


Data Storage Revolution 

•  Relational Databases 

•  Object Storage (put/get) 
– Dynamo 
– PNUTS 
– CouchDB 
– MemcacheDB 
– Cassandra 

Speed 
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No Complexity 
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Eventual Consistency 

•  Writes ordered after commit 

•  Reads can be out-of-order or stale 

•  Easy to scale, high throughput 

•  Difficult application programming model 



Traditional Solution to Consistency 
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Strong Consistency 

•  Reads and Writes strictly ordered 

•  Easy programming 

•  Expensive implementation 

•  Doesn’t scale well 



Our Goal 

•  Easy programming 

•  Easy to scale, high throughput 



Chain Replication 
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Chain Replication 

•  Strong consistency 

•  Simple replication 

•  Increases write throughput 

•  Low read throughput 

•  Can we increase throughput? 

•  Insight: 
– Most applications are read-heavy (100:1) 



CRAQ 

•  Two states per object – clean and dirty 
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CRAQ 

•  Two states per object – clean and dirty 

•  If latest version is clean, return value 

•  If dirty, contact tail for latest version number 
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Multicast Optimizations 

•  Each chain forms group 

•  Tail multicasts ACKs 

Replica  TAIL Replica Replica HEAD 

V1 V1 V1 V1 ,V2 ,V2 ,V2 ,V2 V2 V2 V2 V2 V2 



Multicast Optimizations 

•  Each chain forms group 

•  Tail multicasts ACKs 

•  Head multicasts write data 
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CRAQ Benefits 

•  From Chain Replication 
– Strong consistency 
– Simple replication 
–  Increases write throughput 

•  Additional Contributions 
– Read throughput scales :  

• Chain Replication with Apportioned Queries 

– Supports Eventual Consistency 



High Diversity 

•  Many data storage systems assume locality 
– Well connected, low latency 

•  Real large applications are geo-replicated 
– To provide low latency 
– Fault tolerance 

(source: Data Center Knowledge) 
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Multi-Datacenter CRAQ 
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Motivation 

1.  Popular vs. scarce objects 

2.  Subset relevance 

3.  Datacenter diversity 

4.  Write locality 

Solution 

1.  Specify chain size 

2.  List datacenters 
－ dc1, dc2, … dcN 

3.  Separate sizes 
–  dc1, chain_size1, … 

4.  Specify master 

Chain Configuration 



Master Datacenter 
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Implementation 

•  Approximately 3,000 lines of C++ 

•  Uses Tame extensions to SFS asynchronous 
I/O and RPC libraries 

•  Network operations use Sun RPC interfaces 

•  Uses Yahoo’s ZooKeeper for coordination 



Coordination Using ZooKeeper 

•  Stores chain metadata 

•  Monitors/notifies about node membership 
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Evaluation 

•  Does CRAQ scale vs. CR? 

•  How does write rate impact performance? 

•  Can CRAQ recover from failures? 

•  How does WAN effect CRAQ? 

•  Tests use Emulab network emulation testbed 
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Failure Recovery (Read Throughput) 
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Failure Recovery (Latency) 
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Geo-replicated Read Latency 
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If Single Object Put/Get Insufficient 

•  Test-and-Set, Append, Increment 
– Trivial to implement 
– Head alone can evaluate 

•  Multiple object transaction in same chain 
– Can still be performed easily 
– Head alone can evaluate 

•  Multiple chains 
– An agreement protocol (2PC) can be used 
– Only heads of chains need to participate 
– Although degrades performance (use carefully!) 



Summary 

•  CRAQ Contributions? 
– Challenges trade-off of consistency vs. throughput 

•  Provides strong consistency 

•  Throughput scales linearly for read-mostly 

•  Support for wide-area deployments of chains 

•  Provides atomic operations and transactions 

Thank 
You Questions? 


