
52    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

SECURITYBootstrapping Trust in Distributed Systems
with Blockchains
M U N E E B A L I , J U D E N E L S O N , R Y A N S H E A , A N D M I C H A E L J . F R E E D M A N

Muneeb Ali is the co-founder
and CTO of Blockstack Labs and
a final-year PhD candidate at
Princeton University, where he
has worked in the Systems and

Networks group and at PlanetLab. He helped
start a new course at Princeton on “How to
Be a CTO” and gives guest lectures on cloud
computing at Princeton. Muneeb has been
awarded a J. William Fulbright Fellowship.
muneeb@blockstack.com

Jude Nelson is an Engineering
Partner at Blockstack Labs and
a final-year PhD candidate at
Princeton University working
with Larry Peterson. For over

five years, Jude worked as a core member of
PlanetLab. He has received nearly $4 million
in research grants, and his systems have been
deployed across dozens of universities.
jude@blockstack.com

Ryan Shea is the co-founder
and CEO of Blockstack Labs.
He graduated from Princeton
University, where he studied
computer science and

mechanical and aerospace engineering. He
was also an engineer at ZocDoc and President
of the Princeton Entrepreneurship Club. Recent
honors include a Forbes 30 under 30 award.
ryan@blockstack.com

Michael J. Freedman is a
Professor of Computer Science
at Princeton University, with a
research focus on distributed
systems, networking, and

security. Recent honors include a Presidential
Early Career Award (PECASE) as well as early
investigator awards through the NSF and
ONR, a Sloan Fellowship, and DARPA CSSG
membership. mfreed@cs.princeton.edu

Blockchains like Bitcoin and Ethereum have seen significant adop­
tion in the past few years. Beyond their cryptocurrency uses, block­
chains are being used to build new, decentralized versions of DNS

and public-key infrastructure (PKI) that have no central points of trust. Such
blockchain-based naming and PKI services can be used as a general-purpose
“trust layer” for Internet applications. We present the design of a new block­
chain-based naming and storage system called Blockstack. Blockstack powers
a production system for 60,000 users and is released as open source software.

Cryptocurrency blockchains and their respective P2P networks are useful beyond exchang­
ing money. They provide cryptographically auditable, append-only global logs that have a
high computational-cost barrier for tampering with data written to them. Blockchains have
no central points of trust or failure: they minimize the degree to which users/nodes need to
trust a single party, such as a DNS root server or a root certificate authority.

Blockchain networks have attracted a lot of interest from enthusiasts, engineers, and inves­
tors. In fact, $1.1 billion has been invested in blockchain startups over the past few years [5].
With this rapid capital infusion, infrastructure for blockchains is getting quickly deployed,
and they are emerging as publicly available common infrastructure for building services and
applications.

Blockchains are already being used to build new, decentralized versions of DNS (http://
namecoin.info) and public-key infrastructure (http://onename.com) that have no central
points of trust. Such blockchain-based naming and PKI services can be used as a general-
purpose “trust layer” for other distributed systems and applications. For example, an IoT
node can be registered on a blockchain with a unique name and controlled by a cryptographic
keypair binding, stored on the blockchain, with that name.

Blockchain-based naming systems securely bind names, which can be human-readable, to
arbitrary values. The blockchain gives consensus on the global state of the naming system
and provides an append-only global log for state changes. Writes to name-value pairs can
only be announced in new blocks, as appends to the global log. The global log is fully repli­
cated (all nodes on the network see the same state) but organizationally decentralized (no
central party controls the log).

The decentralized nature of blockchain-based naming introduces meaningful security
benefits, but certain aspects of contemporary blockchains present technical limitations.
Individual blockchain records are typically on the order of kilobytes [10] and cannot hold
much data. The latency of creating and updating records is capped by the blockchain’s write
propagation and leader election protocol, and it is typically on the order of 10–40 minutes
[4]. The total number of new operations in each round is limited by the average bandwidth of
the network’s nodes; for Bitcoin, the current average is ~1500 new operations per new round
[5]. Further, new nodes need to independently audit the global log from its beginning: as the
system makes forward progress, the time to bootstrap new nodes increases linearly.

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  53

SECURITY
Bootstrapping Trust in Distributed Systems with Blockchains

We believe that in spite of these scalability and performance
challenges, blockchains provide important infrastructure for
bootstrapping trust in distributed systems and building new
decentralized services. The cost of tampering with blockchains
grows with their adoption: today, it would require hundreds of
millions of dollars to attack a large blockchain like Bitcoin [5].

These benefits motivated us to use blockchains to build a new
global naming and storage system, called Blockstack [3]. Our
system enables users to register unique, human-readable user­
names and associate public-keys, like PGP, along with additional
data to these usernames. In this article, we present an overview
of the design of Blockstack and discuss how it can be used as a
general-purpose “trust layer” for building other applications and
services. Unlike previous blockchain-based systems, Blockstack
separates its control and data plane considerations: it keeps only
minimal metadata (namely, data hashes and state transitions) in
the blockchain and uses external datastores for actual bulk stor­
age. Blockstack enables fast bootstrapping of new nodes by using
checkpointing and skip lists to limit the set of blocks that a new
node must audit to get started.

Modifying production blockchains like Bitcoin (and introducing
new functionality for which it was not designed) is quite dif­
ficult, particularly since the system still needs to reach “consen­
sus.” With Blockstack, we extend the single-state machine model
of blockchains to allow for arbitrary state machines without
requiring consensus-breaking changes in the underlying block­
chain. This design was non-intuitive before our work; indeed,
the standard approach for the past three years was to fork the
main Bitcoin blockchain to add new and different functionality.
We have released Blockstack as open source (http://github.com/
blockstack).

Motivation and Background
We next describe the motivation for building naming systems
that have no central point of trust and provide the relevant back­
ground on blockchains. We use the term naming system to mean:
(1) names are human-readable and can be picked by humans; (2)
name-value pairs have a strong sense of ownership—that is, they
can be owned by cryptographic keypairs; and (3) there is no cen-
tral trusted party or point of failure. Building a naming system
with these three properties was considered impossible accord­
ing to Zooko’s Triangle (http://dankaminsky.com/2011/01/13/
spelunk-tri), and most traditional naming systems provide two
out of these three properties [8]. Namecoin used a blockchain-
based approach to provide the first naming system that offered
all three properties: human-readability, strong ownership, and
decentralization.

Background on Blockchains
Blockchains provide a global append-only log that is publicly
writeable. Writes to the global log, called transactions, are orga­
nized as blocks, and each block packages multiple transactions
into a single atomic write. Writing to the global log requires a
payment in the form of a transaction fee. Nodes participating in a
blockchain network follow a leader election protocol for deciding
which node gets to write the next block and collect the respec­
tive transaction fees. Only one node gets to write a block in each
leader election round. Not all nodes in the network participate in
leader election. Those actively competing to become the leader
of the next round are called miners. At the start of each round,
all miners start working on a new computation problem, derived
from the last block, and the miner that is the first to solve the
problem gets to write the next block. In Bitcoin, the difficulty
of these computation problems is automatically adjusted by
the protocol so that one new block is produced roughly every 10
minutes. See [4] for further details on how blockchains work and
how they reach consensus.

Naming System on a Blockchain
The first blockchain to implement a naming system was
Namecoin. It is one of the first forks of Bitcoin and is the old­
est blockchain other than Bitcoin that is still operational.
The main motivation for starting Namecoin was to create an
alternate DNS-like system that replaces DNS root servers
with a blockchain for mapping domain names to DNS records
[8]. Given that blockchains don’t have central points of trust, a
blockchain-based DNS is much harder to censor, and registered
names cannot be seized from owners without getting access to
their respective private keys [8]. Altering name registrations
stored in a blockchain requires prohibitively high computing
resources because rewriting blockchain data requires proof-of-
work [2]. Before our work, it was common practice to start new
blockchains (by forking them from Bitcoin) to introduce new
functionality and make modifications required by the respec­
tive service/application, which is the precise approach taken by
Namecoin.

Just like DNS, there is a cost associated with registering a
new name. The name registration fee discourages people from
registering a lot of names that they don’t actually intend to use.
In Namecoin, the recipient of registration fees is a “black hole”
cryptographic address from which money cannot be retrieved
[8]. Namecoin defines a pricing function for how the cost of
name registrations changes over time. Namecoin supports
multiple namespaces (like TLDs in DNS), and the same rules for
pricing and name expiration apply to all namespaces. By conven­
tion, the d / namespace is used for domain names.

54    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

SECURITY
Bootstrapping Trust in Distributed Systems with Blockchains

In Namecoin, name registration uses a two-phase commit
method where a user first pre-orders a name hash and then
registers the name-value pair by revealing the actual name and
the associated value. This is done to avoid front-running uncon­
firmed name registrations [8]. Name registrations expire after a
fixed amount of time, measured in new blocks written (currently
36,000 blocks, which translates to roughly eight months), and
cannot be purchased for longer periods. Namecoin also supports
updating the value associated with a name, as well as ownership
transfers.

Our experience with the Namecoin blockchain shows that start­
ing new, smaller blockchains leads to security problems (like
reduced computational power needed to attack the network)
and should be avoided when possible. We detailed our findings
in a recent USENIX ATC paper [3]. Importantly, we discovered
a critical security problem where a single miner consistently had
more than 51% of the total compute power on the Namecoin net-
work (see Figure 1 for the Namecoin mining distribution for the
month of August 2015, and see [4] for details on the 51% attack
and compute power of miners). A 51% attack is one of the most
serious attacks on a blockchain and impacts its security and
decentralization properties. Other than Namecoin, blockchains
like Ethereum [1] and BitShares (http://bitshares.org) also have
support for human-readable names (tied to their respective
blockchains).

Design of Blockstack
Blockstack is designed to implement a naming system with
human-readable names in a layer above the blockchain. In this
section, we describe how Blockstack uses the underlying block­
chain and present how it copes with technical limitations of
contemporary blockchains.

Challenges
Building systems with blockchains presents challenges:

◆◆ Limits on data storage: Individual blockchain records are
typically on the order of kilobytes [10] and cannot hold much
data. Moreover, the blockchain’s log structure implies that
all state changes are recorded in the blockchain. All nodes
participating in the network need to maintain a full copy of the
blockchain, limiting the total size of blockchains to what cur­
rent commodity hardware can support. As of May 2016, Bitcoin
nodes need to dedicate 69 GB total disk space to blockchain
data for staying synchronized with the network.

◆◆ Slow writes: The transaction processing rate is capped by the
blockchain’s write propagation and leader election protocol,
and it is pegged to the rate at which new blocks are announced
by leader nodes (miners). New transactions can take several
minutes to a few hours to be accepted.

◆◆ Limited bandwidth: The total number of transactions per
block is limited by the block size of blockchains. To maintain
fairness and to give all nodes a chance to become leader in the
next round, all nodes should receive a newly announced block
at roughly the same time. Therefore, the block size is typically
limited by the average uplink bandwidth of nodes. For Bitcoin,
the current block size is 1 MB (~1000 transactions).

◆◆ Endless ledger: The integrity of blockchains depends on the
ability of anyone to audit them back to their first block. As the
system makes forward progress and issues new blocks, the cost
of an audit grows linearly with time. Thus, booting up new nodes
becomes progressively more time-consuming. We call this the
endless ledger problem. As of May 2016, Bitcoin’s blockchain had
~413,000 blocks, and new nodes take 1–3 days to download the
blockchain from Bitcoin peers, verify it, and boot up.

Architecture Overview
Blockstack maintains a naming system as a separate logical
layer on top of the underlying blockchain on which it operates.
Blockstack uses the underlying blockchain to achieve consen­
sus on the state of this naming system and bind names to data
records. Specifically, it uses the underlying blockchain as a
communication channel for announcing state changes, as any
changes to the state of name-value pairs can only be announced
in new blockchain blocks. Relying on the consensus protocol of
the underlying blockchain, Blockstack can provide a total order­
ing for all operations supported by the naming system, like name
registrations, updates, and transfers.

Separation of the Control and Data Plane: Blockstack decou­
ples the security of name registration and name ownership from
the availability of data associated with names by separating the
control and data planes.

Figure 1: Mining distribution for Namecoin (Aug. ’15)

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  55

SECURITY
Bootstrapping Trust in Distributed Systems with Blockchains

The control plane defines the protocol for registering human-
readable names, creating (name,hash) bindings and mapping
name ownership to cryptographic key pairs. The control plane
consists of a blockchain and a logically separate layer on top,
called a virtualchain.

The data plane is responsible for data storage and availability. It
consists of (1) zone files for discovering data by hash or URL and
(2) external storage systems for storing data (such as S3, IPFS
[6], and Syndicate [7]). Data values are signed by the public keys
of the respective name owners. Clients read data values from the
data plane and verify their authenticity by checking that either
the data’s hash is in the zone file, or the data includes a signature
with the name owner’s public key.

We believe this separation is a significant improvement over
Namecoin, which implements both the control and the data
plane at the blockchain level. Our design not only significantly
increases the data storage capacity of the system, but also allows
each layer to evolve and improve independently of the other.

Agnostic of the Underlying Blockchain: The design of Block­
stack does not put any limitations on which blockchain can be
used with it. Any blockchain can be used, but the security and
reliability properties are directly dependent on the underly­
ing blockchain. We believe that the ability to migrate from one
blockchain to another is an important design choice as it allows

for the larger system to survive, even when the underlying
blockchain is compromised. Currently, Blockstack core develop­
ers decide which underlying blockchain(s) to support in which
version of the software. Individual applications can decide to run
the software version of their choice and keep their namespace on
a particular blockchain, if they prefer not to migrate.

Ability to Construct State Machines: A key contribution of
Blockstack is the introduction of a logically separate layer on top
of a blockchain that can construct an arbitrary state machine
after processing information from the underlying blockchain.
This virtualchain treats transactions from the underlying
blockchain as inputs to the state machine; valid inputs trigger
state changes. At any given time, where time is defined logi­
cally by the block number, the state machine can be in exactly
one global state. Time moves forward as new blocks are written
in the underlying blockchain, and the global state is updated
correspondingly.

A virtualchain enables the introduction of new types of state
machines, without requiring any changes to the underlying
blockchain. This approach is especially beneficial for a new and
developing technology. Introducing new state machines directly
in a blockchain would otherwise require peers to upgrade, and
upgrades potentially break consensus and cause forks. In prac­
tice, they are difficult to orchestrate [4]. Currently, Blockstack

Figure 2: Overview of Blockstack’s architecture. Blockchain records give (name, hash) mappings. Hashes are looked up in routing layer to discover routes to
data. Data, signed by name owner’s public-key, is stored in cloud storage.

56    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

SECURITY
Bootstrapping Trust in Distributed Systems with Blockchains

provides a state machine that represents the global state of a nam­
ing system, including who owns a particular name and what data
is associated with a name. Further, it’s possible to use the virtual­
chain concept to define other types of state machines as well.

Blockstack Layers
Blockstack introduces new functionality on top of blockchains
by defining a set of new operations that are otherwise not sup­
ported by the blockchain. Blockstack has four layers, with two
layers (blockchain and virtualchain) in the control plane and
two layers (routing and data storage) in the data plane.

Layer 1: Blockchain Layer
The blockchain occupies the lowest tier (see Figure 2) and serves
two purposes: it stores the sequence of Blockstack operations,
and it provides consensus on the order in which the operations
are written. Blockstack operations are encoded in transactions
on the underlying blockchain.

Layer 2: Virtualchain Layer
Above the blockchain is a virtualchain, which defines new oper­
ations without requiring changes to the underlying blockchain.
Only Blockstack nodes are aware of this layer, and underlying
blockchain nodes are agnostic to it. Blockstack operations are
defined in the virtualchain layer and are encoded in valid block­
chain transactions as additional metadata. Blockchain nodes
do see the raw transactions, but the logic to process Blockstack
operations only exists at the virtualchain level.

The rules for accepting or rejecting Blockstack operations are
also defined in the virtualchain. Accepted operations—for
example, a name registration operation on a name that has not
been registered by anyone yet—are processed by the virtualchain
to construct a database that stores information on the current
global state of the system along with a history of previous states
at earlier blockchain blocks.

Layer 3: Routing Layer
Blockstack separates the task of routing requests (i.e., how to dis­
cover data) from the actual storage of data. This avoids the need for
the system to adopt any particular storage service from the outset
and instead allows multiple storage providers to coexist, including
both commercial cloud storage and peer-to-peer systems.

Blockstack uses zone files for storing routing information, which
are identical to DNS zone files in their format. Figure 3 shows
an example zone file. The virtualchain binds names to their
respective hash(zone file). While these bindings are stored in the
control plane, the zone files themselves are stored in the routing
layer. Users do not need to trust the routing layer; this is because,
as long as the zone file data is available, the integrity of zone files
can be verified by checking their hash from the control plane.

Currently, all zone files are public and globally resolvable, and
we plan to support private data linked to public zone files in the
future.

In Blockstack’s current implementation, nodes form a DHT-
based peer network [9] for storing zone files. The DHT (dis­
tributed hash table) only stores zone files if their hash was
previously announced in the blockchain. This effectively
whitelists the data that can be stored in the DHT. Due to space
constraints, we omit most details of our DHT storage from this
article; the key aspect relevant to the design of Blockstack is
that routes (irrespective of where they are fetched from) can be
verified and therefore cannot be tampered with. Further, most
production servers maintain a full copy of all zone files since the
size of zone files is relatively small (4 KB per file). Keeping a full
copy of routing data introduces only a marginal storage cost (24
MB as of June 2016) on top of storing the blockchain data.

Layer 4: Storage Layer
The topmost layer is the storage layer, which hosts the actual
data values of name-value pairs. All stored data values are
signed by the key of the respective owner of a name. By storing
data values outside of the blockchain, Blockstack allows values
of arbitrary size and allows for a variety of storage backends.
Users do not need to trust the storage layer: as long as the zone file
data is available, they can verify the integrity of the data values
in the control plane.

There are two modes of using the storage layer, and they differ in
how the integrity of data values is verified; Blockstack supports
both storage modes simultaneously.

Mutable storage is the default mode of operation for the storage
layer. The user’s zone file contains a URI record that points to
the data, and the data is constructed to include a signature from
the user’s private key. Writing the data involves signing and
replicating the data (but not the zone file), and reading the data
involves fetching the zone file and data, verifying that hash(zone
file) matches the hash in Blockstack, and verifying the data’s
signature with the user’s public key. This allows for writes to be
as fast as the signature algorithm and underlying storage system
allows, since updating the data does not alter the zone file and
thus does not require any blockchain transactions. However,
readers and writers must employ a data versioning scheme to
avoid consuming stale data.

Figure 3: Example zone file

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  57

SECURITY
Bootstrapping Trust in Distributed Systems with Blockchains

Immutable storage is similar to mutable storage, but addition­
ally puts a TXT record in the zone file that contains hash(data).
Readers verify data integrity by fetching the data and checking
that hash(data) is in the zone file, in addition to verifying the
data’s signature and the zone file’s authenticity. This mode is
suitable for data values that don’t change often and where it’s
important to verify that readers see the latest version of the data
value. For immutable storage, updates to data values require a
new transaction on the underlying blockchain (since the zone
file must be modified to include the new hash), making data
updates much slower than with mutable storage.

Naming System
Blockstack uses its four tiers to implement a complete naming
system. Names are owned by cryptographic addresses of the
underlying blockchain and their associated private keys (e.g.,
ECDSA-based private keys used in Bitcoin [4]). As with Name­
coin, a user preorders and then registers a name in two steps in
order to claim a name without revealing it to the world first and
allowing an attacker to race the user in claiming the name. The
first user to successfully write both a preorder and a register
transaction is granted ownership of the name. Further, any
previous preorders become invalid when a name is registered.
Once a name is registered, a user can update the name-value pair
by sending an update transaction and uploading the new value
to the storage layer, changing the name-value binding. Name
transfer operations simply change the address that is allowed to
sign subsequent transactions, while revoke operations disable
any further operations for names.

The naming system is implemented by defining a state machine
and rules for state transitions in the virtualchain. Names are
organized into namespaces, which are the functional equivalent
of top-level domains in DNS—they define the costs and renewal
rates of names. Like names, namespaces must be preordered
and then registered. Expired names can be re-registered, and
names can be revoked such that they cannot be re-registered for
a certain period of time.

Pricing Functions for Namespaces
Anyone can create a namespace or register names in a
namespace since there is no central party to stop someone from
doing so. Pricing functions define how expensive it is to create a
namespace or to register names in a namespace. Defining intel­

ligent pricing functions is a way to prevent “land grabs” and stop
people from registering a lot of namespaces or names that they
don’t intend to actually use. Blockstack enables people to create
namespaces with sophisticated pricing functions. For example,
we use the .id namespace for our PKI system and created the .id
namespace with a pricing function where (1) the price of a name
drops with an increase in name length and (2) introducing non-
alphabetic characters in names also drops the price. With this
pricing function, the price of john.id > johnadam.id > john0001.id.
The function is generally inspired by the observation that short
names with alphabetic characters only are considered more
desirable on namespaces like the one for Twitter usernames.
It’s possible to create namespaces where name registrations are
free as well. Further, we expect that in the future there will be
a reseller market for names, just as there is for DNS. A detailed
discussion of pricing functions is beyond the scope of this
article, and the reader is encouraged to see [8] for more details on
pricing functions.

Like names, namespaces also have a pricing function [3]. To
start the first namespace on Blockstack, the .id namespace, we
paid $10,000 in bitcoins to the network. This shows that even the
developers of this decentralized system have to follow Blockstack
rules and pay appropriate fees.

Conclusion
We have presented Blockstack, a blockchain-based naming and
storage system that can be used as a general-purpose “trust
layer” for building other service and applications without relying
on any third parties. Blockstack introduces separate control and
data planes and, by doing so, enables the introduction of new
functionality without modifying the underlying blockchain.
This is counter to prior designs, which typically involved the
introduction of a new blockchain and cryptocurrency in order to
introduce new functionality.

The design of Blockstack was informed by a year of production
experience from one of the largest blockchain-based produc­
tion systems to date. We have introduced several innovations
for blockchain services, including the ability to do cross-chain
migrations, faster bootstrapping of new nodes, and keeping data
updates off the slow blockchain network. These improvements
all make it easier to build new decentralized services using
existing, publicly available blockchain infrastructure.

58    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

SECURITY
Bootstrapping Trust in Distributed Systems with Blockchains

References
[1] Ethereum Wiki, “A Next-Generation Smart Contract and
Decentralized Application Platform,” 2016: https://github.com
/ethereum/wiki/wiki/White-Paper.

[2] A. Back, “Hashcash—A Denial of Service Counter-Measure,”
Tech Report, 2002: http://www.hashcash.org/papers/hashcash
.pdf.

[3] M. Ali, J. Nelson, R. Shea, and M. Freedman, “Blockstack: A
Global Naming and Storage System Secured by Blockchains,” in
Proceedings of the 2016 USENIX Annual Technical Conference
(ATC ’16), June 2016.

[4] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and
E. W. Felten, “Sok: Research Perspectives and Challenges for
Bitcoin and Cryptocurrencies,” in 2015 IEEE Symposium on
Security and Privacy (SP 2015), pp. 104–121.

[5] CoinDesk, “State of Blockchain Q1 2016: Blockchair Fund­
ing Overtakes Bitcoin,” May 2016: http://www.coindesk.com
/state-of-blockchain-q1-2016/.

[6] J. Benet, “IPFS—Content Addressed, Versioned, P2P File
System,” Draft, ipfs.io, 2015: https://github.com/ipfs/papers.

[7] J. Nelson and L. Peterson, “Syndicate: Virtual Cloud Storage
through Provider Composition,” in Proceedings of the 2014 ACM
HPDC International Workshop on Software-Defined Ecosystems
(BigSystem ’14).

[8] H. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and A.
Narayanan, “An Empirical Study of Namecoin and Lessons for
Decentralized Namespace Design,” in Proceedings of the 14th
Workshop on the Economics of Information Security (WEIS ’15),
June 2015.

[9] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-
Peer Information System Based on the Xor Metric,” in Revised
Papers from IPTPS (IPTPS ’01), 2002, pp. 53–65.

[10] S. Nakamoto, “Bitcoin: A Peer-To-Peer Electronic Cash
System,” Tech Report, 2009: https://bitcoin.org/bitcoin.pdf.

