
Language Abstractions for Software-Defined Networks

Nate Foster
Cornell University

Michael J. Freedman
Princeton University

Rob Harrison
US Military Academy

Christopher Monsanto
Princeton University

Mark Reitblatt
Cornell University

Jennifer Rexford
Princeton University

Alec Story
Cornell University

David Walker
Princeton University

1. Introduction
For the past 30 years, networks have been built the same
way: out of special-purpose devices running distributed al-
gorithms that provide functionality such as topology dis-
covery, routing, traffic monitoring, and access control. Re-
cent years, however, have seen growing interest in a new
kind of network architecture in which a logically-centralized
controller machine manages a distributed collection of
programmable switches. These software-defined networks
(SDNs) make it possible for programmers to directly con-
trol the behavior of the network by configuring the packet-
forwarding rules installed on switches [6]. Figure 1 depicts
the architecture of a traditional network, where each inde-
pendent switch consists of tightly-integrated control and data
planes, and of an SDN, where a collection of switches are
managed by a single program running on the controller.1

SDNs both simplify existing applications and also pro-
vide a platform for developing exciting new ones. For exam-
ple, to implement shortest-path routing, the controller can
calculate the forwarding rules for each switch by running
Dijkstra’s algorithm on the graph of the network topology
rather than running a more complicated distributed proto-
col [9]. To enforce a fine-grained access control policy, the
controller can consult an external authentication server and
install a custom forwarding path for each user [2]. And to
balance the load between back-end servers in a data center,
the controller can migrate flows in response to server load
and network congestion [10].

Although SDNs provide an architecture that makes it pos-
sible to program a collection of switches, the network is still
a distributed system, and all of the usual complications arise:
control messages may be delayed or lost, packets may be
dropped, and the devices may experience unexpected fail-
ures. Unfortunately, current SDN platforms such as NOX [4]
and Beacon [1] provide a low-level interface that supports
manipulating the state of individual devices, but little else.
Hence, writing applications for SDNs today is a tedious ex-
ercise in low-level distributed programming.

The goal of the Frenetic project is to develop declarative
constructs that make it possible for programmers to describe

1 The controller may be replicated for scalability and fault tolerance [5].

.

.

Traditional Network

Control Plane

Data Plane

Switch

.

.

Programmable

Switch

Controller

Machine

Software-Defined Network

Figure 1. Network architectures.

the behavior of a network at a suitably high-level of abstrac-
tion, leaving tedious implementation details to a compiler
and run-time system. This paper summarizes the results of
our initial efforts, focusing on three areas where language-
based abstractions can be leveraged to provide tangible ben-
efits to programmers.

2. Network Policy Abstractions
Today’s SDN controllers support an event-driven program-
ming model in which programs react to network events (e.g.,
topology changes, packets for which a switch does not have
a forwarding rule, etc.) by manipulating the rules installed
on switches, or by crafting packets to emit onto the network.
This complicates programs in several ways. For one thing, it
splits control between two levels of execution—the program
on the controller and the rules on the switches. Program-
mers must constantly consider whether installing or unin-
stalling rules will mask future events received at the con-
troller, and they must explicitly coordinate multiple asyn-
chronous events to perform simple tasks (e.g., discovering
the switches connected to a particular link). For another, it
forces programmers to manage a host of low-level details



involving the switch hardware (e.g., whether to use wildcard
or exact-match rules to implement the desired forwarding
policy, and the values to use for rule timeouts and priority
levels). Frenetic’s NetCore policy language abstracts away
from many of these details involving the underlying dis-
tributed system [7]. Instead of having to write programs in
terms of low-level network events and forwarding rules, Net-
Core programmers write a simple specification that captures
the intended forwarding behavior of the network. The com-
piler partitions this specification into suitable code fragments
for the controller and the switches. It also generates the com-
munication patterns between the controller and switches, us-
ing a run-time system that handles the bookkeeping related
to installing and uninstalling individual forwarding rules. A
notable feature of NetCore is that it allows policies to be de-
scribed in terms of arbitrary functions that cannot be directly
realized on switches. To handle such policies, the compiler
generates an underapproximation of the overall policy us-
ing a simple static analysis, and then uses partial evaluation
to refine the underapproximation at run time using the ac-
tual packets seen in the network. Lastly, NetCore has a clear
formal semantics that provides a basis for reasoning about
programs.

3. Network Query Abstractions
Another complication in SDN programs today concerns the
implementation of monitoring policies. Each switch main-
tains counters for each forwarding rule that keeps track of
the total number of packets and bytes processed using it.
To monitor traffic, the controller can poll the counters as-
sociated with particular rules. However, programmers must
ensure that the rules installed on switches are fine-grained
enough to collect the desired traffic statistics. For instance,
to monitor the total amount of web traffic, the program-
mer must install rules that process (and count) traffic involv-
ing TCP port 80 separately from all other traffic. Managing
these details is tedious and makes programs anti-modular—
the rules generated by one module may be too coarse to
be executed side-by-side with a different module. To sup-
port applications whose correct operation involves a moni-
toring component, Frenetic includes an embedded query lan-
guage that provides effective abstractions for reading net-
work state [3]. This language, which has syntax reminis-
cent of SQL, includes constructs for selecting, filtering, split-
ting, merging, and aggregating the streams of packets flow-
ing through the network. Importantly, the language allows
queries to be composed with each other and with forward-
ing policies, without any harmful interference. Again, the
technology that makes this possible is the compiler and run-
time system, which generates switch-level rules guaranteed
to correctly implement all queries and the overall forward-
ing policy. The compiler also generates the control messages
and handlers needed to query and tabulate the counters on
switches.

4. Consistent Update Abstractions
Our most recent work on Frenetic focuses on the problem
of implementing updates to network policy. Many SDN pro-
grams need to transition from one policy to another (e.g.,
due to topology changes, planned maintenance, or unex-
pected failures). From the perspective of the programmer,
it would be ideal if such transitions could be propagated
atomically to the switches in the network. But atomic up-
dates are impractical to implement—they would require dis-
rupting the operation of the network during the update. We
have been developing consistency abstractions that allow
programmers to specify how updates to policy should be
propagated to the devices in the network [8]. These abstrac-
tions are strong enough to provide useful guarantees about
application behaviors, and yet relaxed enough to admit prac-
tical implementations. For example, per-packet consistency
ensures that every packet flowing through the network uses
a single version of the policy and not a mixture of old and
new policies. This preserves all properties that can be ex-
pressed in terms of individual packets and the paths they
take through the network—a class of properties that sub-
sumes important structural invariants such as basic connec-
tivity and loop-freedom, as well as access control policies.
Going a step further, per-flow consistency ensures that sets
of related packets are processed with the same policy. This
can be used to enforce rich properties including the ordering
of packets within a flow. It is also needed for applications
such as load balancers, which need to ensure that packets in
the same flow reach the same destination to avoid breaking
connections. Frenetic provides an ideal platform for explor-
ing such abstractions, as the compiler and run-time system
can be used to perform the tedious bookkeeping related to
implementing network updates. For example, to provide per-
packet consistency, the run-time system can generate rules
that tag packets with policy-version numbers and use two-
phase commit to propagate rules to switches. Per-flow con-
sistency can be implemented in similar fashion, with some
additional analysis to identify existing flows. We are cur-
rently working to extend our compiler and run-time system
with these abstractions.

5. Example Frenetic Application
Figure 2 presents code for a Frenetic application that: (1)
learns the locations of hosts on the network, (2) forwards
packets to known destinations, (3) floods packets to un-
known destinations, and (4) periodically reports the largest
k sources of traffic. Space constraints preclude giving a full
explanation of the code. Details can be found in the original
paper on Frenetic [3]. Note however that the program does
not include any code that explicitly manipulates low-level
switch state, sends control messages to switches, or handles
asynchronous network events. Instead, the entire program
consists of a few declarative specifications that are com-
posed together in a simple and elegant way.



#####################

# Ethernet learning #

#####################

# Store learned mac addresses in table

def learn_mac(((switch,mac),packet),table):

table[switch][mac] = inport(header(packet))

return table

# Convert table to policy

def make_policy(table):

policy = defaultdict(lambda:[])

for switch,learned in table.items():

patterns = false_fp()

for mac,port in learned.items():

rule = Rule(dstmac_fp(mac),[forward(port)])

policy[switch].append(rule)

patterns = patterns | dstmac_fp(mac)

flood_rule = Rule(true_fp() - patterns,[flood()])

policy[switch].append(flood_rule)

return policy

# Initial table

init_table = defaultdict(lambda:{})

# Main function

def ethernet_learning():

q = Select(’packets’) * \

GroupBy([’switch’,’srcmac’]) * \

SplitWhen([’inport’]) * \

Limit(1)

sf = Accum(init_table,learn_mac) >> \

Lift(make_policy)

return q >> sf >> Register()

#######################

# Top-k heavy hitters #

#######################

# Constants

K = 2

WINDOW = 15

# Store new values in stats

def tabulate_stats(new,stats):

for host,bytes in new.items():

stats[host] += int(bytes)

return stats

# Convert stats to list of top-k hosts

def topK(stats):

l = sorted(stats.items(), key=lambda x:x[1])

l.reverse()

return l[:K]

# Initial stats

init_stats = defaultdict(lambda:0)

# Main function

def heavy_hitters():

q = Select(’sizes’) * \

GroupBy([’srcmac’]) * \

Every(WINDOW)

sf = Accum(init_stats, tabulate_stats) >> \

Lift(topK)

return q >> sf >> Print()

Figure 2. Example application: Ethernet learning and top-k heavy hitters.

Acknowledgments Our work is supported in part by ONR
grant N00014-09-1-0770 and NSF grants CNS-1111698 and
CNS-1111520. Any opinions, findings, and recommenda-
tions are those of the authors and do not necessarily reflect
the views of the NSF, ONR, or the US Military Academy.

References
[1] Beacon: A java-based OpenFlow control platform. See

http://www.beaconcontroller.net, December 2011.

[2] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying
Luo, Natasha Gude, Nick McKeown, and Scott Shenker. Re-
thinking enterprise network control. IEEE/ACM Transactions
on Networking, 17(4), August 2009.

[3] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher
Monsanto, Jennifer Rexford, Alec Story, and David Walker.
Frenetic: A network programming language. In ACM SIG-
PLAN International Conference on Functional Programming
(ICFP), Tokyo, Japan, September 2011.

[4] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff,
Martı́n Casado, Nick McKeown, and Scott Shenker. NOX:
Towards an operating system for networks. SIGCOMM CCR,
38(3), 2008.

[5] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stri-
bling, Leon Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro
Iwata, Hiroaki Inoue, Takayuki Hama, and Scott Shenker.
Onix: A distributed control platform for large-scale produc-

tion networks. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Vancouver, BC, pages
351–364, October 2010.

[6] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and
Jonathan Turner. Openflow: Enabling innovation in campus
networks. SIGCOMM CCR, 38(2):69–74, 2008.

[7] Christopher Monsanto, Nate Foster, Rob Harrison, and David
Walker. A compiler and run-time system for network pro-
gramming languages. In ACM SIGPLAN–SIGACT Sym-
posium on Principles of Programming Languages (POPL),
Philadelphia, PA, January 2012. To appear.

[8] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David
Walker. Consistent updates for software-defined networks:
Change you can believe in! In ACM Workshop on ACM Work-
shop on Hot Topics in Networks Programmable Routers for
Extensible Services of Tomorrow (HotNets), Cambridge, MA,
November 2011.

[9] Scott Shenker, Martin Casado, Teemu Koponen, and Nick
McKeown. The future of networking and the past of protocols,
October 2011. Invited talk at Open Networking Summit.

[10] Richard Wang, Dana Butnariu, and Jennifer Rexford.
OpenFlow-based server load balancing gone wild. In Work-
shop on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services (Hot-ICE), Boston, MA,
March 2011.


	Introduction
	Network Policy Abstractions
	Network Query Abstractions
	Consistent Update Abstractions
	Example Frenetic Application

