Hiding Amongst the Clouds

A Proposal for Cloud-based Onion Routing

Nicholas Jones

Matvey Arye Jacopo Cesareo Michael J. Freedman

Princeton University

https://www.torproject.org/about/overview.html

and

but...

and

Cloud-based

Onion

Routing

Benefits, Risks, and Challenges

- Potential benefits of cloud infrastructure
 - High performance
 - Adaptability to censorship
- Economic challenges
- New security problems

Benefits of Cloud Infrastructure

Performance (latency, throughput) Censorship Resistance

- Individual nodes are higher bandwidth
- Ability to add and remove nodes to meet demand

- Individual nodes are higher bandwidth
- Ability to add and remove nodes to meet demand

- Individual nodes are higher bandwidth
- Ability to add and remove nodes to meet demand

- Individual nodes are higher bandwidth
- Ability to add and remove nodes to meet demand

11:00 P.M.

- Individual nodes are higher bandwidth
- Ability to add and remove nodes to meet demand

12:00 A.M.

- Individual nodes are higher bandwidth
- Ability to add and remove nodes to meet demand

Benefits of Clouds

- Higher performance
- Elasticity to scale to demand
- Multi-homing and scale makes eavesdropping difficult
- Elasticity forces censors to make hard choices: collateral damage or unblocked access

Economics

Cloud pricing is affordable for end users

- Cloud providers charge for CPU and bandwidth

- Cloud providers charge for CPU and bandwidth
- CPU is cheap

- Cloud providers charge for CPU and bandwidth
- CPU is cheap
 - 100+ users on a 34¢/hr node

- Cloud providers charge for CPU and bandwidth
- CPU is cheap
 - 100+ users on a 34¢/hr node

- Cloud providers charge for CPU and bandwidth
- CPU is cheap
 - 100+ users on a 34¢/hr node
- Bandwidth is dominant cost

- Cloud providers charge for CPU and bandwidth
- CPU is cheap
 - 100+ users on a 34¢/hr node
- Bandwidth is dominant cost
 - 100MB as low as $1\ensuremath{\wp}$

Data Transfer IN	
All data transfer in	\$0.000 per GB
Data Transfer OUT	
First 1 GB / month	\$0.000 per GB
Up to 10 TB / month	\$0.120 per GB
Next 40 TB / month	\$0.090 per GB
Next 100 TB / month	\$0.070 per GB
Next 350 TB / month	\$0.050 per GB

Amazon EC2 Pricing

Tor's Total Bandwidth Cost in the Cloud

COR Cost: \$61,200/month

Security Challenges and Solutions

Involved Parties and Trust Model Building Tunnels Paying for Tunnels Learning About Relays

Distributing Trust

- Tor
 - Tunnels between volunteer relays

- COR

- Tunnels between clouds from different providers

Is that sufficient?

- Should users pay cloud providers directly?
 - Not anonymous: Credit cards and Paypal leak info

- Should users pay cloud providers directly?
 - Not anonymous: Credit cards and Paypal leak info

- Another layer of indirection: Anonymity Service Providers
 - Operate relays and pay cloud providers
 - Mask users' identities
 - Accept anonymous payment for access

- Cloud Hosting Providers (CHPs)
 - Provide infrastructure for COR relays

- Anonymity Service Providers (ASPs)
 - Run relays and directory servers
 - Sell tokens
 - Redeemable for XX MB of connectivity or XX amount of time

Organizations used above are examples only

- Two relays within each datacenter

- Two relays within each datacenter
- Different entry and exit ASPs

- Two relays within each datacenter
- Different entry and exit ASPs
- Different entry and exit CHPs

- Two relays within each datacenter
- Different entry and exit ASPs
- Different entry and exit CHPs

- ASP and CHP relays are contiguous within a circuit

Paying for Access

- Users purchase tokens
- Redeem tokens for access (bandwidth or time)
- Chaum's e-cash:
 - Cryptographically untraceable

How do users gain access?

- Users need two things:
 - Tokens
 - COR Directory
How do users gain access?

- Users need two things:
 - Tokens
 - COR Directory
- Solution: Bootstrapping Network
 - Low speed
 - High Latency
 - Free

Adversaries enumerate and block ingress

- Current technologies
 - Tor Bridges
- Two separate problems:
 - COR Relays
 - High speed, low latency, not free
 - Bootstrapping
 - Low speed, high latency, free

Summary

Tor COR

