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Abstract—Modern consumer devices, like smartphones and
tablets, have multiple interfaces (e.g., WiFi and 4G) that attach
to new access points as users move. These mobile, multi-homed
computers are a poor match with an Internet architecture that
binds connections to fixed endpoints with topology-dependent
addresses. As a result, hosts typically cannot spread a connection
over multiple interfaces or paths, or change locations without
breaking existing connections.

In this paper, we create an end-to-end connection control
protocol (ECCP) that allows hosts to communicate over multiple
interfaces with dynamically-changing IP addresses and works
with multiple data-delivery protocols (i.e., reliable or unreliable
transport). Each ECCP connection consists of one or more flows,
each associated with an interface or path. Through end-to-end
signaling, a host can move an existing flow from one interface
to another, or change its IP address, without any support from
the underlying network. We develop formal models to verify that
ECCP works correctly in the presence of packet loss, out-of-order
delivery, and frequent mobility, and to identify bugs and design
limitations in earlier mobility protocols.
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I. INTRODUCTION

The end-to-end argument is a classic design principle of the
Internet. This simple yet powerful idea—that end-hosts should
manage their own communication without the involvement of
intermediaries—was a major factor in the huge success of the
Internet. However, because TCP/IP was designed at a time
when hosts were stationary and single homed, it has been
hard to retrofit support for mobility and multihoming without
violating the original design principle. Hence, most existing
mobility solutions do not work end-to-end [3, 14, 19], and
instead involve redirecting traffic through middleboxes (like
home agents in Mobile IP), requiring network support and
potentially inefficient “triangle routing.” While these network
layer solutions require minimal changes to end-hosts, they
interact poorly with existing transport protocols (e.g., TCP
cannot distinguish congestion from loss during mobility) and
has no proper support for multihoming (e.g., individual data
flows cannot migrate between network interfaces). Other solu-
tions, like placing multiple wireless access points in the same
virtual LAN (VLAN), support only limited mobility within
a single subnet. Previous research proposals have proposed
flat addressing to allow hosts to retain their addresses as they
move [19], requiring a new routing infrastructure with new
scalability and deployment challenges.
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Fig. 1. The TCP/IP transport layer broken up into two sublayers, with ECCP
operating below data delivery.

Instead of adding new functionality in the network, we
argue that we should return to the principles of the end-
to-end argument and change the end-host stack to support
path multiplicity (where a single connection may be spread
over multiple interfaces or paths) and location dynamism
(where hosts can change locations without breaking ongoing
connections). However, prior end-to-end solutions target only
specific transport protocols, and are either under-specified [7]
or exhibit incorrect behavior [12, 18], as we show in §III-C. To
conclude, there is currently no solution for location dynamism
and path multiplicity that occupies the middle ground, being
both end-to-end and in-stack, yet working across multiple
transport protocols.

The key to this middle ground, we argue, is to separate
out the functionality of the current transport layer into two
sublayers: (i) connection control (e.g., starting and stopping
connections and their constituent flows, and changing their
associated addresses) and (ii) data delivery functionality (e.g.,
reliability, congestion control, and flow control—the function-
ality found in the “established” state of TCP), as shown in
Figure 1. Decoupling the functionality of these two sublayers
allows us to engineer a new end-to-end connection control
protocol (ECCP) that sits above the network layer and works
for multiple data delivery protocols.

The sublayer functionality offered by ECCP is markedly
different from typical “layer 3.5” designs, like HIP [12] and
LISP [3], which define new host/endpoint name layers to hide
address changes from the stack rather than actively dealing
with them through connection control. ECCP does not need
invariant host/endpoint names; it only requires a peer’s current
address to initiate communication and can then, using end-to-
end connection control, track changes in addresses on-the-fly



and inform all of its correspondent hosts. Path multiplicity is
supported by allowing a single connection to consist of one or
more flows, each associated with an interface or path, similar
to MPTCP [5]. Unlike MPTCP, however, the base functionality
is reusable by any data delivery protocol, and flows can further
change interfaces or addresses over time, without breaking the
associated connection. Most existing solutions for mobility
either do not handle path multiplicity or work on a per-
interface instead of a per-flow basis, limiting the flexibility
with which multipath and multihoming protocols can respond
to mobility. Conversely, ECCP allows for the migration of
individual flows independently, allowing better load balancing
and more expressive policy for different types of flows.

Yet end-to-end control protocols like ECCP are notoriously
hard to get right. This is exacerbated by subtle corner cases
inherent to communication in an unreliable medium and the
dynamism caused by device mobility and VM migration.
Fortunately, separating connection control and data delivery
simplifies the design, engineering, and verification of the
protocol. For example, creating a separate version number
space for connection control allows us to have a more efficient
versioning semantics for control messages than those required
for data delivery (see §III-C). For verification, this separation
of responsibilities allows us to create smaller, independent
models for each component, making it easier to prove the
correctness of their composition.

To ensure the correctness of ECCP, we modeled the protocol
in SPIN [8], formally verifying that it is free from livelocks
and deadlocks. To our knowledge, this is the first mobility
protocol to be formally verified; the development of this
model is one of our contributions. A unique trait of our
model is the inclusion of network packet loss, duplication,
and reordering. Most previous works on network verification
either did not model message loss [16] or did not model
packet reordering [10, 11, 17]. Fersman and Jonsson [4] did
model lossy, reordered channels but did not give any details or
analysis of their method of doing so. They also limited their
analysis to safety properties that did not test for livelocks.

In the process of verifying ECCP, we found bugs with
both our original design and an earlier mobility protocol [18].
We used our verified model to construct a detailed state-
transition diagram for the protocol, which guarantees that
connectivity is preserved in the face of location dynamism and
path multiplicity. This model and state diagram also formed
the foundation of our implementation of ECCP [13], which
runs in the Linux kernel and is based on its existing TCP
implementation. By simply replacing the connection control
in TCP with ECCP, we leverage TCP’s existing data delivery
functionality and highly optimized code. Further, since ECCP
is logically separate from TCP, we have also been able to
implement a connected datagram protocol with minimal effort.
Our implementation is deployable on today’s Internet and can
work with unmodified hosts through a translator.

The remainder of this paper is organized as follows. In §II,
we discuss the requirements of a connection control protocol
and analyze related work. We present our protocol in §III and

illuminate the design space by highlighting our decisions. In
§IV, we describe the verification of this protocol in SPIN, and
§V discusses some use cases. We address protocol security
in §VI and the thorny problem of simultaneous movement in
§VII. Finally, we discuss how ECCP can be used with NAT
boxes in §VIII, before concluding.

II. PROTOCOL REQUIREMENTS AND RELATED WORK

In this section, we define requirements to be met by an end-
to-end connection control protocol to correctly handle both
location dynamism and path multiplicity. We also discuss past
works and why they do not meet our requirements.

A. Protocol Requirements

In today’s network stack, the transport layer is responsible
for establishing a connection to another endpoint, and then
taking an application stream and dividing it into packets to
send over the connection. On the receiving side, the transport
layer demultiplexes packets based on a five tuple (IP addresses,
ports and protocol number) and reassembles the application
stream (while correcting for packet loss and reordering). This
conflates data delivery and connection control functionality.
In this work, we treat connection control and data delivery as
logically separate, focusing on the requirements of connection
control.

Traditionally, connection control happens at the beginning
and the end of a connection, i.e., when establishing and tearing
down a flow. However, to support mobility, connection control
should fulfill the following requirement: two communicating
hosts are guaranteed continued connectivity even when the
network addresses of either host changes or some (but not
all) of its interfaces go down.

Support for this requirement is frustrated today by the
overloading of IP addresses to indicate both the location and
identity of a host. This overloading leads to broken connec-
tions whenever hosts move and change their addresses, or
when they switch their data flows from one network interface
to another. A change in address (i) invalidates the five tuple
used to identify the communication context in the network
stack, and (ii) obsoletes the address used by a remote endpoint
to send packets. A mobility solution must address both these
issues; i.e., ensure that the demultiplexing key remains valid
and that all communication peers are informed of address
changes, even during frequent mobility and migration. We
develop a connection control protocol that allows hosts to
signal address changes in the middle of a connection. This
protocol must operate correctly even when control packets are
lost, reordered, duplicated, or arbitrarily delayed, and must
ensure connectivity in both directions.

It is important to note that no end-to-end signaling protocol
can handle the case of simultaneous movement. However, the
system as a whole should ensure continued connectivity in
such a case; we propose a simple, lightweight in-network
mechanism to handle this special case in §VII.
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TABLE I
COMPARISON OF ECCP WITH ALTERNATIVE APPROACHES

Feature ECCP HIP Mobile IP LISP ROAM MPTCP TCP-Migr TCP-R
Formally verified yes incorrect no no no no incorrect no
Per-flow migration yes no no no no no yes yes
Rapid migration yes no no no no n/a no no
End-to-end (needs no network support) yes yes no no no yes yes yes
Multipath capable yes yes no no no yes no no
Transport protocol agnostic yes yes yes yes yes no no no
Avoids encapsulation yes no no no no yes yes yes

B. Related Work

We divide prior work on protocols for location dynamism
and path multiplicity into two broad classes: (i) those that
provide a transport-protocol agnostic solution at the network
layer (or below), and (ii) those that aim to support such
functionality in specific transport protocols. Table I gives
an overview of the most relevant prior works, along with
correctness properties and features, as discussed below.

The canonical approach for transport agnosticism is to
rely on encapsulation [3, 12, 14, 15, 19], where packets
carry two pairs of addresses; one pair of invariant addresses
(host/endpoint identifiers) and one pair of changing location-
dependent addresses (locators). The invariant addresses iden-
tify peers in the network and facilitate demultiplexing across
location dynamism, while the other address pair directs packets
across the network. The main differences between each encap-
sulation scheme lie in how they initially setup encapsulation
and how they signal changes when hosts move or migrate
flows between interfaces. For instance, HIP [12] uses an end-
to-end base exchange protocol, while LISP [3] and Mobile
IP [14] rely on in-network infrastructure to handle this in a
more transparent way to the endpoints.

In contrast, ECCP does not rely on encapsulation, invari-
ant host/endpoint identifiers, or in-network support. Instead,
ECCP’s in-stack end-to-end connection control only requires
an up-to-date address of a peer to initiate communication
(typically acquired through DNS or some alternative service
resolution mechanism [13]). Once communication state has
been established, ECCP assigns this state a local ephemeral
identifier (a flowID), which is used to signal changes in
addresses on a per-flow basis. As a result, ECCP does not
rely on semantically overloaded IP addresses and ports for
demultiplexing, thus sidestepping the five-tuple issue. While
ECCP addresses the identifier overloading in the stack, the
downside is that both endpoints must be modified, which is
not the case for most encapsulation schemes (HIP being the
exception). On the other hand, ECCP requires no network
support and simplifies the implementation of transport pro-
tocols. Further, ECCP has proper multihoming support by
allowing per-flow migration between network interfaces, while
encapsulation moves all flows associated with a particular host
identifier, giving less fine-grain control over which interface a
particular data flow uses.

In addition to the numerous encapsulation schemes, a
number of prior works aim to provide mobility support by

modifying individual transport protocols [5, 7, 18]. These
solutions typically extend the transport protocol’s signaling to
handle address changes with sometimes suboptimal results, as
discussed below. In contrast, encapsulation schemes in general
handle signaling outside the endpoint stack, which leaves
the transport protocol to recover on its own during mobility
events. This can have detrimental effects on performance,
e.g., if TCP is in a long retransmission timeout. Due to
ECCP’s new division of labor in the network stack, it has
both transport-agnostic signaling and good integration across
multiple transport protocols, allowing retransmission timers
to be frozen during mobility events. Ford and Iyengar [6]
have proposed a similar division of labor, although not for
the purpose of mobility.

TCP-R [7] was the first proposal for a modification to
TCP to handle mobility, but did not offer any details about
protocol operation such as sequencing or retransmission. TCP
Migrate [18] specified a protocol for migration by allowing
IP addresses to change, similar to ECCP. However, as shown
in §III-C, TCP Migrate has misbehaving corner cases that
can cause incorrect behavior during rapid migrations (for
instance, moving a flow from one interface to another and
back in quick succession). Other end-to-end signaling solu-
tions, like HIP [12], share similar problems by relying on
sequence numbers instead of version numbers for address
updates, forcing the migration protocol to wait for out-of-date
migration updates that may never arrive (§III-B). Protocols that
rely on in-network middleboxes for migration [3, 14, 19] do
not suffer incorrect behavior during rapid migrations (due to
signaling/forwarding through a fixed rendezvous point), but are
not “rapid” due to slower updates. In contrast, ECCP correctly
supports rapid flow migrations in one round trip, by using an
in-stack control protocol with version numbers.

Multipath TCP (MPTCP) [5] defines a modification to TCP
that can stripe a data stream across multiple TCP subflows,
using different network paths. MPTCP supports mobility by
simply starting additional subflows on new addresses, tearing
down subflows on obsolete ones. While this masks changes
in connectivity, it also imposes performance penalties because
each new flow requires establishing new state and re-entering
slow start. Although ECCP shares similarities with MPTCP’s
control protocol, it does not rely on TCP options. Instead,
ECCP defines a new end-to-end control protocol underneath
the transport layer, thus benefiting multiple transports. Hence,
MPTCP’s data delivery functionality, such as congestion con-
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Fig. 2. A conceptual view of a packet, showing the location and composition
of ECCP headers. The data delivery header is typically a regular transport
header (e.g., TCP), although used only to provide data delivery functionality.

trol and data segmentation, could run on top of ECCP.
In summary, ECCP is the first end-to-end connection control

protocol that simultaneously integrates mobility and multipath
support. To our knowledge, ECCP is also the only such pro-
tocol that has been formally verified to have correct behavior.

III. THE ECCP PROTOCOL

The design of ECCP consists of three main parts. First,
endpoints perform a handshake to establish a connection with
a single flow. Second, the endpoints can add additional flows
to the existing connection to use additional interfaces or paths.
Third, the endpoints can change the addresses associated with
ongoing flows as attachment points change or interfaces fail.
All of these parts are captured in ECCP’s state machine, shown
in Figure 3. In this section, we describe the protocol and
highlight the design decisions we made. Later, in §IV, we
discuss how we used formal modeling to verify the correctness
of the state machine.

A. Establishing a New Connection With a Single Flow

ECCP establishes connections and their constituent flows,
and creates the state necessary to map between flows and the
underlying interfaces used for transmission. An established
connection needs to demultiplex packets to flows and be robust
to mobility events.

Decoupling demultiplexing keys from addresses. Each
flow is assigned its own identifier, called a flowID, which
is essentially an opaque demultiplexing key that maps pack-
ets to socket state. The usage of flowIDs avoids coupling
demultiplexing with specific addresses, as in the traditional
“five tuple”, so that mobility does not affect demultiplexing.
FlowIDs are put in an ECCP header in-between the network
and data delivery headers, as shown in Figure 2. All data
packets must carry at least the ECCP base header in order for
the receiving endpoint to be able to demultiplex the packet,
while ECCP control packets need not carry data. Note that
the flowIDs replace the transport header ports for the purpose
of demultiplexing, except for the first SYN packet when the
destination flowID is not yet known, as we explain below.

Using separate demultiplexing keys on each host. ECCP
uses explicit flowIDs that uniquely identify the flow. Each
flow has two flowIDs, one for each host, rather than a single
shared identifier. Each host demultiplexes incoming packets
using only its local flowID, but includes the remote flowID in
outgoing packets so the receiving host can demultiplex on its
own identifier. This allows hosts to change their own flowIDs
when migrating, which is useful for NATs (see §VIII) and
ensures the uniqueness of the demultiplexing key on each host.
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Fig. 3. The ECCP state machine. Double lines indicate transitions that
create a new subflow and associated control block (state). Asterisks indicate
that the receiving state must be able to handle getting duplicate messages in
an idempotent manner.

Exchanging alternate interface addresses for connection
resilience. During connection establishment, the communicat-
ing end-hosts exchange a list of peer interfaces (IList) that
can be used for establishing new flows. ILists are placed in
an ECCP extension header and increase connection resilience
by enabling flow establishment on alternative interfaces if the
interfaces used by active flows become unavailable.

Confirming reverse connectivity. Network paths can ex-
hibit asymmetric connectivity, where host A can reach B but
B cannot reach A. In ECCP, we only allow connections along
paths on which each host is able to reach its peer; its three-way
synchronization handshake confirms reverse connectivity with
its final acknowledgment (ACK). This handshake protocol
is used both during connection establishment and when an
established flow changes addresses, as discussed in §III-C.

Connection establishment is shown in Figure 4. This hand-
shake initializes the state of the connection and a single initial
flow, as enumerated in Table II. The first SYN packet does
not carry a known destination flowID, so this packet is de-
multiplexed to a listening socket based on its service, typically
represented by a port number or other service identifier [13]
carried in the packet. After establishing a connection, ECCP
places the appropriate IP addresses and flowIDs in outgoing
packets, and future packets are demultiplexed based on the
destination flowID only.

B. Adding Flows to an Existing Connection

Either endpoint can add flows to an existing connection,
in order to spread traffic over multiple interfaces or paths.

4



TABLE II
STATE STORED BY ECCP FOR CONNECTIONS AND FLOWS

Abstraction State
Connection local connection version #, remote connection version #

list of flows, remote interface list (IList)

local flowID, remote flowID
Flow local flow version #, remote flow version #

local Address, remote Address

Client 

Addresses: A1, A2 

Server 

Addresses: A3, A4 

1.  Demul8plex on service S 

2.  Start state for new connec8on 

3.  Record: flowID‐C, A1, IList‐C 

4.  Generate new flow id: FlowID‐S 
5.  Pick address A3 for flow 

6.  Calculate IList‐S=(A3, A4) 

1.  Demul8plex packet on FlowID‐C 
2.  Record: FlowID‐S, A3, and IList‐S 

1.  Connec8ng to service on address (A3) and Service (S) 

2.  Generate new flow id: FlowID‐C 

3.  Pick address A1 for flow 

4.  Calculate IList‐C=(A1, A2) 

SYN | SRC A1 | DST A3 (S) 

FlowID‐C ; IList‐C 

SYN‐ACK | SRC A3 | DST A1 

FlowID‐C 

FlowID‐S ; IList‐S 

ACK | SRC A1 | DST A3 

FlowID‐C 
FlowID‐S 

Time  Time 

Fig. 4. The ECCP protocol for establishing a new connection.

Figure 5 shows how a client adds a flow between local address
A2 and server address A4; the steps for the server to add a
flow are analogous.

Supporting flexible policies for interface selection. To
establish a new flow, the two endpoints must agree on which
pair of interfaces to use. Each host may have its own policies
for selecting interfaces, based on performance, reliability, and
cost. For example, a smartphone user may prefer to use a
low-cost, high-performing WiFi interface for high-bandwidth
applications, instead of the more reliable (but more expensive)
cellular interface. (If the WiFi connectivity is no longer
available, the endpoint could migrate the flow to the cellular
interface to continue the connection.)

To support flexible local policies, ECCP allows each end-
point to select its own interface. The initiating host selects
a local interface (and associated IP address) for the new
flow, and sends a SYN packet to one of the interfaces in
the IList of the remote endpoint. Upon receiving the SYN,
the remote endpoint either agrees to establish a new flow on
the interface it received the SYN packet on, or it responds
with a NACK packet, as shown in Figure 6. An alternative
to using a NACK would be for the peer to simply respond
with a SYN-ACK from the interface it prefers to use, but this

1.  Generate new flow  id: FlowID’‐C 
2.  Pick an address A2 for flow 

3.  Choose exis8ng FlowID‐S on connec8on 
4.  Choose DST address A4 from IList‐S 

1.  Demul8plex to connec8on on FlowID‐S 

2.  Add new flow to the connec8on state 

3.  Record: FlowID’‐C, A2 

4.  Generate new flow id: FlowID’‐S  

5.  Pick an address A4 for new flow 

1.  Demul8plex packet on FlowID’‐C 
2.  Record: FlowID’‐S, A4 

SYN | SRC A2 | DST A4 

FlowID’‐C  

FlowID‐S 

SYN‐ACK | SRC A4 | DST A2 

FlowID’‐C 

FlowID’‐S  

ACK | SRC A2 | DST A4 

FlowID’‐C 
FlowID’‐S 

Time  Time 

Client 

Addresses: A1, A2 

Server 

Addresses: A3, A4 

Fig. 5. Adding a new flow to an existing connection in ECCP.

1.  Generate new flow  id: FlowID’‐C 
2.  Pick an address A2 for flow 

3.  Choose exis8ng FlowID‐S on connec8on 
4.  Choose DST address A4 from IList‐S 

1.  Demul8plex to connec8on on FlowID‐S 

2.  Server prefers A3 to A4 

 

SYN | SRC A2 | DST A4 

FlowID’‐C  

FlowID‐S 

NACK | SRC A4 | DST A2 

FlowID’‐C 

FlowID‐S  

Prefer A3 

Time  Time 

Client 

Addresses: A1, A2 

Server 

Addresses: A3, A4 

1.  Demul8plex packet on FlowID’‐C 

2.  Update peer address to A3 

SYN | SRC A2 | DST A3 

FlowID’‐C  

FlowID‐S 

Protocol con)nues as in Figure  5 

Fig. 6. Choosing a different interface for a new flow in ECCP.

approach fails to test connectivity from the initiating host to
the preferred interface prior to establishing the connection.
Note that while the initiating endpoint may influence the
decision (e.g., by picking a remote interface based on past
performance), the remote endpoint has the final say on which
of its local interfaces to use.

C. Changing the IP Addresses of Existing Flows

When a host changes location due to device mobility, VM
migration, or failover, it needs to preserve flow connectivity
by notifying its peers of its new network address(es). We
present the ReSYNchronize protocol used to update the peers
in Figure 7, where the mobile host changes its address and
notifies the stationary host. The mobile host can optionally
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change its own flowID during migration (for a use case see
§VIII). Once a mobile host establishes a new address for one
of its interfaces, it runs this protocol on every flow using that
interface.

Protocol for updating ILists. This resynchronization pro-
tocol is also used to update the IList, even if the address
on active flows does not change (e.g., an alternative interface
established connectivity). In that case, the new address on the
flow simply remains the same as the old one; only the IList
changes. The IList is always updated as a single entity with
the new list overriding the old one. No incremental update
protocol is provided, in order to avoid introducing convergence
issues where the two communicating end-hosts disagree on the
contents of the IList. Because the IList is not very large, the
amount of communication overhead saved with an incremental
update protocol is not worth the added protocol complexity.

Use of version numbers. Upon receiving an RSYN packet,
a host needs to determine that the change of address does
not reflect a past event. For example, if a client moves
from address A1 to A2 to A3, the server may receive the
migration request for A3 before A2, and should therefore
ignore the migration to A2 since it is no longer valid. To
avoid acting on past events, ECCP uses version numbers,
which are separate from any sequence numbers used by the
data delivery protocol to, for example, implement a reliable
data stream on top of ECCP. This allows ECCP to support
different data delivery protocols. Version numbers semantics
are also markedly different than the familiar semantics of
TCP-style sequence numbers: while sequence numbers require
processing all packets up to N−1 before processing packet
N , ECCP’s version numbers simply require that the packet
being received has a greater version number than any packet
seen previously. These semantics are necessary for correctness:
migration message processing should not be delayed waiting
for stale migration messages, as they may not be deliverable.
(And even if they are, stale information is not useful anyway,
as the interface address has subsequently changed.) Notably,
protocols such as HIP [12], which use sequence numbers for
migration messages, can break under rapid migration because
a new migration may occur before an older migration has been
acknowledged. Finally, ECCP employs two separate types
of version numbers: (i) one for each flow, used to order
the migration requests of each flow, and (ii) one for each
connection that orders updates to the IList.

Explicit acknowledgments. The ECCP protocol requires
a migration acknowledgment to explicitly include the version
number of the flow’s migration. Alternatively, TCP Migrate
uses the fact that it received data packets on the new address
as an de-facto acknowledgment that a migration message was
received. We found this method of implicit acknowledgments
to have incorrect corner-cases. We illustrate one such incorrect
case in Figure 8, in which the packet sent at time T1 is delayed
and received at time T3, where it is assumed (incorrectly) to
acknowledge the packet sent at time T2 (which is lost). At the
end of this trace, the stationary host believes that the mobile
host is at address A12, while its real address is A11. At the

1.  Get A5, a new network address 

2.  Take non‐migrated flow (with FlowID‐M) 

3.  (Op8onally) Change the flowID to FlowID’‐M 

4.  Calculate an updated IList’‐M=(A5, A6). 

5.  Increments Version #‐M 

1.  Demul8plex to flow on FlowID‐S 

2.  Check that Version #‐M is greater 

than previously seen peer Version # 

3.  Record: A5. IList’‐M in flow state. 

1.  Demul8plex on FlowID’‐M 

2.  Record the flow as migrated.  

Mobile 

Addresses: A5, A6 

Sta8onary 

Addresses: A3, A4 

RSYN | SRC A5 | DST A3 

Version #‐M 

FlowID’‐M | Ilist’‐M 

FlowID‐S 

SYN‐ACK | SRC A3 | DST A5 

Version #‐M 

FlowID’‐M 

FlowID‐S 

ACK | SRC A5 | DST A3 

Version # 

FlowID’‐M 

FlowID‐S 

Time  Time 

1.  Change peer flowID to flowID’‐M 

and peer address to A5. 

Fig. 7. The ECCP protocol for changing the address associated with an
already established flow. FlowIdm and FlowIds are the IDs for the flow,
while A5 is the new address and (A5,A6) is the new interface list.

Last Data Seq # sent is 101 

Address change: A10‐>A11 

Address change:  A11‐>A12 

Mobile 

Addresses: A10 

Sta8onary 

Addresses: A9 

RSYN | SRC A11 | DST A9 

Time  Time 

RSYN | SRC A12 | DST A9 

ACK 101 | SRC A9 | DST A11 

ACK 101 | SRC A9 | DST A12 

Address change:  A12‐>A11 

RSYN | SRC A11 | DST A9 

T1 

T2 

T3 

Fig. 8. An example of a misbehaving protocol trace when using implicit
ACKs to confirm migration.

same time, the mobile host believes that its migration protocol
has completed successfully. In ECCP, ACK packets carry the
version number of the flow migration and thus avoid this issue,
but they can still be piggy-backed on data packets.

IV. FORMAL VERIFICATION

Distributed protocols such as ECCP are difficult to reason
about, precisely because they involve independent hosts that
communicate asynchronously over unreliable channels. Hosts
execute the protocol in an arbitrary order, and messages can
be lost, reordered, or duplicated. These factors lead to a large
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number of possible execution traces of the protocol, each
of which needs to be analyzed for correctness. Analyzing
such protocols only informally—e.g., by considering the most
common execution traces—can lead to a false belief in the
correctness of a protocol that, in reality, can exhibit undesir-
able behavior. Formal analysis, on the other hand, is hampered
by the difficulty of analyzing a very large number of execution
traces in a timely manner.

This section discusses how we modeled ECCP in SPIN [8],
a formal verification tool that uses a variety of techniques to
cut down on the size of the state space of execution traces.
Even still, we had to develop several novel approaches for
using SPIN in order to deal with network packet loss and
reordering, as well as to guarantee that packet retransmission
timeouts were executed in a way that did not interfere with
protocol liveness verification. Our model verifies that the
ECCP protocol is free from livelocks and deadlocks, as well as
fulfills its correctness requirement. To our knowledge, this is
the first end-to-end migration protocol to be formally verified.

In this section, we first discuss the safety and liveness
properties that we use to guarantee ECCP’s correctness, and
provide an overview of SPIN and its verification mechanisms.
Next, we describe our model for ECCP and the challenges
inherent in modeling such networking protocols. Then, we
discuss the completeness and limitations of our verification,
as well as its results. The full SPIN model is presented in an
extended technical report [1].

A. A Formal Definition of Correctness

Traditionally, a protocol needs to be verified for two prop-
erties to prove correctness: safety and liveness. We verify the
safety property that no execution of the ECCP can deadlock.
Deadlocks violate correctness since connectivity cannot be
restored if either host is deadlocked.

The liveness property ensures that the protocol cannot enter
an infinite loop where each execution of the loop makes no
progress towards achieving the goal of the protocol. As the
goal of ECCP is to allow hosts to communicate with each other
(per §II), we define the liveness property as the ability to send
a message (such as a ping) to the corresponding remote host
on any flow and get a response back. Verifying the liveness
property guarantees that data can eventually be transferred
between the two hosts on any execution of the protocol. The
combination of the safety and liveness properties guarantees
that our requirement is satisfied not just for every connection,
but for every constituent flow as well.

B. Verification in SPIN

We now give a very brief overview of SPIN before describ-
ing how we use it to model ECCP. Promela is the C-like lan-
guage used to define SPIN models. It allows the programmer
to define multiple processes and the communication between
them (notably, using reliable FIFO channels). An execution
trace is a single possible execution of the Promela program
with a particular process execution and message delivery order.

SPIN analyzes all possible execution traces to explore all
possible protocol executions.

Protocol verification often faces a “state-space explosion”
problem. The execution state includes the values of all global
variables, local process variables, and communication queues,
defined at a single point in time during an execution trace.
The state space of the verification refers to the set of all
execution states found in all possible execution traces. In
order for verification to complete, the state space must be kept
relatively small. Yet, exploring all possible execution traces of
a protocol can easily create exponential blow-up in the state
space! One of the biggest challenges in creating a model is in
using the right amount of simplification to avoid such state-
space explosion, while at the same time making sure that the
model remains sound—i.e., that these simplifications do not
remove misbehaviors from the model that exist in the real
protocol.

SPIN can perform various checks on the states in the state
space that it verifies. ECCP uses the following types of checks
to verify the protocol:

• Asserts are those familiar C checks that verify some
conditional expression. These checks are used to sanity-
check protocol execution.

• Progress labels are code labels used to mark pieces of
code that must be executed at least once in any cycle in
an execution trace. A cycle in an execution trace implies
a possible loop in the execution of the protocol, and
thus needs to be checked for liveness. Progress labels are
a method of specifying liveness properties by requiring
some parts of code to be reached on every iteration of a
protocol loop.

• Deadlock-free checks are used to verify that the code
never deadlocks. They are implemented by simply verify-
ing that each state in the state space either has a possible
transition to another state or has been labeled as a valid
end state.

C. Modeling ECCP in SPIN

Our SPIN verification models two hosts communicating
with each other using a single flow. This section describes
our representation of hosts, communication, and addresses; the
special challenges introduced by the randomness of flowIDs;
and why modeling only two hosts communicating over a single
flow is sufficient to prove the correctness of a protocol that
operates in an environment with many hosts and supports the
use of multiple flows.

At a high level, the model represents each host as a
different process. Network communication is modeled using
a global array of FIFO queues. The index of the queue array
corresponds to an address. Each host process reads from the
array element that corresponds to its interface address, and it
writes to the array element that corresponds to the address to
which it wants to send a packet. Modeling migration is done by
changing the array element that a host process uses to receive
data. The mobile host then sends ECCP protocol messages
to the stationary host informing it of the new “address” (i.e.,
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array index) it acquired. The stationary host then changes the
array element it uses to communicate with the mobile host.

We also needed to model ECCP’s randomized flowIDs. Yet
SPIN, like most formal verification methods, cannot deal with
randomness well. To verify a protocol with randomness, the
verifier has to evaluate all possible values for the random
variables, which leads to intractable state-space explosion.
Thankfully, even though the ECCP protocol uses randomness,
we can avoid introducing randomness into the model, while
still checking for the same semantic properties in ECCP.
After all, flowID randomness is used to ensure two properties:
(i) flowIDs are hard to guess and (ii) different hosts will,
with high probability, have connections with different flowIDs.
The former property is used for security, to prevent flowID
guessing by off-path entities. However, it is not necessary for
correctness and we do not verify security in the formal model.
(We similarly do not model the random nonces included
in migration requests that help prevent flow hijacking, as
discussed in §VI.) To model the latter property, we simply
assign unique flowIDs centrally. This change allows us to
remove the use of randomness in our model and thus its
corresponding state-space explosion.

It is sound to model only two hosts because the protocol
ensures that hosts cannot interfere with each other. The only
possibility for such interference would be if a packet meant
for one host gets processed by another. This is highly unlikely
to occur since any two hosts would, with high probability,
have different flowIDs assigned to their flows and all packets
with the incorrect flowID are dropped. We do not model the
case where a flowID collision occurs. This case can only affect
protocol correctness if it causes a packet meant for one host to
be processed by another. For that to occur, multiple unlikely
events need to happen: a host moves to a new address that
was recently occupied by another host, gets a delayed packet
meant for the old host, and that packet has the same flowID
as one of its flows. Indeed, this final event by itself has a
probability on the order of 2−32, given 32-bit flowIDs.

Similarly, it is sound to model only two flows, as we can
show that packets meant for one flow are not processed by
another, and that shared flow state can be reasoned about with-
out a formal model. Incoming packets are always processed
by the correct flow because all demultiplexing is based on
flowIDs, which are guaranteed to be unique for each host’s
flows. The only state shared by flows (of the same connection)
are peer interface lists and the connection’s version numbers
used to order these lists, both of which are easy to reason
about without formal models. Namely, for the correctness of
interface lists, one simply verifies that a host can always update
its state with the single, most recent list received from its peer.
This property follows from our use of version numbers.

D. Challenges in Modeling an Unreliable Network

ECCP should operate correctly over a network with only
best-effort delivery guarantees. Therefore, our verification has
to simulate packet loss, reordering, and duplication. Modeling
these network effects can also lead to state-space explosion.

We address these issues next, as well as the additional chal-
lenge of modeling packet retransmission as a response to loss.

Loss and Reordering of Network Packets. SPIN does not
model packet loss and reordering natively, as most application-
layer protocols sit on top of an existing transport layer that
guarantees reliability (e.g., TCP). ECCP, however, is below
the transport layer and its messages are not sent reliably.
Previous work [4] identified two major ways of modeling these
network effects: (i) a separate process non-deterministically
takes packets out of the communication queues and drops or
reorders them, or (ii) the sending or receiving operations non-
deterministically lose or reorder packets themselves.

After testing both approaches, we found the second ap-
proach to be much more efficient. Having a separate process
drop or reorder packets leads to more state-space explosion,
as the verifier checks all possible interleaving of this helper
process with the host processes. However, it does not matter to
the protocol when the packet it received was reordered (e.g.,
five or ten steps earlier), just whether a reordering or loss event
occurred. By limiting loss and reordering events to send and
receive operations, we vastly reduce the state space without
affecting the soundness of the protocol verification.

In ECCP, we model network loss and reordering inside the
send operation. The implementation of these network effects
is thus hidden from the host, which simply invokes the send
operation when sending packets.

Timeouts. Any reliable network protocol that operates over
a lossy network needs to have a notion of timeouts, in order
to retransmit packets that may have been lost. SPIN has no
notion of time, however, and so does not directly model
timeouts based on clock time. SPIN does, however, have a
predefined boolean called “timeout” that is activated whenever
no process can perform any operation. In effect, the timeout
flag creates a secondary set of operations in each process
that are activated whenever the primary set of operations is
blocked for all processes in the system. In our model, we use
this secondary set of operations to perform retransmission.
Intuitively, whenever the regular operation of the protocol
cannot make progress, retransmission kicks in to try to remedy
the situation. Thus, retransmissions will not occur unless they
are needed by the protocol to make progress. This does not
reflect real retransmission, however, which can often send
spurious packets. To ensure that such packets would not break
the protocol, we verify that all packet receive operations are
idempotent by manual code inspection. This property implies
that receipt of a spurious timeout packet would not change the
state of the host.

The above technique works well if the timeouts that retrans-
mit packets are fair: if we have two or more processes, each
process will eventually get a chance to perform its operations
in every execution. Fairness guarantees that an infinite loop
involving only one process will never be explored (i.e., all
processes are guaranteed to eventually execute). This is critical
for retransmission timeouts, as the message sent from either
host process could have been lost and that sender has to
retransmit the packet. Yet if the other process’s retransmission
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TABLE III
EXECUTION TIME AND MEMORY USAGE OF VERIFICATION

# Migrations Property Static FlowIDs Dynamic FlowIDs
4 safety 17s, 8GB 168s, 19GB

progress 58s, 9GB 738s, 22GB

5 safety 115s, 10GB 2630s, 59.4GB
progress 508s, 12GB Memory Limit Exceeded

6 safety 1110s, 25GB Memory Limit Exceeded
progress 4980s, 44GB Memory Limit Exceeded

code is executed infinitely often, the sender can be starved and
never transmit the packet. Thus, no progress will be made,
and the verifier will report a progress violation. SPIN only
has the notion of weak fairness, however: fairness can only be
enforced on operations that always can be executed. Unfortu-
nately, packet retransmission can only execute in certain states
and thus does not meet the definition of weak fairness. Instead,
we enforce fairness by forcing the executions of timeout blocks
to alternate between processes in a specific order. This was
done by creating a global queue of the host processes and
then forcing the execution of timeouts to occur in the same
order as this process queue.

E. Completeness

In model checking, the gold standard for verification is
whether a model reaches a fixed point. This means that all
state transitions from the set of already-explored states lead to
other states in this same set. In other words, state exploration
is complete.

Unfortunately, our model does not reach a fixed point due
to its version numbers. New migration events create new states
because they have to increase the version number. Thus, new
states can always be created, and the model cannot validate
all possible migration events over time. We have verified our
model up to four and six migrations for different versions
of the protocol, as discussed in the next section. Further,
according to the “small scope” hypothesis, the vast majority
of protocol errors can be exhibited using short traces [9].
Therefore, this model is highly indicative of the correctness
of the ECCP protocol.

F. Results

Protocol verification ran on a physical machine that has two
2.4 GHz Intel E5620 quad-core CPUs with 96 GB of memory.
As expected, the execution time of the verification is highly
dependent on the number of migration events that occur. We
verified two versions of the protocol: one in which the moving
host could change its flowID when moving, and another in
which the moving host kept its flowID static. The former
model is more complete, but the latter allows us to verify
more migrations. Table III shows the results for successful
verifications. We were unable to verify more than 6 migrations
due to memory exhaustion.

The model verified the ECCP state machine, as
shown in Figure 3. An unexpected finding was the
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RSYN SENT RCVD state in the state machine. This
state is necessary to ensure correctness when both hosts move
before the migration protocol for either host fully completes.
This state was only discovered when a previous version of
the model encountered a progress property violation.

V. CASE STUDIES

This section shows how ECCP supports location dynamism
and enables the use of multiple available interfaces. We
have implemented ECCP in a Linux loadable kernel module
and have adapted the Linux TCP implementation to run on
top of ECCP, simply by removing all of TCP’s connection
management functionality (i.e., all code not related to TCP’s
ESTABLISHED state) [13]. This connection management is
instead provided by ECCP. The case studies we present are
not meant to evaluate the performance of our data delivery
implementation—which is basically indistinguishable from
normal TCP1—but rather to demonstrate ECCP’s connection
control capabilities.

To illustrate ECCP’s support for location dynamism, we ran
an experiment where a VM migrates from one subnetwork

1The maximum throughput of the two TCP versions on a 1Gbps link
are within each other’s standard deviation. The main reason for potential
performance degradation at higher speeds is our version’s current inability to
offload TCP segmentation and checksumming to the network interface card.
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Fig. 11. A student uses a ECCP-enabled phone to stream music while walking
across campus. The phone migrates the connection between available WiFi
(red) and cellular 4G (gray) networks, without loss of playback quality. The
opacity of each data point is an indicator of the throughput (relative to the
interface medium) achieved at that location.

to another. Figure 9 shows the throughput between a client
and a migrating server during such live migration, which
demonstrates seamless communication during layer-3 VM mi-
gration. To demonstrate how ECCP can better utilize multiple
interfaces, Figure 10 shows a scenario where a host switches
a connection to an alternate interface in order to increase
throughput. Similarly, Figure 11 shows ECCP maintaining
seamless connectivity on a mobile device, as it moves in and
out of range of available WiFi networks, and migrates between
cellular and WiFi networks accordingly.

VI. SECURITY

ECCP, like other connection-based network protocols, is
potentially vulnerable to two main classes of malicious at-
tacks: denial of service (DoS) and hijacking. A protocol is
particularly vulnerable to a DoS attack if a request from
an unverified party can cause a host to spend a asymmetric
amount of resources. The classic example of a DoS attack is
SYN flooding, where cheaply crafted (and typically spoofed)
SYN packets cause a server to allocate kernel memory buffers.
Nothing in the ECCP protocol requires excessive memory or
computation to process the initial handshake or the migration
protocol. SYN cookies [2] can also be used to prevent the
allocation of kernel state to a new connection before return
reachability is tested.

Protocol support for migration introduces new potential
threats from attackers, who may try to (i) hijack ongoing con-
nections by inserting control messages into the communication
stream, or (ii) disrupt connections by sending fake migration
messages. Fortunately, ECCP prevents such attacks from off-
path entities by requiring the presence of nonces during
migration. Nonces are 64-bit random values that are exchanged
during flow setup; all subsequent control messages, including
migration requests, must be accompanying by the appropriate
nonce. Without on-path visibility into the control messages,
off-path entities have no way of determining the correct nonce
without resorting to online brute-force search. Brute-forcing
this nonce by forging control packets is infeasible, as it will
require an average of 263 messages to find a match.

Migration protocols could also provide protection against
on-path attackers. For example, TCP Migrate [18] resists on-
path hijacking by using public-key cryptography to secure
its control packets. On-path entities are still free to simply
drop packets, of course. ECCP avoids such computationally-
expensive means and its non-cryptographic solution does not
mitigate on-path hijacking, but in this regard, it is no less
secure than existing protocols like TCP that do not support
migration. Connections that require protection against on-path
attackers should use (or are already using) higher-level mech-
anisms for securing the data stream, such as SSL. Securing the
data stream is necessary for data integrity or confidentiality,
while neither ECCP nor TCP Migrate protect against on-path
attacks against availability.

VII. SIMULTANEOUS MOVEMENT

An ECCP connection is robust to simultaneous movement
as long as both endpoints do not move before receiving the
other endpoint’s address update (RSYN). In other words, the
protocol can survive an incomplete three-way handshake and
simply requires that one packet gets through to a peer before
the peer itself can move. Note that no end-to-end signaling
protocol can, by itself, handle the rare case when both hosts
send address updates to each other and then simultaneously
move before either receives the other’s update.

However, we can handle this rare case by adding an
optional, lightweight redirection cache in the local network
of either communicating host. This cache keeps short-lived
redirection state pointing to the new locations of hosts that
have recently migrated out of its network. The address of
the in-network box responsible for the cache can be learned
by a mobile host when joining the network (e.g., through
DHCP). When a mobile host moves, it sends a message to the
redirection box of its old network to add a pointer to its new
location. Upon getting a new cache entry, the redirection box
takes over the now migrated host’s old address for the duration
of the cache entry (via gratuitous ARP-flooding or a similar
mechanism). In this way, the redirection box will receive all
messages meant for the migrating host, including the RSYNs
sent by peers that have moved simultaneously. Upon getting
such an RSYN, the redirection box simply redirects the packet
(through, e.g., encapsulation or address rewriting) toward the
host’s new address. All packets other than RSYNs can be
dropped by the redirection box. Upon getting a redirected
RSYN, the migrated host learns the new address of its peer that
moved simultaneously and initiates its own RSYN handshake
targeting this address.2

Note that the redirection cache only needs to keep its cache
entries for short durations (e.g., seconds), as it only needs
to redirect a single RSYN to a migrated host. Further, it is
sufficient that only one of the migrated hosts have a redirection
cache in its old network for this approach to be effective.

2The migrated host does not send an RSYN-ACK in response to a redirected
RSYN, because such an RSYN did not take the direct path that the handshake
aims to verify for bidirectional connectivity.
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This scheme’s use of ephemeral redirection also benefits
privacy. While triangle routing solutions such as Mobile
IP [14, 15] (see §II) require an authoritative middlebox for
each client that sees the full history of a client’s movements,
a host in our setting only needs to notify the redirection box
of its last visited network.

VIII. COMPATIBILITY WITH NAT DEVICES

Network address translation (NAT) boxes allow multiple
devices (on an internal network) to access the external Internet
using a single public IP address. For packets sent from internal
hosts out to the Internet, the NAT simply replaces the original,
internal source address of packets with the public IP of the
NAT before forwarding. However, when packets arrive from
the external Internet, the NAT needs to decide to which
appropriate internal host to forward the packet. To perform
this forwarding, NATs maintain a mapping between ongoing
connections (represented by the traditional five-tuple) and the
internal hosts using those connections. Unfortunately, this
introduces a problem for certain scenarios, e.g., if the external
endpoint of a connection moves and changes its IP address,
the connection’s five-tuple changes and thereby invalidates the
connection-to-host mapping.

ECCP-aware NATs can maintain their mapping using
flowIDs instead of five-tuples. This alternative is robust to
host mobility as the stationary host’s flowID does not change
when hosts move. Such NATs can learn the connection-to-host
mapping using outgoing SYN, RSYN, or RSYN-ACK packets.
Furthermore, flowID collisions at NAT boxes can be avoided
when migrating from one NAT to another, as the protocol
allows the migrating host to change its flowID.

However, NAT boxes are already ubiquitous in today’s
Internet, and so we designed ECCP to work with legacy NAT
boxes as well. To do so, we use UDP encapsulation for ECCP
packets (with a constant port number). Still, the UDP five-
tuple will change whenever a host migrates (given the change
in its IP address), and legacy NATs learn new mappings for
connections only when internal hosts send packets with a
new five-tuple. Thus, whenever either host’s address changes,
internal hosts in ECCP prompt the NAT to learn their new
five-tuple by sending an outgoing packet that includes this
new information.

The extended ECCP protocol to support legacy NATs in-
cludes the following behavior:

Flow migration. In the case of host migration, the migrating
host needs to send an RSYN to the stationary host. However,
as illustrated in Figure 12, this RSYN may not be able to
traverse the stationary host’s NAT. Thus, the mobile host sends
a HOLE-PUNCH packet using its old address,3 so that the
packet can traverse the stationary host’s NAT. If the stationary
host does not receive an RSYN before this HOLE-PUNCH,

3The mobile host can use an alternate interface that has this address if
available, can attempt to spoof this source address, or can ask the redirection
cache from its old network to relay the packet. The host may wait for its
RSYN to timeout before sending this HOLE-PUNCH; either implementation
choice preserves correctness.
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Fig. 12. The protocol for legacy NATs when migrating flows.
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Fig. 13. The protocol for legacy NATs when adding new flows.

it responds with a HOLE-PUNCH-ACK, which creates state
in its NAT for subsequent packets arriving from the mobile
host’s new address. Upon receiving a HOLE-PUNCH-ACK
(if prior to any RSYN-ACK), the mobile host retransmits the
original RSYN. The initial RSYN serves two purposes: (i) it
tries to optimistically start the RSYN handshake, assuming the
stationary host is not behind a legacy NAT that will block its
communication, and (ii) it creates state in its own NAT (if
one is present), so that packets sent from the stationary host,
such as the HOLE-PUNCH-ACK, can reach its new address.
After this exchange, both NATs have been initialized with the
appropriate state, and the protocol can continue as in §III-C.

Flow addition. When adding flows to established connec-
tions, the interfaces used for the new flow may be located
behind NAT boxes as well. The protocol to handle this case,
shown in Figure 13, is analogous to the one for flow migration.
The only significant difference is that we can reuse the path of
an already established flow to send the HOLE-PUNCH packet.

Policy-based interface selection. Given the additional
NACK feature for policy control over flow addition, we also
seek to handle the case where the host receiving a new flow
request on address A1 actually prefers A2, which is behind a
NAT. In this scenario, the NACK should be sent from both
A1 and A2. Sending the NACK from A2 creates state in
the relevant NAT, while sending from A1 handles the case
in which the initiating host is also behind a NAT.

We summarize which packets create state in legacy NATs in
Table IV. Note that we do not handle the case of establishing a
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TABLE IV
PACKETS THAT ESTABLISH STATE INSIDE LEGACY NATS

Operation Host behind NAT NAT state created by
Initiating SYN

Establishment Remote N/A
Both N/A

Initiating SYN
Add Flow (ACK) Remote HOLE-PUNCH-ACK

Both SYN, HOLE-PUNCH-ACK

Initiating SYN
Add Flow (NACK) Remote NACK

Both SYN, NACK

Initiating RSYN
Migration Remote HOLE-PUNCH-ACK

Both RSYN, HOLE-PUNCH-ACK

new connection—as opposed to migrating an existing flow or
adding a new flow—with a host behind a NAT. Handling that
case requires some rendezvous mechanism outside the scope
of this paper. However, ECCP’s signaling protocol is robust
against all other scenarios.

IX. CONCLUSIONS

An emerging class of new technologies, which include
mobile devices and virtual machines, require better network
support for location dynamism and path multiplicity. But rather
than requiring large-scale architectural changes to the Internet,
ECCP provides an end-to-end means to incrementally adopt
such functionality. This extension to the network stack adds
much needed functionality and may be more readily deployed.
It also enables the easier development of new transport-layer
protocols for multipath communication, as it frees them to
focus solely on the semantics of data delivery, rather than on
connection control.

A significant contribution of our work was the formal
verification of ECCP’s correctness properties. This verification
was useful not only in checking its correctness, but also in
exposing subtle edge-cases that exist in this class of protocols.
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