
Democratizing
content distribution

Michael J. Freedman
New York University

Primary work in collaboration with:
Martin Casado, Eric Freudenthal, Karthik Lakshminarayanan, David Mazières

Additional work in collaboration with:
Siddhartha Annapureddy, Hari Balakrishnan, Dan Boneh, Nick Feamster,

Scott Garriss, Yuval Ishai, Michael Kaminsky, Brad Karp, Max Krohn,
Nick McKeown, Kobbi Nissim, Benny Pinkas, Omer Reingold,

Kevin Shanahan, Scott Shenker, Ion Stoica, and Mythili Vutukuru

Overloading content publishers

 Feb 3, 2004: Google linked banner to “julia fractals”
 Users clicked onto University of Western Australia web site
 …University’s network link overloaded, web server taken

down temporarily…

Adding insult to injury…

 Next day: Slashdot story about Google overloading site

 …UWA site goes down again

Insufficient server resources

Origin
Server

Browser

Browser
Browser

Browser

BrowserBrowser

Browser

Browser

 Many clients want content

 Server has insufficient resources

 Solving the problem requires more resources

Serving large audiences possible…

 Where do their resources come from?
 Must consider two types of content separately

• Static
• Dynamic

Static content uses most bandwidth

 Dynamic HTML: 19.6 KB
 Static content: 6.2 MB

 1 flash movie
 18 images

 5 style sheets
 3 scripts

Serving large audiences possible…

 How do they serve static content?

Content distribution networks (CDNs)
Centralized CDNs

 Static, manual deployment
 Centrally managed
 Implications:

 Trusted infrastructure
 Costs scale linearly

Not solved for little guy

 Problem:
 Didn’t anticipate sudden load spike (flash crowd)

 Wouldn’t want to pay / couldn’t afford costs

Origin
Server

Browser

Browser
Browser

Browser

BrowserBrowser

Browser

Browser

Leveraging cooperative resources
 Many people want content
 Many willing to mirror content

 e.g., software mirrors, file sharing, open proxies, etc.

 Resources are out there
 …if only we can leverage them

 Contributions
 CoralCDN: Leverage bandwidth of participants to

make popular content more widely available

 OASIS: Leverage information from participants to
make more effective use of bandwidth

Theme throughout talk: How to leverage previously

untapped resources to gain new functionality

Proxies absorb client requests

Origin
Server

Browser

Browser
Browser

Browser

BrowserBrowser

Browser

Browser

httpprx

httpprx

httpprx

httpprx

httpprx
httpprx

Proxies absorb client requests

Origin
Server

httpprx

httpprx

httpprx

httpprx
httpprx

httpprx

Browser

Browser
Browser

Browser

BrowserBrowser

Browser

Browser

 Reverse proxies handle all client requests

 Cooperate to fetch content from one another

A comparison of settings
Centralized CDNs

 Static, manual deployment
 Centrally managed
 Implications:

 Trusted infrastructure
 Costs scale linearly

Decentralized CDNs
 Use participating machines
 No central operations
 Implications:

 Less reliable or untrusted
 Unknown locations

A comparison of settings
Centralized CDNs

 Static, manual deployment
 Centrally managed
 Implications:

 Trusted infrastructure
 Costs scale linearly

Decentralized CDNs
 Use participating machines
 No central operations
 Implications:

 Less reliable or untrusted
 Unknown locations

Costs scale linearly ⇒ scalability concerns

 “The web infrastructure…does not scale” -Google, Feb’07
 BitTorrent, Azureus, Joost (Skype), etc. working with

movie studios to deploy peer-assisted CDNs

Getting content

Origin
Server

example.comServer
DNS

Resolver

Browser
1.2.3.4

http://example.com/file

Getting content with CoralCDN

Origin
Server Coral

httpprx
dnssrvCoral

httpprx

Coral
httpprx
dnssrv

Coral

dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

example.com.nyud.net

Resolver

Server selection
What CDN node

should I use?

Browser
216.165.108.10

1

 Participants run CoralCDN software, no configuration

 Clients use CoralCDN via modified domain name
example.com/file → example.com.nyud.net:8080/file

Coral
httpprx
dnssrvCoral

httpprx

Coral
httpprx
dnssrv

Coral

dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Getting content with CoralCDN

Origin
Server

Server selection
What CDN node

should I use?

Meta-data discovery
What nodes are

caching the URL?
Browser3

2
1File delivery

From which caching nodes
should I download file?

lookup(URL)

 Participants run CoralCDN software, no configuration

 Clients use CoralCDN via modified domain name
example.com/file → example.com.nyud.net:8080/file

Coral
httpprx
dnssrvCoral

httpprx

Coral
httpprx
dnssrv

Coral

dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Getting content with CoralCDN

Origin
Server

 Goals
 Reduce load at origin server

 Low end-to-end latency

 Self-organizing

Server selection
What CDN node

should I use?

Meta-data discovery
What nodes are

caching the URL?
Browser3

2
1File delivery

From which caching nodes
should I download file?

lookup(URL)

Coral
httpprx
dnssrvCoral

httpprx

Coral
httpprx
dnssrv

Coral

dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Getting content with CoralCDN

Origin
Server

Server selection
What CDN node

should I use?

Meta-data discovery
What nodes are

caching the URL?

 Why participate?
 Ethos of volunteerism

 Cooperatively weather peak loads spread over time

 Incentives: Better performance when resources scarce

Browser3
2

1File delivery
From which caching nodes

should I download file?

lookup(URL)

This talk

Origin
Server

BrowserServer selection
What CDN node

should I use?

1. CoralCDN 2. OASIS

3. Using these for measurements: Illuminati

4. Finally, adding security to leverage more volunteers

[IPTPS ‘03]
[NSDI ‘04]

[NSDI ‘06]

[NSDI ‘07]

Coral
httpprx
dnssrvCoral

httpprx

Coral
httpprx
dnssrv

Coral

dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Meta-data discovery
What nodes are

caching the URL?
Browser3

2
1File delivery

From which caching nodes
should I download file?

lookup(URL)

“ Real deployment ”
 Currently deployed on 300-400 PlanetLab servers

 CoralCDN running 24 / 7 since March 2004

 An open CDN for any URL:
 example.com/file → example.com.nyud.net:8080/file

“ Real deployment ”
 Currently deployed on 300-400 PlanetLab servers

 CoralCDN running 24 / 7 since March 2004

 An open CDN for any URL:
 example.com/file → example.com.nyud.net:8080/file

1 in 3000
Web users

per day

This talk

Origin
Server

BrowserServer selection
What CDN node

should I use?

1. CoralCDN 2. OASIS

3. Using these for measurements: Illuminati

4. Finally, adding security to leverage more volunteers

[IPTPS ‘03]
[NSDI ‘04]

[NSDI ‘06]

[NSDI ‘07]

Coral
httpprx
dnssrvCoral

httpprx

Coral
httpprx
dnssrv

Coral

dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Meta-data discovery
What nodes are

caching the URL?
Browser3

2
1File delivery

From which caching nodes
should I download file?

lookup(URL)

 Given a URL:
 Where is the data cached?
 Map name to location: URL ⇒ {IP1, IP2, IP3, IP4}

lookup(URL) ⇒ Get IPs of caching nodes
insert(URL,myIP) ⇒ Add me as caching URL

 Can’t index at central servers
 No individual machines reliable or scalable enough

 Need to distribute index over participants

Coral
httpprx

URL?
Coral

httpprx

Coral
httpprx

We need an index

,TTL)
for TTL seconds

Strawman: distributed hash table (DHT)

 Use DHT to store mapping of URLs (keys) to locations

 DHTs partition key-space among nodes

 Contact appropriate node to lookup/store key

 Blue node determines red node is responsible for URL

 Blue node sends lookup or insert to red node

URL1 URL2 URL3

URL1={IP1,IP2,IP3,IP4}

lookup(URL1)insert(URL1,myIP)

Strawman: distributed hash table (DHT)

 Partitioning key-space among nodes
 Nodes choose random identifiers: hash(IP)

 Keys randomly distributed in ID-space: hash(URL)

 Keys assigned to node nearest in ID-space
• Minimizes XOR(hash(IP),hash(URL))

0000 0010 0110 1010 11111100 1110
URL1 URL2 URL30001 0100 1011

Strawman: distributed hash table (DHT)

 Provides “efficient” routing with small state
If n is # nodes, each node:
 Monitors O(log n) peers
 Discovers closest node (and URL map) in O(log n) hops
 Join/leave requires O(log n) work

 Spread ownership of URLs evenly across nodes

0010 0110 1010 11111100 11100000

Is this index sufficient?

 Problem: Random routing

URL ⇒ {IP1, IP2, IP3, IP4}

Is this index sufficient?

 Problem: Random routing
 Problem: Random downloading

URL ⇒ {IP1, IP2, IP3, IP4}

Is this index sufficient?

 Problem: Random routing
 Problem: Random downloading
 Problem: No load-balancing for single item

 All insert and lookup go to same closest node

Don’t need hash-table semantics

 DHTs designed for hash-table semantics
 Insert and replace: URL ⇒ IPlast

 Insert and append: URL ⇒ {IP1, IP2, IP3, IP4}

 We only need few values
 lookup(URL) ⇒ {IP2, IP4}

 Preferably ones close in network

Next…

 Solution: Bound request rate to prevent hotspots

 Solution: Take advantage of network locality

Prevent hotspots in index
1 2 3# hops:

 Route convergence
 O(log n) nodes are 1 hop from root

Leaf nodes
(distant IDs)

Root node
(closest ID)

Prevent hotspots in index
1 2 3# hops:

 Route convergence
 O(log n) nodes are 1 hop from root

 Request load increases exponentially towards root

URL={IP1,IP2,IP3,IP4}

Root node
(closest ID)

Leaf nodes
(distant IDs)

Rate-limiting requests
1 2 3# hops:

 Bound rate of inserts towards root
 Nodes leak through at most β inserts per min per URL

 Locations of popular items pushed down tree
 Refuse if already storing max # “fresh” IPs per URL

Root node
(closest ID)

URL={IP1,IP2,IP3,IP4} URL={IP3,IP4}

Leaf nodes
(distant IDs)

URL={IP5}

Rate-limiting requests
1 2 3# hops:

 High load: Most stored on path, few on root

 On lookup: Use first locations encountered on path

Root node
(closest ID)

URL={IP1,IP2,IP3,IP4}

Leaf nodes
(distant IDs)

Theorem: Fixing 1 bits per hop, root receives
 insertion requests per time period

!

" # log2 n

Theorem: Fixing b bits per hop, root receives
 insertion requests per time period

!

" # 2b $1() #
log

b+1 n

b

%

& &
'

((

URL={IP3,IP4}

URL={IP5}

lookup(URL) ⇒ {IP5,}

lookup(URL) ⇒ {IP1, IP2}

Wide-area results follow analytics

 Nodes aggregate request rate: ~12 million / min
 Rate-limit per node (β): 12 / min
 Requests at closest fan-in from 7 others: 83 / min

494 nodes
on PlanetLab

3 β

2 β

1 β

7 β

!

log2(494)" #= 9

Convergence
of routing paths

Next…

 Solution: Bound request rate to prevent hotspots

 Solution: Take advantage of network locality

Cluster by network proximity

 Organically cluster nodes based on RTT
 Hierarchy of clusters of expanding diameter
 Lookup traverses up hierarchy

 Route to node nearest ID in each level

Cluster by network proximity

 Organically cluster nodes based on RTT
 Hierarchy of clusters of expanding diameter
 Lookup traverses up hierarchy

 Route to node nearest ID in each level

Preserve locality through hierarchy
000… 111…Distance to key

None

< 60 ms

< 20 ms

Thresholds

 Minimizes lookup latency
 Prefer values stored by nodes within faster clusters

Reduces load at origin server

Local disk caches begin
to handle most requests

Most hits in
20-ms Coral

cluster

Few hits
to origin

Aggregate thruput: 32 Mbps
100x capacity of origin

Clustering benefits e2e latency
Hierarchy

Lookup and
fetch remains

in Asia
1 global cluster

Lookup and
fetch from

US/EU nodes

2 secs

CoralCDN’s deployment

 Deployed on 300-400 PlanetLab servers

 Running 24 / 7 since March 2004

Current daily usage

 20-25 million HTTP requests

 1-3 terabytes of data

 1-2 million unique client IPs

 20K-100K unique servers contacted (Zipf distribution)

 Varied usage
 Servers to withstand high demand
 Portals such as Slashdot, digg, …
 Clients to avoid overloaded servers or censorship

This talk

Origin
Server

BrowserServer selection
What CDN node

should I use?

1. CoralCDN 2. OASIS

3. Using these for measurements: Illuminati

4. Finally, adding security to leverage more volunteers

[IPTPS ‘03]
[NSDI ‘04]

[NSDI ‘06]

[NSDI ‘07]

Coral
httpprx
dnssrvCoral

httpprx

Coral
httpprx
dnssrv

Coral

dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Meta-data discovery
What nodes are

caching the URL?
Browser3

2
1File delivery

From which caching nodes
should I download file?

lookup(URL)

Strawman: probe to find nearest
mycdn

I
D

B

C

A

E ICMP

E

 Lots of probing
 Slow to redirect
 Negates goal of faster e2e download

⇒ Cache after first lookup?

Browser

What about yourcdn?

mycdn E yourcdn M

 Lots of probing
 Slow to redirect
 Every service pays same cost

Browser

Whither server-selection?

 Many replicated systems could benefit
 Web and FTP mirrors

 Content distribution networks

 DNS and Internet Naming Systems

 Distributed file and storage systems

 Routing overlays

Goal: Knew answer without probing on critical path

 Measure the entire Internet in advance
 Are you mad ?!?!
 Resources are out there…if only can leverage

 OASIS: a shared server-selection infrastructure
 Amortize measurement cost over services’ replicas

• Total of ~20 GB/week, not per service
• More nodes ⇒ higher accuracy and lower cost each

 In turn, services benefit from functionality

[NSDI ‘06]

If had a server-selection infrastructure…

1. Client issues DNS request for mycdn.nyuld.net

2. OASIS redirects client to nearby application replica

mycdn

OASIS core

Client Resolver

1
2

a) Location of client?
b) What live replicas in mycdn?
c) Which replicas are best?

 (locality, load, …)

 Measure the entire Internet in advance

 Reduce the state space

 Intermediate representation for locality

 Detect and filter out measurement errors

 Architecture to organize nodes and manage data

What would this require?

Reduce the state space

mycdn yourcdn

18.0.0.0/8

 3-4 orders of magnitude by aggregating IP addresses

 [IMC ‘05]: nodes in same IP prefix are often close
 99% of prefixes with same first three-octets (x.y.z.*)

 Dynamically split prefixes until at same location

Representing locality

mycdn yourcdn(12,-14,81) (52,34,5)

[IPTPS ‘05]

 Use virtual coordinates?
 Predicts Internet latencies, fully decentralized

 But designed for clients participating in protocol

 Cached values useless: Coordinates drift over time

18.0.0.0/8

Representing locality

mycdn yourcdn(42N,71W)

9 ms(39N,74W)

(28N,8E)

93 ms

 Combine geographic coordinates with latency
 Add’t assumption: Replicas know own geo-coords

 RTT accuracy has real-world meaning
• Check if new coordinates improve accuracy

18.0.0.0/8

3 ms
(39N,74W,9ms)(42N,71W,3ms)

Representing locality

Correlation b/w geo-distance and RTT

Designing for high-density deployments

More nodes
participate

Higher
accuracy

Measurements have errors

 Many conditions cause wildly wrong results
 Need general solution robust against errors

Probes hit local web-proxy,
not remote location

Israeli node 3 ms from NYU ?

Finding measurement errors

 Require measurement agreement
 At least two results from different services must

satisfy constraints (e.g., speed of light)

mycdn yourcdn

 OASIS core
 Global membership view
 Epidemic gossiping

• Scalable failure detection
• Replicate network map

 Consistent hashing
• Probing assignment, liveness of replicas

 Service replicas
 Heartbeats to core
 Meridian overlay for probing

• O(log2 n) probes finds closest

OASIS core

Engineering… (Lessons from Coral)

E2E download of web page

290% faster than on-demand

500% faster than RRobin

Cached virtual coords
highly inaccurate

Deployed with thousands of replicas
 AChord topology-aware DHT (KAIST)

 Chunkcast block anycast (Berkeley)

 CoralCDN content distribution (NYU)

 DONA data-oriented network anycast (Berkeley)

 Galaxy distributed file system (Cincinnati)

 Na Kika content distribution (NYU)

 OASIS: RPC, DNS, HTTP interfaces

 OCALA overlay convergence (Berkeley)

 OpenDHT public DHT service (Berkeley)

 OverCite distributed library (MIT)

 SlotNet overlay routing (Purdue)

Systems as research platforms

 Measurements made possible by CoralCDN
 Can’t probe clients behind middleboxes
 CoralCDN clients execute active content

Measuring the edge: illuminati
 DNS redirection: Clients near their nameservers?

 Mostly within 20ms; diminishing returns to super-optimize

 Client blacklisting: Safe to blacklist an IP?
 Quantify collatoral damage: NATs small, DHCP slow

 Client geolocation: Where are clients truly located?
 Product for real-time proxy detection with Quova

[NSDI ‘07]

Use of anonymizer networks by single class-C network

 Cooperative content distribution
 Locate and deliver cached content ⇒ CoralCDN
 Select good servers ⇒ OASIS

 Adding security enables untrusted resources
 Shark: scaling distributed file systems

• Mutually-distrustful clients use each others’ file caches

Security too…

Theme throughout talk: How to leverage previously
untapped resources to gain new functionality

[NSDI ‘06]

 Encode blocks of large file, block negotiation unneeded
 Exponential number of potential code blocks

 Prevents traditional hash trees for verification

 Instead, hashing based on homomorphic accumulator
 Given h(f1), h(f2), c1+2 = f1+f2, compute h(c1+2) = h(f1)⋅h(f2)

 By batching PK operations, can verify at 60 Mbps

σ()

Large-file delivery via rateless erasure codes
[S&P ‘04]

file blocks
code blocks ...

hash tree

Need not be security or functionality

 Private matching (PM)
 Parties compute set intersection (oblivious polynomials)
 P encodes xi’s
 e.g., Passenger manifests ∩ govt. no-fly lists
 e.g., Social path in email correspondence for whitelisting

 Private keyword search (KS)

[EUROCRYPT ‘04]

[TCC ‘05]

[NSDI ‘06]
∀yi, E(riP(yi) + yi) ⇒ O(n lg lg n)

Future: Securing and managing
distributed systems

 Building and running large-scale systems difficult
 Security, managability, reliability, scalability, …
 Especially when decentralized, untrusted, …
 Hard to reason about, hard to audit, hard to ensure QoS, …

 New architectures
 Ethane: auditable, secure enterprise networks

 New algorithms
 Smaller groups with well-defined properties

 New tools
 Tracing transactions across hosts

[IPTPS ‘06]

[Sec ‘06]

Research approach

 Today:
 Techniques for cooperative content distribution
 Production use for 3 years, millions of users daily

 Generally:
 New functionality through principled design

• Distributed algorithms, cryptography, game theory, …

 Build and deploy real systems
• Evaluates design and leads to new problems
• Hugely satisfying to have people use it

Thanks…

source code (GPL), data, papers available online

www.coralcdn.org

