

Data Storage Revolution

•  Relational Databases

•  Object Storage (put/get)
– Dynamo
– PNUTS
– CouchDB
– MemcacheDB
– Cassandra

Speed
Scalability
Availability
Throughput

No Complexity

Eventual Consistency

Manager 

Replica 

Replica 
Replica 

Write Request Read Request
Replica 

B

A

Read Request

Eventual Consistency

•  Writes ordered after commit

•  Reads can be out-of-order or stale

•  Easy to scale, high throughput

•  Difficult application programming model

Traditional Solution to Consistency

Manager 

Replica 

Replica 

Replica 
Replica 

Write Request Two-Phase
Commit:

1.  Prepare
2.  Vote: Yes
3.  Commit
4.  Ack

Strong Consistency

•  Reads and Writes strictly ordered

•  Easy programming

•  Expensive implementation

•  Doesn’t scale well

Our Goal

•  Easy programming

•  Easy to scale, high throughput

Chain Replication

Manager 

Replica 

Replica 

Replica 
Replica 

HEAD  TAIL 

Write Request
Read Request

W1
R1
W2
R2
R3

van Renesse &
Schneider

(OSDI 2004)

W1

R1

R2

W2

R3

Chain Replication

•  Strong consistency

•  Simple replication

•  Increases write throughput

•  Low read throughput

•  Can we increase throughput?

•  Insight:
– Most applications are read-heavy (100:1)

CRAQ

•  Two states per object – clean and dirty

Replica  TAIL Replica Replica HEAD 

Read Request Read Request Read Request Read Request Read Request

V1 V1 V1 V1 V1

CRAQ

•  Two states per object – clean and dirty

•  If latest version is clean, return value

•  If dirty, contact tail for latest version number

Replica  TAIL Replica Replica HEAD 

V1 V1 V1 V1 V1

Write Request

,V2 ,V2 ,V2

Read Request

V1

Read Request

1 V1

,V2 V2 V2 V2 V2 V2

2 V2

Multicast Optimizations

•  Each chain forms group

•  Tail multicasts ACKs

Replica  TAIL Replica Replica HEAD 

V1 V1 V1 V1 ,V2 ,V2 ,V2 ,V2 V2 V2 V2 V2 V2

Multicast Optimizations

•  Each chain forms group

•  Tail multicasts ACKs

•  Head multicasts write data

Replica  TAIL Replica Replica HEAD 

V2 V2 V2 V2

Write Request

,V3 ,V3 ,V3 ,V3 V2 ,V3 V3

CRAQ Benefits

•  From Chain Replication
– Strong consistency
– Simple replication
–  Increases write throughput

•  Additional Contributions
– Read throughput scales :

• Chain Replication with Apportioned Queries

– Supports Eventual Consistency

High Diversity

•  Many data storage systems assume locality
– Well connected, low latency

•  Real large applications are geo-replicated
– To provide low latency
– Fault tolerance

(source: Data Center Knowledge)

TAIL

Multi-Datacenter CRAQ

HEAD

Replica

Replica

Replica

Replica

Replica

TAIL
Replica

Replica

DC1

DC2

DC3

Multi-Datacenter CRAQ

HEAD

Replica

Replica

Replica

Replica

Replica

TAIL
Replica

Replica
Client

DC1

DC2

DC3

Client

Motivation

1.  Popular vs. scarce objects

2.  Subset relevance

3.  Datacenter diversity

4.  Write locality

Solution

1.  Specify chain size

2.  List datacenters
－ dc1, dc2, … dcN

3.  Separate sizes
–  dc1, chain_size1, …

4.  Specify master

Chain Configuration

Master Datacenter

HEAD

Replica
Replica

Replica

Replica

Replica

DC1

DC2

HEAD

Writer

TAIL

TAIL

Replica

Replica

DC3

Implementation

•  Approximately 3,000 lines of C++

•  Uses Tame extensions to SFS asynchronous
I/O and RPC libraries

•  Network operations use Sun RPC interfaces

•  Uses Yahoo’s ZooKeeper for coordination

Coordination Using ZooKeeper

•  Stores chain metadata

•  Monitors/notifies about node membership

CRAQ CRAQ

CRAQ

CRAQ

CRAQ

CRAQ

CRAQ

CRAQ

CRAQ

DC1

DC3

DC2

ZooKeeper ZooKeeper

ZooKeeper

Evaluation

•  Does CRAQ scale vs. CR?

•  How does write rate impact performance?

•  Can CRAQ recover from failures?

•  How does WAN effect CRAQ?

•  Tests use Emulab network emulation testbed

0 20 40 60 80 100

0
50
00

10
00
0

15
00
0

Writes/s

Re
ad
s/
s

CRAQ−7
CRAQ−3
CR−3

Read Throughput as Writes Increase

1x-

3x-

7x-

Failure Recovery (Read Throughput)

0 10 20 30 40 50

0
20

00
0

40
00

0
60

00
0

Time (s)

Re
ad

s/
s

Length 7
Length 5
Length 3

Failure Recovery (Latency)

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

Time (s)

Re
ad

 L
at

en
cy

 (m
s)

0 10 20 30 40 50

0
1

0
0

0
3

0
0

0
5

0
0

0

Time (s)

W
ri
te

 L
a

te
n

c
y
 (

m
s
)

Time (s) Time (s)

Geo-replicated Read Latency

0 5 10 15 20

0
20

40
60

80

Writes/s

M
ea

n
La

te
nc

y
(m

s)

CR
CRAQ

If Single Object Put/Get Insufficient

•  Test-and-Set, Append, Increment
– Trivial to implement
– Head alone can evaluate

•  Multiple object transaction in same chain
– Can still be performed easily
– Head alone can evaluate

•  Multiple chains
– An agreement protocol (2PC) can be used
– Only heads of chains need to participate
– Although degrades performance (use carefully!)

Summary

•  CRAQ Contributions?
– Challenges trade-off of consistency vs. throughput

•  Provides strong consistency

•  Throughput scales linearly for read-mostly

•  Support for wide-area deployments of chains

•  Provides atomic operations and transactions

Thank
You Questions?

