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Blockchains like Bitcoin and Ethereum have seen significant adop­
tion in the past few years. Beyond their cryptocurrency uses, block­
chains are being used to build new, decentralized versions of DNS 

and public-key infrastructure (PKI) that have no central points of trust. Such 
blockchain-based naming and PKI services can be used as a general-purpose 
“trust layer” for Internet applications. We present the design of a new block­
chain-based naming and storage system called Blockstack. Blockstack powers 
a production system for 60,000 users and is released as open source software.

Cryptocurrency blockchains and their respective P2P networks are useful beyond exchang­
ing money. They provide cryptographically auditable, append-only global logs that have a 
high computational-cost barrier for tampering with data written to them. Blockchains have 
no central points of trust or failure: they minimize the degree to which users/nodes need to 
trust a single party, such as a DNS root server or a root certificate authority.

Blockchain networks have attracted a lot of interest from enthusiasts, engineers, and inves­
tors. In fact, $1.1 billion has been invested in blockchain startups over the past few years [5]. 
With this rapid capital infusion, infrastructure for blockchains is getting quickly deployed, 
and they are emerging as publicly available common infrastructure for building services and 
applications.

Blockchains are already being used to build new, decentralized versions of DNS (http:// 
namecoin.info) and public-key infrastructure (http://onename.com) that have no central 
points of trust. Such blockchain-based naming and PKI services can be used as a general-
purpose “trust layer” for other distributed systems and applications. For example, an IoT 
node can be registered on a blockchain with a unique name and controlled by a cryptographic 
keypair binding, stored on the blockchain, with that name.

Blockchain-based naming systems securely bind names, which can be human-readable, to 
arbitrary values. The blockchain gives consensus on the global state of the naming system 
and provides an append-only global log for state changes. Writes to name-value pairs can 
only be announced in new blocks, as appends to the global log. The global log is fully repli­
cated (all nodes on the network see the same state) but organizationally decentralized (no 
central party controls the log).

The decentralized nature of blockchain-based naming introduces meaningful security 
benefits, but certain aspects of contemporary blockchains present technical limitations. 
Individual blockchain records are typically on the order of kilobytes [10] and cannot hold 
much data. The latency of creating and updating records is capped by the blockchain’s write 
propagation and leader election protocol, and it is typically on the order of 10–40 minutes 
[4]. The total number of new operations in each round is limited by the average bandwidth of 
the network’s nodes; for Bitcoin, the current average is ~1500 new operations per new round 
[5]. Further, new nodes need to independently audit the global log from its beginning: as the 
system makes forward progress, the time to bootstrap new nodes increases linearly.
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We believe that in spite of these scalability and performance 
challenges, blockchains provide important infrastructure for 
bootstrapping trust in distributed systems and building new 
decentralized services. The cost of tampering with blockchains 
grows with their adoption: today, it would require hundreds of 
millions of dollars to attack a large blockchain like Bitcoin [5].

These benefits motivated us to use blockchains to build a new 
global naming and storage system, called Blockstack [3]. Our 
system enables users to register unique, human-readable user­
names and associate public-keys, like PGP, along with additional 
data to these usernames. In this article, we present an overview 
of the design of Blockstack and discuss how it can be used as a 
general-purpose “trust layer” for building other applications and 
services. Unlike previous blockchain-based systems, Blockstack 
separates its control and data plane considerations: it keeps only 
minimal metadata (namely, data hashes and state transitions) in 
the blockchain and uses external datastores for actual bulk stor­
age. Blockstack enables fast bootstrapping of new nodes by using 
checkpointing and skip lists to limit the set of blocks that a new 
node must audit to get started.

Modifying production blockchains like Bitcoin (and introducing 
new functionality for which it was not designed) is quite dif­
ficult, particularly since the system still needs to reach “consen­
sus.” With Blockstack, we extend the single-state machine model 
of blockchains to allow for arbitrary state machines without 
requiring consensus-breaking changes in the underlying block­
chain. This design was non-intuitive before our work; indeed, 
the standard approach for the past three years was to fork the 
main Bitcoin blockchain to add new and different functionality. 
We have released Blockstack as open source (http://github.com/
blockstack).

Motivation and Background
We next describe the motivation for building naming systems 
that have no central point of trust and provide the relevant back­
ground on blockchains. We use the term naming system to mean: 
(1) names are human-readable and can be picked by humans; (2) 
name-value pairs have a strong sense of ownership—that is, they 
can be owned by cryptographic keypairs; and (3) there is no cen-
tral trusted party or point of failure. Building a naming system 
with these three properties was considered impossible accord­
ing to Zooko’s Triangle (http://dankaminsky.com/2011/01/13/
spelunk-tri), and most traditional naming systems provide two 
out of these three properties [8]. Namecoin used a blockchain-
based approach to provide the first naming system that offered 
all three properties: human-readability, strong ownership, and 
decentralization.

Background on Blockchains
Blockchains provide a global append-only log that is publicly 
writeable. Writes to the global log, called transactions, are orga­
nized as blocks, and each block packages multiple transactions 
into a single atomic write. Writing to the global log requires a 
payment in the form of a transaction fee. Nodes participating in a 
blockchain network follow a leader election protocol for deciding 
which node gets to write the next block and collect the respec­
tive transaction fees. Only one node gets to write a block in each 
leader election round. Not all nodes in the network participate in 
leader election. Those actively competing to become the leader 
of the next round are called miners. At the start of each round, 
all miners start working on a new computation problem, derived 
from the last block, and the miner that is the first to solve the 
problem gets to write the next block. In Bitcoin, the difficulty 
of these computation problems is automatically adjusted by 
the protocol so that one new block is produced roughly every 10 
minutes. See [4] for further details on how blockchains work and 
how they reach consensus.

Naming System on a Blockchain
The first blockchain to implement a naming system was 
Namecoin. It is one of the first forks of Bitcoin and is the old­
est blockchain other than Bitcoin that is still operational. 
The main motivation for starting Namecoin was to create an 
alternate DNS-like system that replaces DNS root servers 
with a blockchain for mapping domain names to DNS records 
[8]. Given that blockchains don’t have central points of trust, a 
blockchain-based DNS is much harder to censor, and registered 
names cannot be seized from owners without getting access to 
their respective private keys [8]. Altering name registrations 
stored in a blockchain requires prohibitively high computing 
resources because rewriting blockchain data requires proof-of-
work [2]. Before our work, it was common practice to start new 
blockchains (by forking them from Bitcoin) to introduce new 
functionality and make modifications required by the respec­
tive service/application, which is the precise approach taken by 
Namecoin.

Just like DNS, there is a cost associated with registering a 
new name. The name registration fee discourages people from 
registering a lot of names that they don’t actually intend to use. 
In Namecoin, the recipient of registration fees is a “black hole” 
cryptographic address from which money cannot be retrieved 
[8]. Namecoin defines a pricing function for how the cost of 
name registrations changes over time. Namecoin supports 
multiple namespaces (like TLDs in DNS), and the same rules for 
pricing and name expiration apply to all namespaces. By conven­
tion, the d / namespace is used for domain names.
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In Namecoin, name registration uses a two-phase commit 
method where a user first pre-orders a name hash and then 
registers the name-value pair by revealing the actual name and 
the associated value. This is done to avoid front-running uncon­
firmed name registrations [8]. Name registrations expire after a 
fixed amount of time, measured in new blocks written (currently 
36,000 blocks, which translates to roughly eight months), and 
cannot be purchased for longer periods. Namecoin also supports 
updating the value associated with a name, as well as ownership 
transfers.

Our experience with the Namecoin blockchain shows that start­
ing new, smaller blockchains leads to security problems (like 
reduced computational power needed to attack the network) 
and should be avoided when possible. We detailed our findings 
in a recent USENIX ATC paper [3]. Importantly, we discovered 
a critical security problem where a single miner consistently had 
more than 51% of the total compute power on the Namecoin net-
work (see Figure 1 for the Namecoin mining distribution for the 
month of August 2015, and see [4] for details on the 51% attack 
and compute power of miners). A 51% attack is one of the most 
serious attacks on a blockchain and impacts its security and 
decentralization properties. Other than Namecoin, blockchains 
like Ethereum [1] and BitShares (http://bitshares.org) also have 
support for human-readable names (tied to their respective 
blockchains).

Design of Blockstack
Blockstack is designed to implement a naming system with 
human-readable names in a layer above the blockchain. In this 
section, we describe how Blockstack uses the underlying block­
chain and present how it copes with technical limitations of 
contemporary blockchains.

Challenges
Building systems with blockchains presents challenges:

◆◆ Limits on data storage: Individual blockchain records are 
typically on the order of kilobytes [10] and cannot hold much 
data. Moreover, the blockchain’s log structure implies that 
all state changes are recorded in the blockchain. All nodes 
participating in the network need to maintain a full copy of the 
blockchain, limiting the total size of blockchains to what cur­
rent commodity hardware can support. As of May 2016, Bitcoin 
nodes need to dedicate 69 GB total disk space to blockchain 
data for staying synchronized with the network.

◆◆ Slow writes: The transaction processing rate is capped by the 
blockchain’s write propagation and leader election protocol, 
and it is pegged to the rate at which new blocks are announced 
by leader nodes (miners). New transactions can take several 
minutes to a few hours to be accepted.

◆◆ Limited bandwidth: The total number of transactions per 
block is limited by the block size of blockchains. To maintain 
fairness and to give all nodes a chance to become leader in the 
next round, all nodes should receive a newly announced block 
at roughly the same time. Therefore, the block size is typically 
limited by the average uplink bandwidth of nodes. For Bitcoin, 
the current block size is 1 MB (~1000 transactions).

◆◆ Endless ledger: The integrity of blockchains depends on the 
ability of anyone to audit them back to their first block. As the 
system makes forward progress and issues new blocks, the cost 
of an audit grows linearly with time. Thus, booting up new nodes 
becomes progressively more time-consuming. We call this the 
endless ledger problem. As of May 2016, Bitcoin’s blockchain had 
~413,000 blocks, and new nodes take 1–3 days to download the 
blockchain from Bitcoin peers, verify it, and boot up.

Architecture Overview
Blockstack maintains a naming system as a separate logical 
layer on top of the underlying blockchain on which it operates. 
Blockstack uses the underlying blockchain to achieve consen­
sus on the state of this naming system and bind names to data 
records. Specifically, it uses the underlying blockchain as a 
communication channel for announcing state changes, as any 
changes to the state of name-value pairs can only be announced 
in new blockchain blocks. Relying on the consensus protocol of 
the underlying blockchain, Blockstack can provide a total order­
ing for all operations supported by the naming system, like name 
registrations, updates, and transfers.

Separation of the Control and Data Plane: Blockstack decou­
ples the security of name registration and name ownership from 
the availability of data associated with names by separating the 
control and data planes.

Figure 1: Mining distribution for Namecoin (Aug. ’15)
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The control plane defines the protocol for registering human-
readable names, creating (name,hash) bindings and mapping 
name ownership to cryptographic key pairs. The control plane 
consists of a blockchain and a logically separate layer on top, 
called a virtualchain.

The data plane is responsible for data storage and availability. It 
consists of (1) zone files for discovering data by hash or URL and 
(2) external storage systems for storing data (such as S3, IPFS 
[6], and Syndicate [7]). Data values are signed by the public keys 
of the respective name owners. Clients read data values from the 
data plane and verify their authenticity by checking that either 
the data’s hash is in the zone file, or the data includes a signature 
with the name owner’s public key.

We believe this separation is a significant improvement over 
Namecoin, which implements both the control and the data 
plane at the blockchain level. Our design not only significantly 
increases the data storage capacity of the system, but also allows 
each layer to evolve and improve independently of the other.

Agnostic of the Underlying Blockchain: The design of Block­
stack does not put any limitations on which blockchain can be 
used with it. Any blockchain can be used, but the security and 
reliability properties are directly dependent on the underly­
ing blockchain. We believe that the ability to migrate from one 
blockchain to another is an important design choice as it allows 

for the larger system to survive, even when the underlying 
blockchain is compromised. Currently, Blockstack core develop­
ers decide which underlying blockchain(s) to support in which 
version of the software. Individual applications can decide to run 
the software version of their choice and keep their namespace on 
a particular blockchain, if they prefer not to migrate.

Ability to Construct State Machines: A key contribution of 
Blockstack is the introduction of a logically separate layer on top 
of a blockchain that can construct an arbitrary state machine 
after processing information from the underlying blockchain. 
This virtualchain treats transactions from the underlying 
blockchain as inputs to the state machine; valid inputs trigger 
state changes. At any given time, where time is defined logi­
cally by the block number, the state machine can be in exactly 
one global state. Time moves forward as new blocks are written 
in the underlying blockchain, and the global state is updated 
correspondingly.

A virtualchain enables the introduction of new types of state 
machines, without requiring any changes to the underlying 
blockchain. This approach is especially beneficial for a new and 
developing technology. Introducing new state machines directly 
in a blockchain would otherwise require peers to upgrade, and 
upgrades potentially break consensus and cause forks. In prac­
tice, they are difficult to orchestrate [4]. Currently, Blockstack 

Figure 2: Overview of Blockstack’s architecture. Blockchain records give (name, hash) mappings. Hashes are looked up in routing layer to discover routes to 
data. Data, signed by name owner’s public-key, is stored in cloud storage.
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provides a state machine that represents the global state of a nam­
ing system, including who owns a particular name and what data 
is associated with a name. Further, it’s possible to use the virtual­
chain concept to define other types of state machines as well.

Blockstack Layers
Blockstack introduces new functionality on top of blockchains 
by defining a set of new operations that are otherwise not sup­
ported by the blockchain. Blockstack has four layers, with two 
layers (blockchain and virtualchain) in the control plane and 
two layers (routing and data storage) in the data plane.

Layer 1: Blockchain Layer
The blockchain occupies the lowest tier (see Figure 2) and serves 
two purposes: it stores the sequence of Blockstack operations, 
and it provides consensus on the order in which the operations 
are written. Blockstack operations are encoded in transactions 
on the underlying blockchain.

Layer 2: Virtualchain Layer
Above the blockchain is a virtualchain, which defines new oper­
ations without requiring changes to the underlying blockchain. 
Only Blockstack nodes are aware of this layer, and underlying 
blockchain nodes are agnostic to it. Blockstack operations are 
defined in the virtualchain layer and are encoded in valid block­
chain transactions as additional metadata. Blockchain nodes 
do see the raw transactions, but the logic to process Blockstack 
operations only exists at the virtualchain level.

The rules for accepting or rejecting Blockstack operations are 
also defined in the virtualchain. Accepted operations—for 
example, a name registration operation on a name that has not 
been registered by anyone yet—are processed by the virtualchain 
to construct a database that stores information on the current 
global state of the system along with a history of previous states 
at earlier blockchain blocks.

Layer 3: Routing Layer
Blockstack separates the task of routing requests (i.e., how to dis­
cover data) from the actual storage of data. This avoids the need for 
the system to adopt any particular storage service from the outset 
and instead allows multiple storage providers to coexist, including 
both commercial cloud storage and peer-to-peer systems.

Blockstack uses zone files for storing routing information, which 
are identical to DNS zone files in their format. Figure 3 shows 
an example zone file. The virtualchain binds names to their 
respective hash(zone file). While these bindings are stored in the 
control plane, the zone files themselves are stored in the routing 
layer. Users do not need to trust the routing layer; this is because, 
as long as the zone file data is available, the integrity of zone files 
can be verified by checking their hash from the control plane. 

Currently, all zone files are public and globally resolvable, and 
we plan to support private data linked to public zone files in the 
future.

In Blockstack’s current implementation, nodes form a DHT-
based peer network [9] for storing zone files. The DHT (dis­
tributed hash table) only stores zone files if their hash was 
previously announced in the blockchain. This effectively 
whitelists the data that can be stored in the DHT. Due to space 
constraints, we omit most details of our DHT storage from this 
article; the key aspect relevant to the design of Blockstack is 
that routes (irrespective of where they are fetched from) can be 
verified and therefore cannot be tampered with. Further, most 
production servers maintain a full copy of all zone files since the 
size of zone files is relatively small (4 KB per file). Keeping a full 
copy of routing data introduces only a marginal storage cost (24 
MB as of June 2016) on top of storing the blockchain data.

Layer 4: Storage Layer
The topmost layer is the storage layer, which hosts the actual 
data values of name-value pairs. All stored data values are 
signed by the key of the respective owner of a name. By storing 
data values outside of the blockchain, Blockstack allows values 
of arbitrary size and allows for a variety of storage backends. 
Users do not need to trust the storage layer: as long as the zone file 
data is available, they can verify the integrity of the data values 
in the control plane.

There are two modes of using the storage layer, and they differ in 
how the integrity of data values is verified; Blockstack supports 
both storage modes simultaneously.

Mutable storage is the default mode of operation for the storage 
layer. The user’s zone file contains a URI record that points to 
the data, and the data is constructed to include a signature from 
the user’s private key. Writing the data involves signing and 
replicating the data (but not the zone file), and reading the data 
involves fetching the zone file and data, verifying that hash(zone 
file) matches the hash in Blockstack, and verifying the data’s 
signature with the user’s public key. This allows for writes to be 
as fast as the signature algorithm and underlying storage system 
allows, since updating the data does not alter the zone file and 
thus does not require any blockchain transactions. However, 
readers and writers must employ a data versioning scheme to 
avoid consuming stale data.

Figure 3: Example zone file
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Immutable storage is similar to mutable storage, but addition­
ally puts a TXT record in the zone file that contains hash(data). 
Readers verify data integrity by fetching the data and checking 
that hash(data) is in the zone file, in addition to verifying the 
data’s signature and the zone file’s authenticity. This mode is 
suitable for data values that don’t change often and where it’s 
important to verify that readers see the latest version of the data 
value. For immutable storage, updates to data values require a 
new transaction on the underlying blockchain (since the zone 
file must be modified to include the new hash), making data 
updates much slower than with mutable storage.

Naming System
Blockstack uses its four tiers to implement a complete naming 
system. Names are owned by cryptographic addresses of the 
underlying blockchain and their associated private keys (e.g., 
ECDSA-based private keys used in Bitcoin [4]). As with Name­
coin, a user preorders and then registers a name in two steps in 
order to claim a name without revealing it to the world first and 
allowing an attacker to race the user in claiming the name. The 
first user to successfully write both a preorder and a register 
transaction is granted ownership of the name. Further, any 
previous preorders become invalid when a name is registered. 
Once a name is registered, a user can update the name-value pair 
by sending an update transaction and uploading the new value 
to the storage layer, changing the name-value binding. Name 
transfer operations simply change the address that is allowed to 
sign subsequent transactions, while revoke operations disable 
any further operations for names.

The naming system is implemented by defining a state machine 
and rules for state transitions in the virtualchain. Names are 
organized into namespaces, which are the functional equivalent 
of top-level domains in DNS—they define the costs and renewal 
rates of names. Like names, namespaces must be preordered 
and then registered. Expired names can be re-registered, and 
names can be revoked such that they cannot be re-registered for 
a certain period of time.

Pricing Functions for Namespaces
Anyone can create a namespace or register names in a 
namespace since there is no central party to stop someone from 
doing so. Pricing functions define how expensive it is to create a 
namespace or to register names in a namespace. Defining intel­

ligent pricing functions is a way to prevent “land grabs” and stop 
people from registering a lot of namespaces or names that they 
don’t intend to actually use. Blockstack enables people to create 
namespaces with sophisticated pricing functions. For example, 
we use the .id namespace for our PKI system and created the .id 
namespace with a pricing function where (1) the price of a name 
drops with an increase in name length and (2) introducing non-
alphabetic characters in names also drops the price. With this 
pricing function, the price of john.id > johnadam.id > john0001.id. 
The function is generally inspired by the observation that short 
names with alphabetic characters only are considered more 
desirable on namespaces like the one for Twitter usernames. 
It’s possible to create namespaces where name registrations are 
free as well. Further, we expect that in the future there will be 
a reseller market for names, just as there is for DNS. A detailed 
discussion of pricing functions is beyond the scope of this 
article, and the reader is encouraged to see [8] for more details on 
pricing functions.

Like names, namespaces also have a pricing function [3]. To 
start the first namespace on Blockstack, the .id namespace, we 
paid $10,000 in bitcoins to the network. This shows that even the 
developers of this decentralized system have to follow Blockstack 
rules and pay appropriate fees.

Conclusion
We have presented Blockstack, a blockchain-based naming and 
storage system that can be used as a general-purpose “trust 
layer” for building other service and applications without relying 
on any third parties. Blockstack introduces separate control and 
data planes and, by doing so, enables the introduction of new 
functionality without modifying the underlying blockchain. 
This is counter to prior designs, which typically involved the 
introduction of a new blockchain and cryptocurrency in order to 
introduce new functionality.

The design of Blockstack was informed by a year of production 
experience from one of the largest blockchain-based produc­
tion systems to date. We have introduced several innovations 
for blockchain services, including the ability to do cross-chain 
migrations, faster bootstrapping of new nodes, and keeping data 
updates off the slow blockchain network. These improvements 
all make it easier to build new decentralized services using 
existing, publicly available blockchain infrastructure.
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