with Distributed Rate Limiting. In ACM SIGCOMM, 2007.

7. Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh,
Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen
Stuart, and Amin Vahdat. B4: Experience with a Globally-Deployed Software Defined
WAN. In ACM SIGCOMM, 2013.

8. Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. Achieving High Utilization with Software-Driven
WAN. In ACM SIGCOMM, 2013.

9. Colin Dixon, Hardeep Uppal, Vjekoslav Brajkovic, Dane Brandon, Thomas Anderson,
and Arvind Krishnamurthy. ETTM: A Scalable Fault Tolerant Network Manager. In
USENIX NSDI, 2011.

10. Thomas Karagiannis, Richard Mortier, and Antony Rowstron. Network Exception
Handlers: Host-network Control in Enterprise Networks. In ACM SIGCOMM, 2008.

11. Justine Sherry, Daniel C. Kim, Seshadri S. Mahalingam, Amy Tang, Steve Wang, and
Sylvia Ratnasamy. Netcalls: End Host Function Calls to Network Traffic Processing
Services. Technical Report UCB/EECS-2012-175, U.C. Berkeley, 2012.

12. Alan Shieh, Srikanth Kandula, Albert Greenberg, Changhoon Kim, and Bikas Saha.
Sharing the Data Center Network. In USENIX NSDI, 2011.

13. David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy Katz.
DeTail: Reducing the Flow Completion Time Tail in Datacenter Networks. In ACM
SIGCOMM, 2012.

14. Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and Scott
Shenker. Extending networking into the virtualization layer. In ACM HotNets, October
2009.

15. Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. Finishing Flows Quickly with
Preemptive Scheduling. In ACM SIGCOMM, 2012.

16. Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. Better Never
Than Late: Meeting Deadlines in Datacenter Networks. In ACM SIGCOMM, 2011.

17. Event Tracing for Windows. http://support.microsoft.com/kb/2593157,
2011.

18. Web10G Project. http://web10g.org/, 2012.
19. VMWare vCenter Suite. http://www.vmware.com/products/

datacenter-virtualization/vcenter-operations-management/
overview.html, 2013.

20. Linux Advanced Routing & Traffic Control. http://www.lartc.org/, 2000.
21. Netfilter.org. http://www.netfilter.org/, 1999.
22. Open vSwitch. http://openvswitch.org/, 2011.
23. Matt Mathis, John Heffner, and Raghu Raghunarayan. TCP Extended Statistics MIB.

RFC 4898, May 2007.
24. Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,

Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling Innovation
in Campus Networks. ACM CCR, 38(2):69–74, 2008.

25. Andrew Curtis, Wonho Kim, and Praveen Yalagandula. Mahout: Low-Overhead Datacen-
ter Traffic Management using End-Host-Based Elephant Detection. In IEEE INFOCOM,

http://support.microsoft.com/kb/2593157
http://web10g.org/
http://www.vmware.com/products/datacenter-virtualization/vcenter-operations-management/overview.html
http://www.vmware.com/products/datacenter-virtualization/vcenter-operations-management/overview.html
http://www.vmware.com/products/datacenter-virtualization/vcenter-operations-management/overview.html
http://www.lartc.org/
http://www.netfilter.org/
http://openvswitch.org/

24 Peng Sun, Minlan Yu, Michael J. Freedman, Jennifer Rexford, David Walker

2011.
26. Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy, Sylvia

Ratnasamy, and Ion Stoica. FairCloud: Sharing the Network in Cloud Computing. In
ACM SIGCOMM, 2012.

27. Kevin Borders, Jonathan Springer, and Matthew Burnside. Chimera: A Declarative
Language for Streaming Network Traffic Analysis. In USENIX Security, 2012.

28. Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk. Gigas-
cope: A Stream Database for Network Applications. In ACM SIGMOD, 2003.

29. Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In USENIX OSDI, 2004.

30. Jeffrey Dean and Sanjay Ghemawat. MapReduce: A Flexible Data Processing Tool.
Commun. ACM, 53(1):72–77, January 2010. ISSN 0001-0782. doi: 10.1145/1629175.
1629198. URL http://doi.acm.org/10.1145/1629175.1629198.

31. Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt, Samuel
Madden, and Michael Stonebraker. A Comparison of Approaches to Large-scale Data
Analysis. In ACM SIGMOD, 2009.

32. NTP: The Network Time Protocol. http://www.ntp.org/, 2003.
33. Robbert van Renesse and Adrian Bozdog. Willow: DHT, Aggregation, and Publish/Sub-

scribe in One Protocol. In IPTPS, 2004.
34. Praveen Yalagandula and Mike Dahlin. A Scalable Distributed Information Management

System. In ACM SIGCOMM, 2004.
35. FloodLight. http://floodlight.openflowhub.org/, 2011.
36. Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A Scalable, Commodity

Data Center Network Architecture. In ACM SIGCOMM, 2008.
37. Evan Cooke, Richard Mortier, Austin Donnelly, Paul Barham, and Rebecca Isaacs.

Reclaiming network-wide visibility using ubiquitous end system monitors. In USENIX
ATC, 2006.

38. Monia Ghobadi, Soheil Hassas Yeganeh, and Yashar Ganjali. Rethinking End-to-End
Congestion Control in Software-Defined Networks. In ACM HotNets, 2012.

39. Young Lee, Greg Bernstein, Ning So, Tae Yeon Kim, Kohei Shiomoto, and Os-
car Gonzalez de Dios. Research Proposal for Cross Stratum Optimization (CSO)
between Data Centers and Networks. http://tools.ietf.org/html/
draft-lee-cross-stratum-optimization-datacenter-00, March
2011.

40. OpenTSDB Project. http://www.opentsdb.net/, 2010.
41. Boundary. http://www.boundary.com/, 2010.
42. Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. MulVAL: A Logic-based

Network Security Analyzer. In USENIX Security, 2005.
43. Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer Rex-

ford, Alec Story, and David Walker. Frenetic: A Network Programming Language. In
ACM ICFP, 2011.

44. Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David Walker.
Composing Software-Defined Networks. In USENIX NSDI, 2013.

45. Tim Nelson, Arjun Guha, Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi.
A Balance of Power: Expressive, Analyzable Controller Programming. In ACM SIG-

http://doi.acm.org/10.1145/1629175.1629198
http://www.ntp.org/
http://floodlight.openflowhub.org/
http://tools.ietf.org/html/draft-lee-cross-stratum-optimization-datacenter-00
http://tools.ietf.org/html/draft-lee-cross-stratum-optimization-datacenter-00
http://www.opentsdb.net/
http://www.boundary.com/

HONE: Joint Host-Network Traffic Management in Software-Defined Networks 25

COMM HotSDN, 2013.
46. Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra. ProgME: Towards Programmable

Network Measurement. In ACM SIGCOMM, 2007.
47. Minlan Yu, Lavanya Jose, and Rui Miao. Software Defined Traffic Measurement with

OpenSketch. In USENIX NSDI, 2013.

Author Biographies

Peng Sun is a Ph.D candidate in the computer science department of Princeton University.
He received his B.E. in Electronic Engineering from Tsinghua University in 2010 and his
M.A in Computer Science from Princeton University in 2012. His research interests are in
large-scale network management and distributed systems for efficiency and reliability.

Minlan Yu is an assistant professor in the computer science department of University of
Southern California. She received her B.A. in computer science and mathematics from Peking
University in 2006 and her M.A. and Ph.D in computer science from Princeton University in
2008 and 2011. After that she was a postdoctoral scholar in UC Berkeley for one year. She has
actively collaborated with companies such as AT&T, Microsoft, and Bell Labs. Her research
interest includes data networking, distributed systems, enterprise and data center networks,
network virtualization, and software-defined networking. She received ACM SIGCOMM
doctoral dissertation award in 2012 and Google research award in 2013.

Michael J. Freedman is an Associate Professor in the Computer Science Department at
Princeton University. His research broadly focuses on distributed systems, networking, and
security, and has led to commercial products and deployed systems reaching millions of users
daily. Honors include a Presidential Early Career Award (PECASE), Sloan Fellowship, NSF
CAREER Award, ONR Young Investigator Award, DARPA CSSG membership, and multiple
award publications.

Jennifer Rexford is the Gordon Y.S. Wu Professor of Engineering in the Computer Science
department at Princeton University. Before joining Princeton in 2005, she worked for eight
years at AT&T Labs–Research. Jennifer received her BSE degree in electrical engineering
from Princeton University in 1991, and her PhD degree in electrical engineering and computer
science from the University of Michigan in 1996. She is co-author of the book ”Web Protocols
and Practice” (Addison-Wesley, May 2001). She served as the chair of ACM SIGCOMM
from 2003 to 2007. Jennifer was the 2004 winner of ACM’s Grace Murray Hopper Award for
outstanding young computer professional. She is an ACM Fellow (2008), and a member of the
American Academy of Arts and Sciences (2013) and the National Academy of Engineering
(2014).

David Walker is a Professor of Computer Science at Princeton University, where he studies
programming language theory, design and implementation. He also currently serves as an
associate editor for ACM Transactions on Programming Languages and Systems and is
program chair for the ACM Symposium on Principles of Programming Languages in 2015.

	Introduction
	HONE Programming Framework
	Efficient & Scalable Execution
	Performance Evaluation
	Case Studies
	Related Works
	Conclusion

