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Abstract the web page. Of course, any single node responsible

W building Coral di _bfor such a URL-to-node-list mapping would quickly be
e are building Coral, a peer-to-peer content distribyG e oa4eq. DHTSs typically replicate popular data, but

tion system. Coral creates self-organizing clusters r.%lication helps only with fetches, not stores. Any node

nodes that fetch information from each other to avoégeking a web page will likely also cache it. There-

communicating with more distant or heawly-logd re, any URL-to-node-list mapping would be updated
servers. Coral indexes data, but does not store it. |

: L ) j0st as frequently as it is fetched.
actual content resides where it is used, such as in no ©3\n alternative approach, taken by CFS [2]

local web caches. Thus, replication happens exaCtlydEeanStore [3, and PAST [8], is to store actual

proportion to demand. c%ntent in the hash table. This approach wastes both

We present J.[V.VO novel _mechamsms that Iet_ Corﬁ rage and bandwidth, as data must be stored at nodes
achieve scalability and high performance. First,

ere it is not needed. Moreover, while users have
new abstraction called distributed sloppy hash table . o :
: ~~ clearly proven willing to burn bandwidth by sharin
(DSHT) lets nodes locate nearby copies of a file, y P g y g

. . ) ) "fles they themselves are interested in, there is less
gardless of its popularity, without causing hot spots ilcentive to dedicate bandwidth to sharing unknown
the indexing infrastructure. Second, based on the DS

. . k . ta. Worse yet, storing content in a DHT requires large
interface, we introduce a decentralized clustering algg- -+« ¢ data to be shifted around when nodes join

rithm by wh_ich nodes can find each other and form clugﬁd leave the system, a common occurrence [9)].
ters of varying network diameters. DHTs have poor locality. Though some DHTs make
an effort to route requests through nodes with low net-
work latency, the last few hops in any lookup request are
The academic community has implemented a numbegsgentially random. Thus, a node might need to send a
distributed hash tables (DHTSs) as efficient, scalable, dfery half way around the world to learn that its neigh-
robust peer-to-peer infrastructures. However, we sholiRf is caching a particular web page. This is of partic-
ask whether DHTs are well-suited for the desired agar concern for any peer-to-peer CDN, as the average
plications of the wider Internet population. For exanl?HT node may have considerably worse network con-
ple, can DHTs be used to implement file-sharing, igctivity than the web server itself.
far the most popular peer-to-peer application? Or couldThis paper presents Coral, a peer-to-peer content dis-
DHTSs replace proprietary content distribution networkdbution system we are building. Coral is based on a
(CDNSs), such as Akamai, with a more democratic clieheéw abstraction we call distributed sloppy hash ta-
caching scheme that speeds up any web site and savél¢ {DSHT). It is currently being built as a layer on the
from flash crowds at no cost to the server operator? Chord lookup service [12], although it is equally de-
Thus far, the answer to these questions is no. DHSigned to support Kademlia [5] or other existing sys-
fail to meet the needs of real peer-to-peer applicatidess [6, 7, 13]. Coral lets nodes locate and download
for two main reasons. files from each other by name. Web caches can use it to
DHTSs provide the wrong abstraction. Suppose manyfetch static data from nearby peers. Users can employ it
thousands of nodes store a popular music file or caéliigctly to share directories of files. Coral’s two princi-
CNN'’s widely-accessed home page. How might a hagal goals are to avoid hot spots and to find nearby data
table help others find the data? Using CNN’s URL agthout querying distant nodes.
a key, one might store a list of every node that has

1 Introduction



The DSHT abstraction is specifically suited to locaith a normal hash table. Only one value can be stored
ing replicated resources. DSHTs sacrifice the congisider a key at any given time. DHTs assume that
tency of DHTSs to support both frequent fetches and fitlaese keys are uniformly distributed in order to balance
guent stores of the same hash table key. The fundamead among participating nodes. Additionally, DHTs
tal observation is that a node doesn’t need to know eveypically replicate popular key/value pairs after multiple
replicated location of a resource—it only needs a singhet requests for the saney.
valid, nearby copy. Thus, a sloppy insert is akin to anin order to determine where to insert or retrieve
append in which a replica pointer appended to a “full’ key, an underlying lookup protocol assigns each
node spills over to the previous node in the lookup patitnde anm-bit nodeid identifier and supplies an RPC
A sloppy retrieve only returns some randomized subgeitd_closer_node(key). A node receiving such an RPC
of the pointers stored under a given key. returns, when possible, contact information for another

In order to restrict queries to nearby machines, eacimode whos@odeid is closer to the target key. Some
Coral node is a member of several DSHTs, which vegstems [5] return a set of such nodes to improve per-
call clusters, of increasing networldiameter. The di- formance; for simplicity, we hereafter refer only to the
ameter of a cluster is the maximum desired round-tsmgle node case. By iterating callsfiad_ closer_node,
time between any two nodes it contains. When datanie can map a key to some closest node, which in most
cached somewhere in a Coral cluster, any member of B1¢Ts will require an expected(logn) RPCs. This
cluster can locate a copy without querying machines férflog n) number of RPCs is also reflected in nodes’
ther away than the cluster’'s diameter. Since nodes hemating tables, and thus provides a rough estimate of to-
the same identifiers in all clusters, even when data is tadthetwork size, which Coral exploits as described later.
available in a low-diameter cluster, the routing informa- DHTs are well-suited for keys with a single writer and
tion returned by the lookup can be used to continue theltiple readers. Unfortunately, file-sharing and web-
query in a larger-diameter cluster. caching systems have multiple readansl writers. As

Note that some DHTSs replicate data along the lafiscussed in the introduction, a plain hash table is the
few hops of the lookup path, which increases the availrong abstraction for such applications.
ability of popular data and improves performance in theA DSHT provides a similar interface to a DHT, except
face of many readers. Unfortunately, even with localitthat a key may have multiple valuegut(key, value)
optimized routing, the last few hops of a lookup are pretores a value undéiey, andget(key) need only return
cisely the ones that can least be optimized. Thus, wiiome subset of the values stored. Each node stores only
out a clustering mechanism, even replication does sotne maximum number of values for a particular key.
avoid the need to query distant nodes. Perhaps midfeen the number of values exceeds this maximum, they
importantly, when storing pointers in a DHT, nothingre spread across multiple nodes. Thus multiple stores
guarantees that a node storing a pointer is near the naléhe same key will not overload any one node. In con-
pointed to. In contrast, this property follows naturallyast, DHTs replicate the exact same data everywhere;
from the use of clusters. many people storing the same key will all contact the

Coral's challenge is to organize and manage thesene closest node, even while replicas are pushed back
clusters in a decentralized manner. As described in the into the network from this overloaded node.
next section, the DSHT interfa¢tself is well-suited for  More concretely, Coral manages values as fol-

locating and evaluating nearby clusters. lows. When a node stores data locally, it inserts
_ a pointer to that data into the DSHT by executing
2 Design put(key, nodeaddr). For example, the key in a distri-

This section first discusses Coral's DSHT storage Ia)%ljted web cache would beash(URL).  The insert-

r 0o
and its lookup protocols. Second, it describes Cora} sg node callsfind.closer-node (key) until it locates

technigue for formina and manading clusters e first node whose list stored undery is full, or it
q 9 ging ' reaches the node closestiey. If this located node is

full, we backtrack one hop on the lookup path. This
target node appendsodeaddr with a timestamp to the
A traditional DHT exposes two functions(possibly new) list stored undéey. We expect records
put(key, value) stores a value at the specified- to expire quickly enough to keep the fraction of stale
bit key, andget(key) returns this stored value, just apointers below 50%.

2.1 A sloppy storage layer
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A get(key) operation traverses the identifier space
and, upon hitting a node storingey, returns the

node can contact these nodes, in parallel or in so v
application-specific way, to download the stored data.

Coral’s “sloppy store” method inserts pointers alongd
the lookup path for popular keys. Its practice of
“spilling-over” when full helps to balance load while
inserting pointers, retrieving pointers, and downloading

data. Rapid membership changes remain ineXpenSiV%iaﬁrelz Coral’shierarchical lookup visualized on the Chord

the Sy_stem only exchange_s p_omters. left) and Kademlia (right) routing structures. Nodes main-
While sloppy stores eliminate hot spots, we st &n the same id in each of their clusters, smaller-diameter

must address the problem (_)f latency. In parti_cuszitgw_level |usters are naturally sparser. For alookup on Key &,
find_closer_node(key) may circle the globe to flndan de first searches on its lowest cluster. This lookup fails
some nearby host with the data. To take advantage

data locali L introduces hical ook ot that level if the node closest to &, node ¢, does not store
ata locality, Coral introduceserarchical lookup. the key. If this occurs, Coral continuesitslookup on ahigher-

level cluster, having already traversed the id space upto¢s’s
2.2 A hierarchical lookup layer prefix. Route RPCs are shown with sequential numbering.

Instead of one global lookup system asin [2, 3, 8], Coral

uses severalevels of DSHTs called clusters. Coral _

nodes belong to one DSHT at each level; the currémhe search eventuglly saitches to the global cl_uster,
implementation has a three-level DSHT hierarchy. Tfe@rd does not require any more RPCs than a single-

goal is to establish many fast clusters with regional cd§¥® ]Ic?(,)kuﬁ se(; vice, asalookup dwayaT restarts Wherﬁ't
erage (we refer to such “low-level” clusters as level-2§it Off in theid space. Moreover, Coral guarantees that

multiple clusters with continental coverage (referred § 00kuPs at the beginning are fast. This functiondlity

as “higher” level-1 clusters), and one planet-wide clu@1SS naturally;_ror:n anode having t:e same ”Odﬁid in
ter (level-0). Reasonable round-trip time thresholds &eDSHTstowhichitbelongs. Notethat Coral achieves

30 msec for level-2 clusters, 100 msec for level-1, afiS Property independent of any distance optimization

o for the global level-0. Section 3 presents some exptH S underlying lookup protocol. _
imental measurements to support these choices. Eacﬂélvf) zqnfllct;]ngalcrlterla Impact thel effecﬂ;/henelis gf
cluster is named by am-bit cluster identifiercid;; the CO'd’S hierarchicd DSHTSs. First, clusters should be

global cid, is predefined ag™. large in terms of membership. The more peers in a

Coral uses this hierarchy for distance-optimiz&ig'w’ the greater its capacity and the lower the miss

lookup, visualized in Figure 1 for both the Chord [15 e Secon_d, clusters should have srnall network diam-
and Kademlia [5] routing structures. er to achieve fast lookup. That is, the expected la-

Toinsert a key/value pair, a node performgat on €NCY between randomly-selected peers within a cluster

all levels of its clusters. This practice results in a Ioo§*éour|]d be below thfe ﬂ_uster’_sspecifie_d threshold. .
hierarchical data cache, whereby a higher-level clustef "€ "émainder of this section describes Coral’s mech-

contains nearly all data stored in the lower-level clusté\lggr?s for managing its m;ljtl_pleanISHT clusters. These
to which its members also belong. mechanisms are summarized in Table 1.

Toretrieve a key, a requesting nodsdfirst performs a
get on its level-2 cluster to try to take advantage of nef-3  joining a cluster
work locality. find_closer_node on this level may hit
some node caching the key and halth{g. If not, the Coral largely inherits its join and leave protocols from
lookup will reach the node in that cluster closest to tits underlying lookup service, with one difference.
target key, call itts. r then continues its search in ittfNamely, anode will only join an acceptable cluster, that
level-1 cluster. However; has already returned routis, onein which the latency to 90% of the nodes is below
ing information in the level-1 cluster. Thus,begins the cluster’'s diameter. This property is easy for a node
with the closest level-1 node ig's routing table. Even to test by collecting round trip times to some subset of
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The Task

| Coral’sSolution

Discovering and joining a low-level cluster,
while only reguiring knowledge of some other
node, not necessarily a close one.

Coral nodesinsert their own contact information and I nternet topol ogy
hints into higher-level clusters. Nodes reply to unexpected requests
with their cluster information. Sloppiness in the DSHT infrastructure
prevents hotspots from forming when nodes search for new clustersand
test random subsets of nodes for acceptable RTT thresholds. Hotspots
would otherwise distort RTT measurements and reduce scal ability.

Merging close clusters into the same name-
space without experiencing oscillatory behav-
ior between the merging clusters.

Coral’s use of cluster size and age information ensures a clear, stable
direction of flow between merging clusters. Merging may be initiated
as the byproduct of alookup to anode that has switched clusters.

Splitting slow clusters into disjoint subsets, in
a manner that results in an acceptable and sta-
ble partitioning without causing hotspots.

Coral’sdefinition of acluster center providesa stabl e point about which
to separate nodes. DSHT sloppiness prevents hotspots while a node
determinesits relative distance to this known point.

Table 1: Overview of the Coral’s design for self-organizing clusters

nodes in the cluster, perhaps by simply looking up its
own identifier asanatural part of joining.

Asin any peer-to-peer system, a node must initially
learn about some other Coral node to join the system.
However, Coral adds a RTT requirement for a node's
lower-level clusters. A node unable to find an acceptable
cluster creates anew one with arandom cid. A node can
join abetter cluster whenever it learns of one.

Several mechanisms could have been used to dis-
cover clusters, including using IP multicast or merely
waiting for nodes to learn about clusters as a side ef-
fect of norma lookups. However, Cora exploits the
DSHT interface to let nodes find nearby clusters. Upon
joining a low-level cluster, a node inserts itself into
its higher-level clusters, keyed under the IP addresses
of its gateway routers, discovered by t r acer out e.
For each of the first five routers returned, it executes
put(hash(router.ip), nodeaddr). A new node, search-
ing for alow-level acceptable cluster, can perform a get
on each of its own gateway routers to learn some set of
topol ogically-close nodes.

24 Merging clusters

While a small cluster diameter provides fast lookup, a
large cluster capacity increases the hit rate in a lower-
level DSHT. Therefore, Cora’s join mechanism for
individual nodes automatically results in close clusters
merging if nodes in both clusters would find either ac-
ceptable. This merge happens in a totally decentral-
ized way, without any expensive agreement or |eader-
election protocol. When a node knows of two accept-
able clusters at agiven level, it will join the larger one.
When a node switches clusters, it still remains in the
routing tables of nodes in its old cluster. Old neigh-
bors will still contact it; the node replies to level-i re-

quests originating outside its current cluster with the
tuple{ cid;, size;, ctime; }, where size; is the estimated
number of nodes in the cluster, and ctime; is the clus-
ter's creation time. Thus, nodes from the old cluster
will learn of this new cluster that has more nodes and
the same diameter. This produces an avalanche effect as
more and more nodes switch to the larger cluster.

Unfortunately, Coral can only count on a rough ap-
proximation of cluster size. If nearby clusters A and B
are of similar sizes, inaccurate estimations could in the
worst case cause oscillations as nodes flow back-and-
forth. To perturb such oscillations into a stable state,
Cora employs a preference function § that shifts every
hour. A node selects the larger cluster only if the fol-
lowing holds:

log(sizea) — log(sizep)| > 0 (min(age,, agep))
where age is the current time minus ctime. Otherwise,
anode simply selects the cluster with the lower cid.

We use asquare wave function for § that takes avalue
0 on an even number of hours and 2 on an odd num-
ber. For clusters of disproportionate size, the selection
function immediately favorsthe larger cluster. However,
should clusters of similar size continuously exchange
members when § is zero, as soon as 4 transitions, nodes
will al flow to the cluster with the lower cid. Should the
clusters oscillate when § = 2, the one 22-times larger
will get all members when § returns to zero.

2.5 Splitting clusters

In order to remain acceptable to its nodes, a cluster may
eventually need to split. This event may result from a
network partition or from population over-expansion, as
new nodes may push the RTT threshold. Coral’s split



operation again incorporates some preferred direction of
flow. If nodes merely atomized and randomly re-merged
into larger clusters, the procedure could take too long to
stabilize or else form highly sub-optimal clusters.

To provide a direction of flow, Cora specifies some
node c within cid asacluster center. When splitting, all
nodes near to this center ¢ join one cluster; all nodes
far from ¢ join a second cluster. Specifically, define
cid™ = hash(cid) and let cid” be cid™ with the high-
order bit flipped. The cluster center ¢ is the node clos-
est to key cid™ in the DSHT. However, nodes cannot
merely ping the cluster center directly, as this would
overload ¢, distorting RTT measurements.

To avoid this overload problem, Coral again leverages
its sloppy replication. If a node detects that its clus-
ter is no longer acceptable, it performs a get first on
cid” , then on cid®". For one of the first nodes to split,
get(cid™) resolves directly to the cluster center ¢. The
node joins cid; based on its RTT with the center, and it
performs a put(cid;, nodeaddr) on its old cluster and
its higher-level DSHTSs.

One concern isthat an early-adopter may moveinto a
small successor cluster. However, before it left its pre-
vious level-i cluster, the latency within this cluster was
approaching that of the larger level-(i—1) cluster. Thus,
the node actually gains little benefit from maintaining
membership in the smaller lower-level cluster.

As more nodes transition, their gets begin to hit the
sloppy replicas of cid" and cid’: They learn a ran-
dom subset of the nodes aready split off into the two
new clusters. Any node that finds cluster cid"¥ accept-
able will join it, without having needed to ping the old
cluster center. Nodes that do not find cid"¥ acceptable
will attempt to join cluster cid”. However, cluster cid?
could be even worse than the previous cluster, in which
case it will split again. Except in the case of pathologi-
cal network topologies, a small number of splits should
suffice to reach a stable state. (Otherwise, after some
maximum number of unsuccessful splits, a node could
simply form a new cluster with arandom ID as before.)

3 Measurements

Coral assigns system-wide RTT thresholds to the differ-
ent levels of clusters. If nodes otherwise choose their
own “acceptability” levels, clusters would experience
greater instability asindividual thresholds differ. Also, a
cluster would not experience a distinct merging or split-
ting period that helpsto return it to an acceptable, stable
state. Can we find sensible system-wide parameters?
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Figure 2: CDFs of round-trip times between specified RON
nodes and Gnutella peers.

To measure network distances in a deployed system,
we performed latency experiments on the Gnutella net-
work. We collected host addresses while acting as a
Gnutella peer, and then measured the RTT between 12
RON nodes and approximately 2000 of these Gnutella
peers. Both operations lasted for 24 hours. We deter-
mined round-trip times by attempting to open several
TCP connections to high ports and measuring the mini-
mum time elapsed between the SYN and RST packets.

Figure 2 shows the cumulative distribution function
(CDF) of the measured RTT’s between Gnutella hosts
and the following RON sites: New York University
(NYU); Nortel Networks, Montreal (Nortel); Intel re-
search, Berkeley (Intel); KAIST, Dagjon (South Korea);
Vrije University (Amsterdam); and NTUA (Athens).

If the CDFs had multiple “plateaus’ at different
RTT’s, system-wide thresholds would not be ideal. A
threshold chosen to fall within the plateau of some set of
nodes sets the cluster’'s most natural size. However, this
threshold could bisect the rising edge of other nodes
CDFsand yield greater instability for them.

Instead, our measurements show that the CDF curves
are rather smooth. Therefore, we have relative freedom
in setting cluster thresholds to ensure that each level of
cluster in a particular region can capture some expected
percentages of nearby nodes.



Our choice of 30 msec for level-2 covers smaller clus-
ters of nodes, while the level-1 threshold of 100 msec
spans continents. For example, the expected RTT be-
tween New York and Berkeley is 68 msec, and 72 msec
between Amsterdam and Athens. Thecurvesin Figure 2
suggest that most Gnutella peers reside in North Amer-
ica. Thus, low-level clusters are especially useful for
gparse regions like Korea, where most queries of atradi-
tional peer-to-peer system would go to North America.

4 Related work

Severa projects have recently considered peer-to-peer
systems for web traffic. Stading et. al. [10] usesa DHT
to cache replicas, and PROOFS[11] uses a randomized
overlay to distribute popular content. However, both
systems focus on mitigating flash crowds, not on nor-
mal web caching. Therefore, they accept higher lookup
costs to prevent hot spots. Squirrel [4] proposed web
caching on atraditional DHT, athough only for LANS.
It examines storing pointersin the DHT, yet reports poor
load-balancing. We attribute this result to the limited
number of pointers stored (only 4), which perhapsisdue
to the lack of any sloppiness in the system’s DHT inter-
face. SCAN [1] examined replication policies for data
disseminated through a multicast tree from a DHT de-
ployed at | SPs.

5 Conclusions

Cora introduces the following techniques to enable
distance-optimized object lookup and retrieval. First,
Coral provides a DSHT abstraction. Instead of storing
actual data, the system stores weakly-consistent lists of
pointers that index nodes at which the data resides. Sec-
ond, Coral assigns round-trip-time thresholds to clus-
ters to bound cluster diameter and ensure fast lookups.
Third, Coral nodes maintain the same identifier in all
clusters. Thus, even when a low-diameter lookup fails,
Coral uses the returned routing information to continue
the query efficiently in alarger-diameter cluster. Finally,
Coral provides an agorithm for self-organizing merging
and splitting to ensure acceptable cluster diameters.

Coral is a promising design for performance-driven
applications. We are in the process of building Coral
and planning network-wide measurements to examine
the effectiveness of its hierarchical DSHT design.
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