
Bringing P2P to the Web:
Security and Privacy in the Firecoral Network

Jeff Terrace, Harold Laidlaw, Hao Eric Liu, Sean Stern, and Michael J. Freedman
Princeton University

Abstract

Peer-to-peer systems have been a disruptive technology for
enabling large-scale Internet content distribution. Yet web
browsers, today’s dominant application platform, seem in-
herently based on the client/server communication model.

This paper presents the design of Firecoral, a browser-
based extension platform that enables the peer-to-peer
exchange of web content in a secure, flexible manner.
Firecoral provides a highly-configurable interface through
which users can enforce privacy preferences by carefully
specifying which content they will share, and a security
model that guarantees content integrity even in the face of
untrusted peers. The Firecoral protocol is backwards com-
patible with today’s web standards, integrates easily with
existing web servers, and is designed not to interfere with a
typical browsing experience and publishing ecosystem.

1 Introduction

Peer-to-peer content distribution has been inarguably suc-
cessful for large file distribution (e.g., BitTorrent [2]). These
protocols account for a large fraction of Internet traffic, and
they have spawned their own body of research, whether
focusing on performance, fairness and incentives, network
friendliness, or resource efficiency. Peer-to-peer (P2P) pro-
tocols are attractive from the perspective of both content
publishers (who can significantly save on upload bandwidth
and server provisioning) and potentially even ISPs (who can
reduce inter-AS transfers if protocols are ISP friendly [7]).

As of yet, however, P2P services have been restricted
to stand-alone applications, not transparently incorpo-
rated into Web browsing and seamlessly running over
HTTP. If indeed the now-trite statement is true—that “web
browsers are the new operating systems”, especially consid-
ering technologies [3, 13] which further enhance browser
capability—then P2P exchanges are once again absent. For
the browser is built around the identifying primitive of a do-
main name. Conflating naming, location, and authorization,
browsers use domains both to specify where to retrieve con-
tent (web objects) and what security policies to enforce on

downloaded objects. This design conflation seems antithet-
ical to P2P systems.

There have been some attempts [11, 6, 10] to build P2P-
like web content distribution networks (CDNs), most no-
tably our own CoralCDN [5]. CoralCDN has been deployed
continuously on the PlanetLab research platform for almost
five years, receiving requests from around a million users
(unique client IPs) per day. However, while CoralCDN was
designed to be highly scalable through a DHT-like content
discovery mechanism, it always remained on PlanetLab and
thus never operated in a more “peer-to-peer” fashion. Not
surprisingly, this restricted deployment became a major lim-
itation: CoralCDN’s bandwidth demands surpassed Planet-
Lab’s available capacity within its first year, leading us to
deploy fair-sharing algorithms that reject large numbers of
requests for popular domains [4]. But there’s good reason
for this deployment restriction, as malicious proxies other-
wise could have returned spam, malware, advertisements,
or other modified content to unsuspecting web clients.

We are building a new system, Firecoral, that seeks to
overcome these limitations and realize P2P web content dis-
tribution. With client software implemented as a browser
extension, Firecoral allows users to perform multi-source
downloading (via HTTP Range Requests) between partici-
pating users and thus, in some sense, “share” their browser
caches. This paper focuses on several key aspects of Fire-
coral’s design that we believe are important for the wide
adoption of a P2P-based web CDN.

For content providers that adopt Firecoral to reduce band-
width consumption, the system should

• Integrate easily into existing web servers and provide
a familiar user experience,

• Support both Firecoral and non-Firecoral clients si-
multaneously for backwards-compatibility, and

• Not interfere with existing advertisements, analytics,
etc. that are in use by servers.

For clients that seek to adopt Firecoral, the system should

• Be easy to install and transparent to use,

• Provide content integrity (security) of web content,
even if content is fetched from untrusted peers and

1

even if its origin server has not adopted Firecoral it-
self, and

• Respect privacy/sharing policies through powerful,
easy-to-use configuration management.

The remainder of this paper is organized as follows. Sec-
tion §2 presents Firecoral’s architecture and protocols, in-
cluding the cryptographic mechanisms by which it ensures
the integrity of P2P content. Section §3 describes how
Firecoral allows users to flexibly specify what content they
wish to share—via programmable “opt-in” configuration
expressions—to manage its privacy implications. We con-
clude with some performance benchmarks in §4.

Focusing on security, privacy, and usability, this paper
is not about the two main properties that are of typical in-
terest in the P2P-CDN literature: performance and incen-
tives. While using HTTP Range Requests to specify peer
exchanges [9], Firecoral is free to implement any combi-
nation of peer-selection and chunk-scheduling algorithms
to improve performance. Considering incentives, however,
leads to new research questions. Traditional bilateral-barter
approaches (such as BitTorrent’s rate-based tit-for-tat [2])
are unlikely to work well in this setting, as web objects are
often quite small and have very low latency requirements.
Incentivization approaches based more on stored value may
be more applicable (e.g., PACE [1]), although we leave this
research direction to future work.

2 System Architecture
Firecoral enables peers to cooperatively disseminate content
by sharing their browser caches. The high-level Firecoral
architecture has four main components: browser clients (or
peers), origin servers that publish content, tracker(s) that
store peering information and content metadata, and crypto-
graphic signing service(s) that authenticate content. These
latter three services can be run by separate administrative
entities or in more complex combinations. Peers can inter-
act with Firecoral-unaware origin servers, but any content
downloaded from them must be authenticated by a signing
service before it can be shared with other peers. Firecoral
is not designed to work with completely unmodified clients
(unlike [5]), who are otherwise unable to verify the integrity
of content downloaded from untrusted peers.

We foresee two main types of trust relationships govern-
ing the Firecoral ecosystem. In the first, a tracker trusts
a particular signing service to authenticate content for any
domain. This can be because both logical entities are run by
the same party, or because the signing service plays a spe-
cial trust role in the network (much like certificate author-
ities such as Verisign do for the Web). Our initial deploy-
ment will be of this type: We will operate both a tracker
for any domain (likely based out of a cluster at Princeton)

Standard
 Path

Firecoral
Proxy

Browser
Cache

Peers

config

Browser

Figure 1: Firecoral-Enabled Browser Control Path

as well as a signing service that it trusts (deployed across
PlanetLab to satisfy its resource requirements). This design
supports P2P exchange even for unmodified origins.

In the second scenario, an origin server trusts a particular
signing service to authenticate content for its domain. This
again may be because the origin server itself runs the sign-
ing service, or because it again explicitly trusts some third
party like Verisign. A third-party tracker may not be aware
of such a trust relationship, so it would need to verify the
origin’s authorization on demand.

In general, we envision multiple different Firecoral de-
ployment scenarios to coexist, much as there exists a vi-
brant BitTorrent ecosystem: from publisher-run trackers, to
access-controlled private trackers, to large centralized track-
ers such as The Pirate Bay [12] (which serves more than
18M concurrent peers in over 1.5M torrents), and to tran-
sient trackers selected from a DHT.1

In the next section, we detail the protocol interactions be-
tween these four parties.

2.1 Firecoral Browser Extension
We now describe Firecoral’s client-side behavior. Firecoral
is functionally implemented as a browser extension (cur-
rently for Firefox) that operates a local proxy to accept both
local and remote HTTP requests. We designed this exten-
sion with three goals in mind:

1. Expose the user’s web browser cache for remote peer
transfers.

2. Provide a powerful configuration interface to allow the
user to specify exactly what web content is shared.

3. Guard the user from possible malicious content in-
jected by other users.

1This paper does not consider untrusted trackers. Similar to BitTor-
rent, however, a Firecoral tracker really only needs to be trusted to provide
availability, not integrity, at a small additional client-side verification cost.

2

The Firecoral proxy operates in a background thread within
a user’s browser. When the user makes an HTTP request,
a Firecoral request manager checks the URL against the
user’s dynamically configured whitelist (further explained
in §3) and either forwards the request to the local Fire-
coral proxy or to the browser’s standard processing path.
This basic browser architecture is shown in Figure 1. The
proxy handles requests coming from the local browser as
well as remote installations of Firecoral in peer browsers.
The Firecoral proxy uses the same disk cache as the stan-
dard browser, preventing Firecoral from wasting additional
disk space of the client.

We first consider the simple case that a client ac-
cesses a whitelisted domain using a pre-configured tracker.
When the Firecoral proxy receives a request from the local
browser, it sends the URL to this tracker (step 1 of Figure 2).
The tracker responds with one of three possible messages:

Content at Peers. The proxy first receives a list of con-
tent chunks that comprise the web object, as well as peers
known to be storing the chunks. Next (Step 2 of Fig.2(a)),
the proxy attempts to download these chunks from peers in
parallel. Upon receiving a download request, the proxies
running on these remote peers check both if the requested
URL (or Range Request for the URL) is cached locally,
as well as if their local sharing policy permits access to
this content. If fetching the URL’s content from its peers
is successful (and content verified against tracker-supplied
hash information), the local proxy returns the data to the
browser, and registers itself with the tracker as storing the
URL chunks (Step 3 of Fig.2(a)).

URL Not Found. If the tracker is unaware of the re-
quested URL, no Firecoral user has yet added the URL to
the tracker. So, the proxy attempts to retrieve the content
from its origin server (Step 2 of Figs.2(b) and 2(c)) in order
to make it subsequently available via Firecoral.

Consider first the case when the origin server oper-
ates a colocated signing service. Then, upon receiving a
HTTP request from a Firecoral client, it defines a chunk-
ing scheme over the URL’s web object, signs the object
and these chunks, and returns the result in HTTP response
headers. (We detail the specific security mechanisms in
§2.3.) The client subsequently submits this metadata to the
tracker (Step 3 of Fig.2(b)). The tracker in turn verifies the
content’s signature, retrieving the origin’s public key on-
demand if necessary (Step 4 of Fig.2(b)) before caching it.

On the other hand, Firecoral is also designed for unmod-
ified origin servers. In this case, the client proxy must still
retrieve a valid signature on the content, so after download-
ing a vanilla web object from the origin server (Step 2 of
Fig.2(c)) and returning it to the browser, it forwards a re-
quest to a signing service (Step 3 of Fig.2(c)). The signing
service cannot just blindly trust that the client submits to it

the URL’s correct content however, so it in turn retrieves the
URL from the origin server itself (Step 4). The signing ser-
vice applies some chunking scheme over its retrieved con-
tent, computes a signature, and returns the results. Finally,
the client submits this content to the tracker (Step 5). If
the signing service is not explicitly trusted by the tracker, it
may query the origin server to verify that the signing ser-
vice is authorized to speak for it (not shown), information it
also caches. Once verified, the tracker adds the URL to its
database. Of course, this extended process occurs when a
new URL is introduced to the tracker.

URL Expired. Every mapping from URL to content
(chunks) at the tracker is associated with an expiration date.
If that date has passed, the proxy will try and retrieve a new
version of the content from the origin server (or simply a
Not-Modified message), retrieve a signature, and up-
date the tracker. If the origin server fails, the proxy will
attempt, instead, to fetch the content from the peer list of
the most recently expired version of the URL.

This protocol description was from the perspective of
a client-initiated Firecoral request, e.g., the client had the
URL whitelisted. (We discuss such configuration further in
the next section.) Another strategy for server offloading is
driven by server-side adoption: Origin servers can respond
to HTTP requests from Firecoral-aware clients with redirec-
tion messages to an appropriate tracker.

One implicit security assumption in these protocols is
that an adversary cannot hijack DNS or TCP requests; a
similar assumption governs non-SSL web security today.
Alternatively, one could require that all server-side parties
have SSL certificates and that communication between orig-
in/tracker, origin/signer, and tracker/client uses https.

2.2 Tracker

The responsibility of the Firecoral tracker is to provide peer
discovery to users. The tracker—currently implemented
in PHP with a memcached, MemcacheDB, and MySQL
backend—maintains a set of known URLs, each mapped
to a list of chunks. Each chunk is mapped to the set of
peers currently storing the content. The tracker will only
accept a new URL mapping if it is newer than the existing
one (according to its signature) and if the signature verifies.
The signature should be generated by one of a list of trusted
signing services (public keys) acceptable for any domain,
or by a key approved by the URL domain’s origin server
(as verified through a publickeys.txt HTTP request
to the origin, as in Step 4 in Fig.2(b)).

Upon downloading an object chunk, clients report their
caching status to the tracker, which adds them to its list of
known cache points. When a URL is requested, the tracker
returns some subset of each chunks’ peers to the client.

3

Origin Server
Tracker

Client
Peers

1

2

2

3

(a) P2P Exchanges on Known URLs

Origin Server
Tracker

Client
Peers

2

4

1
3

(b) Retrieving Content from a FC-Aware Origin

Origin Server
Signing Service Tracker

Client

1
2

3

4

5

(c) Authenticating Content with a Signing Service

Figure 2: Protocol Interactions between Firecoral Participants

The tracker additionally keeps track of the last time it has
received communication from each Firecoral peer. When
a pre-configured length of time has passed without any
communication (and no persistent TCP connection between
client and tracker exists), the tracker removes the client
from any chunk it was listed as storing. Unlike typical
browsers, however, our client implementation is designed
for unreliable peers, so chunk requests are issued in parallel
and quickly fail over to handle unresponsiveness.

2.3 Signing Service

The signing service serves as a trusted third-party that vali-
dates content hashes. Without this service, malicious users
could send arbitrary content to their peers, posing a huge
security risk to Firecoral users. As mentioned above, the
tracker will only accept URLs that are accompanied with
a content hash signed by the signing service. To initiate a
request, a client sends 〈url, hbody〉 to the signing service,
where hbody is the SHA-256 hash H of the body of the doc-
ument (fetched earlier from the origin server). The signing
service then itself fetches the document, D, located at the
given URL, and computes hD, the SHA-256 hash H of the
body of D. To support parallel downloading of larger ob-
jects, the signing service also breaks D into a set of smaller
chunks. While our current implementation uses fixed-size
chunks of 50 KB (except for a final 25–75 KB chunk), it’s
important to note that the chunking scheme can differ per
signing service and per object, as the size of each chunk
is fully specified in object metadata. Thus, a signing ser-
vice could as easily implement semantic chunking, such as
through Rabin fingerprints [8].

To allow peers to validate the integrity of individual
chunks, the signing service computes the following tuples:

hchunk,i = 〈 starti, endi, H (D [starti : endi])〉
hchunks = [hchunk,1 , hchunk,2 , . . . , hchunk,N]

The signing service then uses its private signature key, k, to
sign the following message:

σ = Sigk (url, hD, hchunks, hdrs, tnow, texp)

where hdrs is a subset of HTTP headers from the origin
server, tnow is the timestamp of the request, and texp is the
expiration date of the signature (likely at least as long as
the document’s HTTP expiry time). Our current implemen-
tation uses RSA-PSS signatures with 1024-bit keys. The
following is then sent back to the client:

〈 σ , url, hD, hchunks, hdrs, tnow, texp, [D] 〉

where D is only included if hD 6= hbody. (Note that the prior
downloaded content can be displayed to the client’s user,
but D is replaced in its browser cache, as only this version
of the web object has been verified by a signing service and
thus valid for sharing.) This design choice, as opposed to
having clients always downloading content directly through
the signing service, is a trade-off focused on minimizing the
signing service’s upstream utilization.

The client will subsequently submit this information (mi-
nus the actual D) to the tracker, who verifies σ . When
other clients subsequently make requests to the tracker, it
returns the 〈starti,endi,hchunk,i〉 for each chunk.2 Then, as a
client’s Firecoral proxy downloads chunks from other peers,
it verifies that H(chunki) = hchunk,i before returning it to the
client.

3 Configuration Management
So far, we’ve focused on how to incorporate secure peer-to-
peer sharing with Firecoral, not when to actually do so. Our
process balances two sets of conflicting interests.

On one hand, using Firecoral could enable clients to
access content that would be otherwise unavailable due

2If the tracker is only trusted for availability, but not content integrity,
it should also return the actual σ to be verified by the client, but we do not
currently implement this case.

4

to under-provisioned servers, to possibly improve perfor-
mance given geographic distributions of clients and servers,
to circumvent censorship or blocking restrictions, or to gain
potential privacy benefits with respect to origin servers by
avoiding them directly in many cases.

On the other hand, performance would certainly suffer
with respect to accessing content from well-located, pro-
visioned websites or commercial CDNs. Firecoral should
not noticeably interfere with existing advertisement or ana-
lytics methods desired by servers. Personalized or private
data should not be exposed by users, and clients should
have flexible and powerful control over what content is re-
trieved from origin servers and what from Firecoral peers,
as the very act of requesting certain content from a Fire-
coral tracker and other peers has definite privacy implica-
tions: they see what URLs you download from them.

3.1 Enforcement Mechanisms
This section describes the configuration mechanisms by
which Firecoral clients can specify their sharing policies. At
a high-level, Firecoral allows users to both whitelist (opt-in)
and blacklist (opt-out) of domains and/or URLs.

Whitelisting content on a per-domain or per-URL basis
(e.g., http://*.example.com/*) means that clients
can a priori specify a set of domains for which Firecoral
should attempt to cooperatively retrieve content from other
peers. A client’s settings may be based on these do-
mains’ chronic under-provisioning, geographic proximity,
or content-blocking practices, as well as client privacy pref-
erences. We should note, however, that such a mechanism
does nothing to alleviate the phenomenon of transient un-
availability caused by flash crowds or temporary server fail-
ures, which we address next in §3.2.

Blacklisting on a per-domain or per-URL basis allows
a client to override the use of Firecoral, either because a
server adopts it (per Figure 2(b)) or through dynamic adop-
tion (described next). To avoid server redirection, Firecoral
headers are omitted when issuing HTTP requests to black-
listed origins. Firecoral additionally will not cooperatively
share (or register with a tracker) content that is marked as
private, marked as no-cache, the result of a POST
operation, or some form of similarly personalized content.

3.2 Handling Flash-Crowd Scenarios
The so-called “Slashdot effect” may seem challenging to
mitigate transparently. It does not affect the news ag-
gregators or portals for which it is blamed—Slashdot,
Digg, BoingBoing, and so on—but rather the often under-
provisioned, and almost always unsuspecting, websites to
which they link. Whitelisting the portals themselves has no
effect, as they have well provisioned and highly redundant
server architectures. Requiring adoption by these portals

< div type =" s t o r y " c l a s s =" a r t i c l e ">
< div c l a s s =" body " id =" fhbody −3011301 ">

< div id =" t e x t −3011301 ">
The f i r s t f l y i n g a u t o . . . The <a hre f =
" h t t p : / / www. t e r r a f u g i a . com / a i r c r a f t . h tml ">

T e r r a f u g i a T r a n s i t i o n < / a> , which can
. . .

< / div >
< / div >

< / div >

Figure 3: An example of Slashdot’s article HTML. The
following XPath query would match all external links
from articles and comments: //div[@class=’body’ or
@class=’commentBody’]/descendant::a[starts-with(@href,
’http://’)].

is unattractive from a deployment standpoint. Finally, sim-
ply extending whitelisting to Referer headers disregards
our ad-friendly goals: such a rule captures too many sites
(third-party image hosting, CDNs, advertisement networks,
analytics services, etc.) in its broad net.

The solution, therefore, seems to be domain- or URL-
specific parsing rules that characterize individual links on
these pages. One could imagine a simple strategy: A pars-
ing engine applies these rules to content as it is being ren-
dered in the browser. When it discovers a link, it inserts the
full URL being referenced into the Firecoral whitelist, mark-
ing the URL with some short time-to-live value. Subsequent
requests to this URL will thus transparently go through Fire-
coral, rather than directly to its origin server.

Fortunately, modern HTML programming practices offer
a nice solution. Many portals or aggregators have a simi-
lar textual and presentation styling for their content, such
as a vertically-oriented list and synopsis of articles or links.
Thus, through classic abstraction, they typically represent
these like content elements with a common name—a dis-
tinct CSS class—that will specify their visual properties.
From our perspectives, this enables us to write very simple
rules with which to parse the HTML pages: Specifically,
use an XML Path Language (XPath) query that extracts
URLs (in href’s) located within a specified Document Ob-
ject Model (DOM) class, as shown in Figure 3 for an ex-
ample Slashdot article.3 These queries are simple to write,
highly similar or identical across domains, and only extract
the desired links (e.g., those within news or story articles).
Thus, sites with a higher likelihood of being transiently
under-provisioned can be mirrored and shared automati-
cally by Firecoral users as soon as they appear on a news
aggregator site. On the other hand, highly-provisioned sites
like CNN—or undesirable domains for privacy reasons—

3Coincidentally, this article posting of Jan 12, 2009 caused the band-
width quota of the linked site to be quickly exceeded, leading to its hosting
service to return an error code for the page.

5

http://*.example.com/*

Obj. Size Latency (ms) Throughput (resp/s)
500B 6.93 356.76
5KB 7.39 340.99

50KB 9.79 284.65
500KB 13.72 197.72

Figure 4: Mean latency and throughput microbenchmarks for
the Firecoral signing service.

can be avoided by a client through simple domain black-
listing. Since most users will probably want to maintain
similar whitelists and blacklists, Firecoral will support sub-
scriptions for common usage patterns, as is already done in
many Firefox extensions (e.g., for AdBlock+ filters).

4 Benchmarks
Our prototype implementation consists of a tracker written
in 1000 lines of PHP, a signing service written in 700 lines
of Python, and a Firefox extension written in 7000 lines of
JavaScript, XUL, and CSS. Our extension implements a full
HTTP proxy server in JavaScript, utilizing Mozilla’s XP-
Connect API to use low-level network functions. Although
our deployment is currently limited to Firefox, the Firecoral
API is open for implementation in other platforms.

Signing service microbenchmarks. We have imple-
mented a prototype signing service in Python running on
Apache’s mod_python. To test its performance capa-
bilities, we placed varying size files on a web server, in-
stalled the signing service on a second web server, and used
the Apache Benchmark (ab) utility to request the files be
signed. All three machines had Intel Xeon quad-core 2GHz
processors, connected on a 1GBit network. Figure 4 shows
the results of our tests.

Even though throughput is somewhat low, recall that the
signing service is only invoked the first time a URL is added
to the tracker or when a URL expires. Also, the signing ser-
vice can be scaled out to multiple servers that share a single
private key—increasing throughput linearly with the num-
ber of servers. This performance is likely due to Python’s
overhead; the actual 1024-bit RSA-PSS signature (which
uses the native Crypto++ library) takes less than 1.2ms on
one core. In the future, we may implement the signing ser-
vice in a faster environment (e.g., C++).

Browser performance impact. The configuration system
of §3 needs to seamlessly integrate into the browser with-
out noticeably impacting performance. The list of XPath
configuration rules is indexed by domain name, so when a
browser page is loaded, a simple hash-table lookup is per-
formed to test if the domain is in the rule set (or, more pre-
cisely, a lookup is performed per subdomain). If a match

occurs, the XPath query specified is run on the page’s DOM.
When evaluating Slashdot’s front page, Firecoral processes
50 URL additions into the transient whitelist in less than
3ms; extracting out 15 URLs from digg takes less than 1ms.

5 Conclusions
This paper introduces Firecoral, a P2P web-CDN designed
around the idea of turning client browsers into servers
and transparently sharing their caches. We specifically fo-
cused on issues of security, privacy, and usability, all crit-
ical aspects of P2P system design, yet mostly ignored in
prior work. An initial implementation of Firecoral appears
promising, yet several important problems remain. These
range from research questions—such as the choice of peer-
ing algorithms and incentive strategies—as well as prac-
tical deployment issues such as NAT hole punching and
tracker scalability. An alpha version of our Firecoral ex-
tension is currently available for download at our website at
http://www.firecoral.net/.

References
[1] C. Aperjis, M. J. Freedman, and R. Johari. Peer-assisted con-

tent distribution with prices. In Proc. SIGCOMM CoNext,
Dec. 2008.

[2] B. Cohen. Incentives build robustness in BitTorrent. In Proc.
P2P-ECON, June 2003.

[3] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leverag-
ing legacy code to deploy desktop applications on the web.
In Proc. OSDI, Dec. 2008.

[4] M. J. Freedman. Democratizing Content Distribution. PhD
thesis, New York University, 2007.

[5] M. J. Freedman, E. Freudenthal, and D. Mazières. Democ-
ratizing content publication with Coral. In Proc. NSDI, Mar.
2004.

[6] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentral-
ized peer-to-peer web cache. In Proc. PODC, July 2002.

[7] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should
Internet service providers fear peer-assisted content distribu-
tion? In Proc. IMC, Oct. 2005.

[8] A. Muthitacharoen, B. Chen, and D. Mazières. A low-
bandwidth network file system. In Proc. SOSP, Oct. 2001.

[9] K. Park and V. S. Pai. Scale and performance in the CoBlitz
large-file distribution service. In Proc. NSDI, May 2006.

[10] D. Serenyi and B. Witten. RapidUpdate: Peer-assisted dis-
tribution of security content. In Proc. IPTPS, Feb. 2008.

[11] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer caching
schemes to address flash crowds. In Proc. IPTPS, Mar. 2002.

[12] The Pirate Bay. http://thepiratebay.org/, Jan 12 2009.
[13] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Or-

mandy, S. Okasaka, N. Narula, and N. Fullagar. Native
Client: A sandbox for portable, untrusted x86 native code.
In Proc. Symp. on Security and Privacy, May 2009.

6

http://www.firecoral.net/

	Introduction
	System Architecture
	Firecoral Browser Extension
	Tracker
	Signing Service

	Configuration Management
	Enforcement Mechanisms
	Handling Flash-Crowd Scenarios

	Benchmarks
	Conclusions

