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Abstract
Blockchains like Bitcoin and Namecoin and their re-

spective P2P networks have seen significant adoption in
the past few years and show promise as naming systems
with no trusted parties. Users can register human mean-
ingful names and securely associate data with them, and
only the owner of the particular private keys that regis-
tered them can write or update the name-value pair. In
theory, many decentralized systems can be built using
these blockchain networks, such as new, decentralized
versions of DNS and PKI. As the technology is relatively
new and evolving rapidly, however, little production data
or experience is available to guide design tradeoffs.

In this paper, we describe our experiences operating
a large deployment of a decentralized PKI service built
on top of the Namecoin blockchain. We present vari-
ous challenges pertaining to network reliability, through-
put, and security that we needed to overcome while reg-
istering and updating over 33,000 entries and 200,000
transactions on the Namecoin blockchain. Further, we
discuss how our experience informed the design of a
new blockchain-based naming and storage system called
Blockstack. We detail why we switched from the Name-
coin network to the Bitcoin network for the new sys-
tem, and present operational lessons from this migration.
Blockstack is released as open source software and cur-
rently powers a production PKI system for 55,000 users.

1 Introduction

Cryptocurrency blockchains and their respective P2P
networks are useful beyond exchanging money. They
provide cryptographically auditable, append-only
ledgers that are already being used to build new,
decentralized versions of DNS [41] and public-key
infrastructure (PKI) [43], along with other applications
like file storage [23] and document timestamping [15].
Because blockchains have no central points of trust

or failure, they enable a new class of decentralized
applications and services that minimize the degree to
which users need to put trust in a single party, like a
DNS root server or a root certificate authority.

Blockchain networks have attracted a lot of interest
from enthusiasts, engineers, and investors. In fact, 1.1
billion USD has been invested in blockchain startups
over the last several years [19]. With the rapid capital
infusion, infrastructure for blockchains is getting quickly
deployed [18] and blockchains are emerging as publicly
available common infrastructure for building decentral-
ized systems and applications. However, blockchain net-
works are at a very early stage and there is very little
production data available to guide design trade-offs.

Many non-financial applications of blockchains imply
the need for a naming system that securely binds names,
which can be human-readable, to arbitrary values. The
blockchain gives consensus on the global state of the
naming system and provides an append-only global log
for state changes. Writes to name-value pairs can only be
announced in new blocks, as appends to the global log.
The global log is logically centralized (all nodes on the
network see the same state), but organizationally decen-
tralized (no central party controls the log).

The decentralized nature of blockchain-based naming
introduces meaningful security benefits, but certain as-
pects of contemporary blockchains present technical lim-
itations. Individual blockchain records are typically on
the order of kilobytes [49] and cannot hold much data.
Latency of creating and updating records is capped by
the blockchain’s write propagation and leader election
protocol, and it is typically on the order of 10-40 min-
utes [14]. The total new operations in each round are
limited by average bandwidth of nodes participating in
the network (for Bitcoin the current average is ∼1500
new operations per new round [2]). Further, new nodes
need to independently audit the global log from the be-
ginning: as the system makes forward progress, the time
to bootstrap new nodes increases linearly.
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We believe that in spite of these scalability and per-
formance challenges, blockchains provide important in-
frastructure for building secure, decentralized services.
The cost of tampering with blockchains grows with their
adoption: today, it would require hundreds of millions of
dollars to attack a large blockchain like Bitcoin [1].

These benefits motivated us to use blockchains to build
a new decentralized PKI system. Our system enables
users to register unique, human-readable usernames and
associate public-keys, like PGP [53], along with addi-
tional data to these usernames. There is no need for any
central or trusted party in our PKI system. This paper
presents our experiences from operating this PKI system
on the Namecoin network, which is one of the largest ser-
vices built on top of a blockchain to date. We outline the
challenges that we had to overcome for registering and
updating over 33,000 user entries and for sending over
200,000 transactions on the Namecoin network.

Our production deployment led to many interesting
experiences where we observed and analyzed network
anomalies and security problems that were not discov-
ered or documented before. We discovered a critical
security problem where a single miner consistently
had more than 51% of the total compute power on
the Namecoin network (see [35] for details on the 51%
attack and compute power of miners). A 51% attack is
one of the most serious attacks on a blockchain and im-
pacts its security and decentralization properties.

Moreover, we also encountered chronic networking
issues with broadcasting transactions on the Namecoin
network. Reliability of the network generally depends
on how actively a blockchain network is monitored and
maintained, as well as the financial incentives for oper-
ating the network. Therefore, for both security and relia-
bility reasons, blockchain-based services should use the
largest and most secure blockchain, which at the time of
writing is the Bitcoin blockchain.

Our experience with Namecoin informed the design
and implementation of a new blockchain-based naming
and storage system, called Blockstack, that uses the Bit-
coin blockchain. Unlike previous blockchain-based sys-
tems, Blockstack separates its control and data plane
considerations: it keeps only minimal metadata (namely,
data hashes and state transitions) in the blockchain and
uses external datastores for actual bulk storage. Block-
stack enables fast bootstrapping of new nodes by using
checkpointing and skip lists to limit the set of blocks that
a new node must audit to get started. We have released
Blockstack as open source [13].

Modifying production decentralized systems like Bit-
coin (and introducing new functionality for which it
was not designed) is quite difficult, particularly that the
system still needs to reach “consensus.” With Block-
stack, we extend the single state machine model of

blockchains to allow for arbitrary state machines with-
out requiring consensus breaking changes in the under-
lying blockchain. This design was non-intuitive before
our work; indeed, the standard approach for the past
three years was to fork the main Bitcoin blockchain to
add new and different functionality. Our experience
with the Namecoin blockchain shows that starting new,
smaller blockchains leads to security problems (like re-
duced computational power needed to attack the net-
work) and should be avoided when possible.

This paper makes the following contributions:

• We present the first analysis of security and network
reliability of a blockchain other than Bitcoin and re-
port a critical security problem where a major alter-
nate blockchain, Namecoin, had a single miner with
well over 51% of the compute power for months.

• We report that merged mining, a popular method
to secure smaller blockchains, is currently failing
in practice. The total compute power dedicated to
blockchains is currently insufficient to support mul-
tiple secure blockchains.

• We present the design of Blockstack’s logically sep-
arate layer, virtualchain, which introduces novel
new functionality to production blockchains with-
out requiring any consensus-breaking changes from
the underlying blockchain.

• We present a migration framework for migrating
from one blockchain to another under a failure of
the underlying blockchain, and present lessons from
a successful migration of our production system
from Namecoin to Bitcoin. This was the first cross-
chain migration of a production system running on
blockchains.

2 Motivation and Background

In this section, we describe the motivation for building
naming systems that have no central point of trust and
provide the relevant background on blockchains. In this
paper, we use the term naming system to mean (a) names
are human-readable and can be picked by humans, (b)
name-value pairs have a strong sense of ownership—
that is, they can be owned by cryptographic keypairs,
and c) there is no central trusted party or point of fail-
ure. Building a naming system with these three proper-
ties was considered impossible according to Zooko’s Tri-
angle [32] and most traditional naming systems provide
two out of these three properties [31]. Namecoin [41]
used a blockchain-based approach to provide the first
naming system that offered all three properties: human-
readability, strong ownership, and decentralization.
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2.1 Background on Blockchains

Blockchains provide a global append-only log that is
publicly writeable. Writes to the global log, called trans-
actions, are organized as blocks and each block packages
multiple transactions into a single atomic write. Writ-
ing to the global log requires a payment in the form of
a transaction fee. Nodes participating in a blockchain
network follow a leader election protocol for deciding
which node gets to write the next block and collect the
respective transaction fees. Not all nodes in the network
participate in leader election. Nodes actively competing
to become the leader of the next round are called min-
ers. At the start of each round, all miners start work-
ing on a new computation problem, derived from the last
block, and the miner that is the first to solve the prob-
lem gets to write the next block. In Bitcoin, the difficulty
of these computation problems is automatically adjusted
by the protocol so that 1 new block is produced roughly
every 10 minutes. See [14] for further details on how
blockchains work and how they reach consensus.

2.2 Namecoin’s Naming System

Namecoin is one of the first forks of Bitcoin and is the
oldest blockchain other than Bitcoin that is still opera-
tional, with a cryptocurrency market capitalization of 5
million USD as of May 2016 [6] (the market capitaliza-
tion of a cryptocurrency is the exchange-traded value of
its coins multiplied by its number of coins in existence).
The main motivation for starting Namecoin was to cre-
ate an alternate DNS-like system that replaces DNS root
servers with a blockchain for mapping domain names to
DNS records [41]. Given that blockchains don’t have
central points of trust, a blockchain-based DNS is much
harder to censor and registered names cannot be seized
from owners without getting access to their respective
private keys [31]. Altering name registrations stored
in a blockchain requires prohibitively high computing
resources because re-writing blockchain data requires
proof-of-work [8]. Before our work, it was common
practice to start new blockchains (by forking them from
Bitcoin) to introduce new functionality and make mod-
ifications required by the respective service/application,
which is the precise approach taken by Namecoin.

Just like DNS, there is a cost associated with register-
ing a new name. The name registration fee discourages
people from registering a lot of names that they don’t ac-
tually intend to use. In Namecoin, the recipient of regis-
tration fees is a “black hole” cryptographic address from
which money cannot be retrieved [31]. Namecoin de-
fines a pricing function for how the cost of name regis-
trations changes over time. Namecoin supports multiple
namespaces (like TLDs in DNS), and the same rules for

pricing and name expiration apply to all namespaces. By
convention, the d/ namespace is used for domain names.

In Namecoin, name registration uses a two-phase com-
mit method where a user first pre-orders a name hash
and then registers the name-value pair by revealing the
actual name and the associated value. This is done
to avoid front-running of unconfirmed name registra-
tions [31]. Name registrations expire after a fixed amount
of time, measured in new blocks written (currently
36,000 blocks, which translates to roughly 8 months).
Namecoin also supports updating the value associated
with a name, as well as ownership transfers.

2.3 Blockchain-based PKI System

We used Namecoin to build a PKI and identity sys-
tem, called Blockstack ID, by starting a new namespace
u/ on it. We defined the format for publishing public
keys, like PGP [53], along with other profile data in the
blockchain [3]. This is similar to defining the format of
DNS records. Namecoin already had support for human-
readable names and registering name-value pairs. Name-
coin provided limited storage per name-value pair and
we extended the storage capacity by using linked lists
of name-value pairs. We also improved the read perfor-
mance of Namecoin for our production system.

We launched a web service [43] in March 2014 that
enabled people to easily register names on the u/ names-
pace of Namecoin and associate profile data with them.
In our web service, we first register the name on the
user’s behalf (and also pay the registration fee) and then
transfer the name to a cryptocurrency address owned by
the user. Our implementation is one of the first produc-
tion PKI systems that binds user identities to public keys
using a blockchain (see Section 6 for other systems). All
registered names have an ECDSA public key [28] bind-
ing by default, and a subset of users have added their PGP
keys as well. According to a study by Harry et al. [31],
our system has the second largest namespace on Name-
coin by volume and the largest by number of active users.

3 Lessons from Namecoin Deployment

In this section, we describe our experience with run-
ning a year-long production system on Namecoin and the
challenges we faced. We present lessons we learned for
securing blockchains (§3.1, §3.3, and §3.5), improving
network reliability (§3.2), and for deploying consensus
breaking changing (§3.4). These lessons directly influ-
enced the design of our new system, Blockstack (§4).
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Figure 1: Weekly and daily mining distribution.

3.1 Blockchain Security
The security of name ownership is tied to the security
of both the underlying blockchain and the software pow-
ering it. The most important factor in the security of a
blockchain is the total cost of attacking the blockchain
and tampering with recently written data. Miners of-
ten pool their resources to form a mining pool, which is
essentially a super node on the network (a lot of com-
putational power behind a single miner node). If the
amount of computational power under the control of a
single miner (or pool) is more than the rest of the net-
work, called a 51% attack, then that miner has the abil-
ity to attack the network and rewrite recent blockchain
history, censor transactions (e.g., for name registrations),
and steal cryptocurrency using double spend attacks [49].
This is because it will win the leader election for a ma-
jority of the time, and produce a blockchain history with
more proof-of-work than any disagreeing miner. The
more expensive it is to control a majority of the compute
power on a blockchain, the more secure the blockchain.

We noticed in late 2014 that a single mining pool
consistently had more than 51% of the compute power
on Namecoin. Recently, the situation has been even
worse, with a single mining pool controlling over 60% of
Namecoin’s compute power. Figure 1 shows the weekly
and daily distribution of mining power for the month
of August 2015, right before we migrated our system
away from Namecoin. In fact, we have observed F2Pool
(also known as Discus Fish) control up to 75% of com-
pute power in a particular week. At such concentra-
tion, Namecoin is effectively controlled by a single party;
F2Pool gets to write most of the new blocks and can un-
dermine the security of the blockchain at will.

Other than raw hashing power, software bugs can also

introduce security problems, e.g., a Namecoin bug al-
lowed people to steal names from anyone [26]. Denial-
of-service attacks are another attack vector; the more
peers a cryptocurrency network has, the more resilient
the network is to denial-of-service attacks.

Bitcoin currently has the largest amount of compu-
tational power securing the blockchain data. Bitcoin’s
codebase is more actively developed with more bug
bounties than other blockchains. Namecoin has many
fewer peer nodes than Bitcoin (170 vs. 4,600 in Jan
2016 [4]), which makes it more vulnerable to DDoS at-
tacks as well. The Bitcoin blockchain is currently by
far the most secure blockchain. However, it’s extremely
hard to introduce new functionality to Bitcoin because
that requires consensus-breaking changes (Section 3.4).

Lesson #1: There is a fundamental tradeoff be-
tween blockchain security and introducing new func-
tionality to blockchains. Starting a new blockchain net-
work is how developers typically introduce new func-
tionality not provided by Bitcoin, e.g., a naming system
that is of interest to many emerging applications. How-
ever, new blockchains are significantly less secure than
Bitcoin. In Section 4, we introduce Blockstack to over-
come this tradeoff by creating virtualchains that intro-
duce new functionality as a layer on top of Bitcoin.

3.2 Network Reliability and Throughput

The throughput of our PKI system (number of entries we
can register/update) is directly dependent on the through-
put of the underlying blockchain. The number of new
register/update operations that can be performed per hour
is limited by the number of transactions that can be sent
(and confirmed) on the underlying blockchain per hour.
Similarly, reliability of our PKI system is impacted if
the underlying blockchain cannot perform operations re-
liably and consistently.

Network Latency Spike: As a fork of Bitcoin, Name-
coin shares many protocol properties with Bitcoin, in-
cluding a 10 minute average leader election time (the “la-
tency target”) and a 1MB bandwidth limit on block size
(giving throughput of ∼1000 transactions per block).
Figure 2(a) shows that since we launched our PKI sys-
tem in March 2014, Namecoin on average performed
well on the network latency target. As expected, most
new blocks were written within 10 and 40 minutes (sim-
ilar times have also been observed on Bitcoin [14]). Fig-
ure 2(b) shows an incident in late August 2014 (at block
number 192000), where network latency skyrocketed for
a couple of weeks (∼1000 blocks are roughly a week).
After investigating the issue and having discussions with
Namecoin developers, we discovered that the latency
spike was caused by software issues in Namecoin. Some-
one on the network was sending transactions with a large
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(a) CCDF of network latency (03/14 – 04/15) (b) Network latency per new block (03/14 – 04/15)

Figure 2: Network latency spike in the Namecoin network.

number of data fields per transaction. This was caus-
ing severe performance problems for the miners and their
Namecoin daemons kept crashing. Without stable miner
nodes, blocks were not getting appended in a timely fash-
ion. This shows that unexpected protocol/software issues
can trigger network latency problems. During this pe-
riod, we noticed a slow down in rate of new registrations
of our PKI system along with a spike in user complaints.

Network Throughput Drop: In early September
2014, right after the latency spike incident we noticed
that our transactions were not getting accepted for many
consecutive blocks and, after a while, will get accepted
in bulk in a single block that packaged a lot of transac-
tions. We noticed that a lot of new blocks had no trans-
actions in them. This issue persisted for over a week and
Figure 3 plots the number of transactions that we were
trying to send (shown as “tx target”) vs. the number of
transactions that were getting accepted by the network.
Network latency was completely normal (shown at top
of Figure 3), but network throughput went down because
of no transactions in new blocks. We tried upgrading our
software and rebroadcasting transactions, but the issue
persisted. We concluded that there is a large mining pool
that is either intentionally refusing or is unable to pack-
age transactions in the blocks it is writing. Our transac-
tions will get packaged only when some other miner was
elected to write the new block. We discuss this issue in
more detail in the next section.

Lesson #2: There is currently a significant differ-
ence between the network reliability of the largest
public blockchain network (Bitcoin) and network re-
liability of the long tail of alternate blockchains.
Problems with the Bitcoin network impact a lot more
users and businesses than Namecoin and other smaller
blockchains. Our work is the first analysis of the network

reliability of a blockchain other than Bitcoin.

3.3 Potential Selfish Mining

The signs that we noticed in the incident where miners
were not accepting our transactions (Section 3.2) looked
similar to a selfish mining attack [22]. In a selfish min-
ing attack, (a) a miner needs to have a large amount of
mining power (more than 33%), (b) people would notice
long delay in blocks followed by blocks in very quick
succession, and (c) there will be a lot of rejected blocks.
We noticed all these signs, and believe that the unusually
high computing power of a single miner led to conditions
similar to selfish mining. That is, the miner was able to
work on new blocks faster than the others and append
them in rapid succession.

Lesson #3: Selfish-mining is not just a theoretical
attack, but selfish-mining like behavior can already
be observed in production blockchains. This is the first
time that data collected from a production network shows
signs of selfish-mining like behavior, regardless of if the
miner was intentionally attacking the network or not.

3.4 Consensus-breaking Changes

For major updates, like changes to name pricing, Name-
coin requires a “hard fork” in which everyone on the net-
work must upgrade their software, and nodes on previous
versions can no longer participate in the network. Anec-
dotal evidence suggests that it’s hard to get miners to
upgrade their software because they don’t have enough
incentive to spend engineering hours on maintaining a
small cryptocurrency like Namecoin, which is not their
main reason for operating a mining pool. Our experience
monitoring the Namecoin network showed that whenever
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Block Confirmation Time (mins)

Transactions Accepted per Block

———————————— (tx target)

Figure 3: Throughput drop in the Namecoin network.
The number of transactions we were trying to send is
shown as “tx target”.

software updates were issued on Namecoin, there was
a considerable fluctuation of computing power. In fact,
we noticed that after the recent upgrade to Namecoin
Core [42], a major upgrade to the Namecoin daemon,
many miners dropped out and never came back online.

Lesson #4: Other than the engineering problems,
consensus-breaking changes are complicated because
of fundamental incentive structures of the parties
involved. System designers have never dealt with
consensus-breaking changes before cryptocurrencies;
it’s a novel challenge. For software upgrades to cryp-
tocurrency networks we should: (a) separate consensus-
breaking upgrades from other upgrades as a software en-
gineering rule (Bitcoin recently started doing this in their
codebase [11]) and (b) try to align miner incentives given
their cost (engineering time) of software upgrades. This
resistance to upgrades is present in Bitcoin as well, but
is exaggerated for the long tail of smaller blockchains.
In Section 4, we describe how Blockstack accounts for
these incentives and introduces new features without re-
quiring miners to upgrade software.

3.5 Failure of Merged Mining
The security of a blockchain depends on the relative
compute power of miners and the cost for a single party
to employ more computing power than the rest of the
network. New, smaller blockchains have a bootstrap-
ping problem, however: in the initial days of a new
blockchain, it would be relatively easy for a single party
to take it over, since the total compute power on the
blockchain is not yet large enough to prevent this. To
address this problem, Satoshi Nakamoto (author of Bit-
coin) introduced “merged mining” [39], where an alter-

nate blockchain can allow Bitcoin miners to participate
in the new network without requiring them to spend extra
compute cycles. The miners can make extra profits on the
new blockchain without adding computational overhead.
With a merge-mined cryptocurrency, the security of the
blockchain is typically a subset of the “main blockchain,”
because in practice not all miners of the main blockchain
go through the trouble of setting up merged mining.

Namecoin switched to merged mining with Bitcoin
to increase security of its blockchain [31]. Namecoin
is the oldest and largest merged-mined cryptocurrency
and inspired other cryptocurrencies to consider it as
well. One of our key findings is that merged mining is
currently failing in practice: the leading merged-mined
blockchain, Namecoin, is vulnerable to the 51% attack
(Section 3.1). Moreover, merged-mining provided a false
sense of security. F2Pool controls 30-35% computing
power of Bitcoin, but over 60% of Namecoin’s comput-
ing power through merged mining, leaving Namecoin
vulnerable to a 51% attack. Unless the merged mined
cryptocurrency can consistently attract a very high ra-
tio of main blockchain miners to support their software,
merged mining will not keep it safe from 51% attacks.

Lesson #5: At the current stage in the evolution
of blockchains, there are not enough compute cy-
cles dedicated to mining to support multiple secure
blockchains. The respective financial capital attached to
blockchains relative to Bitcoin supports this argument:
as of Feb 2016, Bitcoin has a 5.9 billion USD mar-
ket cap, which accounts for 89% of the market cap of
all 500+ blockchains combined, while the second and
third largest market caps are 3.2% and 2.6% of Bit-
coin, respectively [6]. While multiple secure blockchains
may be possible after the technology matures and enjoys
wider adoption, in the near future, Bitcoin’s blockchain
is the only one that is prohibitively expensive to attack.

3.6 Summary
Namecoin deserves full credit for originally solving
naming on a blockchain. But after considering all of
the above factors, it was an easy decision to move our
PKI system from Namecoin to Bitcoin. In general, af-
ter our experience, we strongly believe that decentralized
applications and services need to be on the largest, most
secure, and most actively maintained blockchain. Cur-
rently, no other blockchain even comes close to Bitcoin
in terms of these security requirements.

4 Design of Blockstack

Blockstack is designed to implement a naming sys-
tem with human-readable names in a layer above the
blockchain. In this section, we describe how Blockstack
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Figure 4: Overview of Blockstack’s architecture. Blockchain records give (name, hash) mappings. Hashes are looked
up in routing layer to discover routes to data. Data, signed by name owner’s public-key, is stored in cloud storage.

uses the underlying blockchain, and present how it copes
with technical limitations of contemporary blockchains.

4.1 Challenges

Building systems with blockchains presents challenges:
• Limits on Data Storage: Individual blockchain

records are typically on the order of kilobytes [49] and
cannot hold much data. Moreover, the blockchain’s log
structure implies that all state changes are recorded in the
blockchain. All nodes participating in the network need
to maintain a full copy of the blockchain, limiting the to-
tal size of blockchains to what current commodity hard-
ware can support. As of May 2016, Bitcoin nodes need
to dedicate 69GB total disk space to blockchain data for
staying synchronized with the network.
• Slow Writes: The transaction processing rate is

capped by the blockchain’s write propagation and leader
election protocol, and it is pegged to the rate at which
new blocks are announced by leader nodes, called min-
ers in many blockchain networks [14]. New transactions
can take several minutes to a few hours to be accepted.
• Limited Bandwidth: The total number of transac-

tions per block is limited by the block size of blockchains.
To maintain fairness and to give all nodes a chance to be-
come leader in the next round, all nodes should receive a
newly announced block at roughly the same time. There-
fore, the block size is typically limited by average uplink
bandwidth of nodes [14]. For Bitcoin the current band-
width is 1MB (∼1000 transactions) per new block.

• Endless Ledger: The integrity of blockchains de-
pends on the ability for anyone to audit them back to the
first block. As the system makes forward progress and is-
sues new blocks, the cost of an audit grows linearly with
time, which makes booting up new nodes progressively
more time consuming. We call this the endless ledger
problem. Bitcoin’s blockchain currently has ∼413,000
blocks and new nodes take 1-3 days to download the
blockchain from Bitcoin peers, verify it, and boot up.

4.2 Architecture Overview
Blockstack maintains a naming system as a separate log-
ical layer on top of the underlying blockchain on which
it operates. Blockstack uses the underlying blockchain
to achieve consensus on the state of this naming sys-
tem and bind names to data records. Specifically, it uses
the underlying blockchain as a communication channel
for announcing state changes, as any changes to the
state of name-value pairs can only be announced in new
blockchain blocks. Relying on the consensus protocol of
the underlying blockchain, Blockstack can provide a to-
tal ordering for all operations supported by the naming
system, like name registrations, updates and transfers.

Separation of the Control and Data Plane: Block-
stack decouples the security of name registration and
name ownership from the availability of data associated
with names by separating the control and data planes.

The control plane defines the protocol for registering
human-readable names, creating (name,hash) bindings,
and creating bindings to owning cryptographic keypairs.
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The control plane consists of a blockchain and a logically
separate layer on top, called a “virtualchain”.

The data plane is responsible for data storage and
availability. It consists of (a) zone files for discovering
data by hash or URL, and (b) external storage systems for
storing data (such as S3, IPFS [29], and Syndicate [30]).
Data values are signed by the public keys of the respec-
tive name owners. Clients read data values from the data
plane and verify their authenticity by checking that either
the data’s hash is in the zone file, or the data includes a
signature with the name owner’s public key.

We believe this separation is a significant improve-
ment over Namecoin, which implements both the control
and the data plane at the blockchain level. Our design not
only significantly increases the data storage capacity of
the system, but also allows each layer to evolve and im-
prove independently of the other.

Agnostic of the Underlying Blockchain: The de-
sign of Blockstack does not put any limitations on which
blockchain can be used with it. Any blockchain can be
used, but the security and reliability properties are di-
rectly dependent on the underlying blockchain. We be-
lieve that the ability to migrate from one blockchain to
another is an important design choice as it allows for
the larger system to survive, even when the underly-
ing blockchain is compromised. Currently, Blockstack
core developers decide which underlying blockchain(s)
to support in which version of the software. Individ-
ual applications can decide to run the software version
of their choice and keep their namespace on a particular
blockchain, if they prefer not to migrate. Section 5 gives
more details on the migration process.

Ability to Construct State Machines: A key con-
tribution of Blockstack is the introduction of a logically
separate layer on top of a blockchain that can construct
an arbitrary state machine after processing information
from the underlying blockchain. We call this layer a
virtualchain (Section 4.3.2). A virtualchain treats trans-
actions from the underlying blockchain as inputs to the
state machine and valid inputs trigger state changes. At
any given time, where time is defined by the block num-
ber, the state machine can be in exactly one global state.
Time moves forward as new blocks are written in the
underlying blockchain and the global state is updated.
A virtualchain can introduce new types of state ma-
chines without requiring any changes from the un-
derlying blockchain. Introducing new state machines
directly in a blockchain requires peers to upgrade. Up-
grades potentially break consensus and cause forks. In
practice, they are difficult to orchestrate [14]. Currently,
Blockstack introduces a state machine that represents the
global state of a naming system, including who owns a
particular name and what data is associated with a name.
Further, it’s possible to use the virtualchain concept to

define other types of state machines as well.

4.3 Blockstack Layers
Blockstack introduces new functionality on top of
blockchains by defining a set of new operations that are
otherwise not supported by the blockchain. Blockstack
has four layers, with two layers (blockchain layer and
virtualchain layer) in the control plane and two layers
(routing layer and data storage layer) in the data plane.

4.3.1 Layer 1: Blockchain Layer

The blockchain occupies the lowest tier, and serves two
purposes: it stores the sequence of Blockstack operations
and it provides consensus on the order in which the oper-
ations were written. Blockstack operations are encoded
in transactions on the underlying blockchain.

4.3.2 Layer 2: Virtualchain Layer

Above the blockchain is a virtualchain, which defines
new operations without requiring changes to the underly-
ing blockchain. Only Blockstack nodes are aware of this
layer and underlying blockchain nodes are agnostic to
it. Blockstack operations are defined in the virtualchain
layer and are encoded in valid blockchain transactions as
additional metadata. Blockchain nodes do see the raw
transactions, but the logic to process Blockstack opera-
tions only exists at the virtualchain level.

The rules for accepting or rejecting Blockstack opera-
tions are also defined in the virtualchain. Accepted op-
erations are processed by the virtualchain to construct a
database that stores information on the global state of the
system along with state changes at any given blockchain
block. Virtualchains can be used to build a variety of
state machines. Currently, Blockstack defines only a sin-
gle state machine - a global naming and storage system.

4.3.3 Layer 3: Routing Layer

Blockstack separates the task of routing requests (i.e.,
how to discover data) from the actual storage of data.
This avoids the need for the system to adopt any par-
ticular storage service from the onset, and instead al-
lows multiple storage providers to coexist, including
both commercial cloud storage and peer-to-peer systems.

Blockstack uses zone files for storing routing infor-
mation, which are identical to DNS zone files in their
format. The virtualchain binds names to respective
hash(zone f ile) and stores these bindings in the control
plane, whereas the zone files themselves are stored in the
routing layer. Users do not need to trust the routing
layer because the integrity of zone files can be verified
by checking the hash(zone f ile) in the control plane.
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In Blockstack’s current implementation, nodes form a
DHT-based peer network [36] for storing zone files. The
DHT only stores zone files if hash(zone f ile) was pre-
viously announced in the blockchain. This effectively
whitelists the data that can be stored in the DHT. Due to
space constraints, we omit most details of our DHT stor-
age from this paper; the key aspect relevant to the design
of Blockstack is that routes (irrespective of where they
are fetched from) can be verified and therefore cannot be
tampered with. Further, most production servers main-
tain a full copy of all zone files since the size of zone files
is relatively small (4KB per file). Keeping a full copy of
routing data introduces only a marginal storage cost on
top of storing the blockchain data.

4.3.4 Layer 4: Storage Layer

The top-most layer is the storage layer, which hosts the
actual data values of name-value pairs. All stored data
values are signed by the key of the respective owner of a
name. By storing data values outside of the blockchain,
Blockstack allows values of arbitrary size and allows for
a variety of storage backends. Users do not need to
trust the storage layer because they can verify the in-
tegrity of the data values in the control plane.

There are two modes of using the storage layer and
they differ in how the integrity of data values is verified;
Blockstack supports both storage modes simultaneously.

(a) Mutable Storage is the default mode of operation
for the storage layer. The user’s zone file contains a URI
record that points to the data, and the data is constructed
to include a signature from the user’s private key. Writing
the data involves signing and replicating the data (but not
the zone file), and reading the data involves fetching the
zone file and data, verifying that hash(zone f ile) matches
the hash in Blockstack, and verifying the data’s signature
with the user’s public key. This allows for writes to be
as fast as the signature algorithm and underlying stor-
age system allows, since updating the data does not alter
the zone file and thus does not require any blockchain
transactions. However, readers and writers must employ
a data versioning scheme to avoid consuming stale data.

(b) Immutable Storage is similar to mutable storage,
but additionally puts a TXT record in the zone file that
contains hash(data). Readers verify data integrity by
fetching the data and checking that hash(data) is in the
zone file, in addition to verifying the data’s signature and
the zone file’s authenticity. This mode is suitable for data
values that don’t change often and where it’s important to
verify that readers see the latest version of the data value.
For immutable storage, updates to data values require a
new transaction on the underlying blockchain (since the
zone file must be modified to include the new hash), mak-
ing data updates much slower than mutable storage.
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Figure 5: States and transitions for a name.

4.4 Naming System

Blockstack uses its four tiers to implement a complete
naming system. Names are owned by cryptographic ad-
dresses of the underlying blockchain and their associated
private keys (e.g. ECDSA-based private keys used in Bit-
coin [14]). As with Namecoin, a user preorders and then
registers a name in two steps in order to claim a name
without revealing it to the world first and allowing an at-
tacker to race the user in claiming the name. The first
user to successfully write both a preorder and a register
transaction is granted ownership of the name. Further,
any previous preorders become invalid when a name is
registered. Once a name is registered, a user can update
the name-value pair by sending an update transaction and
uploading the new value to the storage layer, changing
the name-value binding. Name transfer operations sim-
ply change the address that is allowed to sign subsequent
transactions, while revoke operations disable any further
operations for names.

The naming system is implemented by defining a
state machine and rules for state transitions in the vir-
tualchain. Figure 5 shows the different states a name can
be in and how state transitions work. Names are orga-
nized into namespaces, which are the functional equiva-
lent of top-level domains in DNS—they define the costs
and renewal rates of names. Like names, namespaces
must be preordered and then registered. Expired names
can be re-registered and names can be revoked such that
they cannot be re-registered for a certain period of time.

4.4.1 Pricing Functions for Namespaces

Anyone can create a namespace or register names in a
namespace, as there is no central party to stop someone
from doing so. Pricing functions define how expensive it
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is to create a namespace or to register names in a names-
pace. Defining intelligent pricing functions is a way to
prevent “land grabs” and stop people from registering a
lot of namespaces or names that they don’t intend to ac-
tually use. Blockstack enables people to create names-
paces with sophisticated pricing functions. For example,
we use the .id namespace for our PKI system and created
the .id namespace with a pricing function where (a) the
price of a name drops with an increase in name length
and (b) introducing non-alphabetic characters in names
also drops the price. With this pricing function, the price
of john.id > johnadam.id > john0001.id. The function
is generally inspired by the observation that short names
with alphabetics only are considered more desirable on
namespaces like the one for Twitter usernames. It’s pos-
sible to create namespaces where name registrations are
free as well. Further, we expect that in the future there
will be a reseller market for names, just as there is for
DNS. A detailed discussion of pricing functions is out of
the scope of this paper, and the reader is encouraged to
see [31] for more details on pricing functions.

Like names, namespaces also have a pricing func-
tion [13]. To start the first namespace on Blockstack,
the .id namespace, we paid $10,000 in bitcoins to the
network. This shows that even the developers of this
decentralized system have to follow Blockstack rules
and pay appropriate fees.

4.5 Simple Name Verification
Blockstack nodes can independently calculate a consen-
sus hash at any blockchain block. Consensus hashes help
Blockstack nodes figure out if they have the same view
of the global state at any given block. Each consensus
hash CH(h) is constructed from block h’s sequence of
virtualchain operations Vh, as well a geometric series of
prior consensus hashes Ph defined by:

CH(h) = hash(Vh +Ph)

where

Ph = {CH(h−2i)|i ∈ N,h−2i >= h0}

and h0 is the first block. Other than detecting that two
Blockstack nodes have the same global view, consensus
hashes also address the endless ledger problem (defined
in Section 4.1). As the underlying blockchain grows in
size, new Blockstack nodes need to process more and
more blocks before they boot up.

A new Blockstack node can bootstrap by using an un-
trusted database of state information at a given block
number, combined with a trusted consensus hash CH(h)
of the same block number. The block number is also
termed the block height in the literature, and it increases

Figure 6: Overview of SNV. Example SNV query of a
record in block T.

with each new block. A new Blockstack node can re-
construct the virtualchain from the untrusted database
and reprocess virtualchain operations at each blockchain
block, recalculating each CH(h) along the way. If the
final consensus hash matches the trusted consensus hash
at hn, then the database associated with hn is trustworthy
and the node can start processing blocks after hn. This
is much faster than the traditional approach of starting
from the first block h0 and fetching all transactions, even
though most of them will be discarded.

The process of verifying the authenticity of a prior
name operation with a later trusted consensus hash is
called Simplified Name Verification (SNV). SNV enables
support for “thin clients,” which can query the past state
of the system without running Blockstack nodes or hav-
ing access to the full blockchain history. Support for thin
clients is important for users on mobile devices.

As such, if a user trusts that CH(h) is authentic, then
she can query and verify the virtualchain operations Vh
and previous consensus hash Ph for block h. The con-
struction of CH(h) allows a user to verify the authenticity
of any virtualchain operation from a block with height
hprior < h, using only a logarithmic number of queries.
Figure 6 shows an example SNV query. Each row rep-
resents the blockchain, in decreasing block height order
from left to right (h > h0). Here, the user is able to ver-
ify the authenticity of a name operation in a target block
(marked with a T ). In each step, the user recursively
trusts the consensus hash for the white outlined blocks.

On current commodity hardware, booting new Block-
stack nodes can take 1-2 hours with SNV, compared to 2-
4 days without SNV. Further engineering improvements
in our Python implementation are currently possible.

4.6 Performance of Reads and Writes

We evaluated the performance of reads and writes
through Blockstack to demonstrate that it reads and
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Figure 7: Performance overhead of Blockstack.

writes files at competitive rates with the underlying stor-
age. Blockstack adds a negligible constant storage space
overhead per file (roughly 5% larger files with compres-
sion). There is CPU overhead for encryption and com-
pression, but since the file size difference is very small,
the network performance for reads and writes is similar
to directly accessing the underlying storage service.

The write performance and overheads associated with
uploading 1, 10, and 100 megabyte files to Amazon S3
is shown in Figure 7 (each trial was performed 25 times).
We see that the CPU-bound overhead is in the order of 2
seconds for large (100MB) files. Many low-hanging per-
formance optimizations still remain in our implementa-
tion. Similarly, reading encrypted files from Blockstack
with S3 as storage backend is competitive with a direct
read from S3 (Figure 7). We omitted the file download
time to emphasize the overhead in the graph. The sources
of overhead, verifying the signature and decrypting the
data, are CPU-bound while in practice performance will
largely be network-bound for wide-area usage.

5 Lessons from Migration to Bitcoin

We implemented Blockstack in 40,344 lines of Python
code [13] and the current implementation uses Bitcoin
as the underlying blockchain. In September 2015, we
completed migration of 33,000 users of our production
PKI system [43], from Namecoin to Blockstack/Bitcoin.
These users were migrated from the u/ namepsace on
Namecoin to the .id namespace on Blockstack.

Blockstack embeds additional data in Bitcoin trans-
actions using special fields dedicated for including ar-
bitrary data [12]. Embedding additional data in Bit-

Total transactions
Data-embedding transactions
Blockstack transactions

Figure 8: All data-embedding transactions on Bitcoin;
it’s already becoming a frequent use case.

coin transactions is already a popular way of defining
higher-level protocols on top of Bitcoin, like Counter-
party [20], Open Assets [44], etc. Figure 8 shows re-
cent bandwidth usage of data-embedding protocols on
the Bitcoin blockchain. The spike of 10,000+ transac-
tions, near block 375000, was during our migration to
Bitcoin. Our production system [43] currently accounts
for most of Blockstack transactions, which is currently
26.9% of all data-embedding transactions ever made on
Bitcoin [45]. Below are some observations we made
while working with the Bitcoin network:

Network Throughput: Bitcoin currently supports be-
tween 3 and 7 transactions per second with a 1MB block
size. Even after a year of heated debate [52] amongst the
Bitcoin developers and the broader community, the block
size has not been increased. We noticed these limitations
first hand when we throttled our transactions so that our
transactions wouldn’t exceed 20-30% of Bitcoin blocks,
which in turn significantly increased the amount of time
it took for completing registrations. When scaling to mil-
lions of users, as opposed to thousands, even 8MB blocks
will not suffice and the community needs to look into
performing registrations across multiple chains [10] and
novel methods for packing multiple name operations in a
single transaction (an area of future work for us).

Network Attacks: During our migration to Bitcoin,
a UK-based company called CoinWallet was performing
a stress test on the Bitcoin network [17]. The stress test
included a high volume of small transactions which had
transaction amounts that were too low for miners to pack-
age in a block (due to protocol rules designed to prevent
spam). This resulted in an extremely high number of un-
confirmed transactions on the network and we ended up
paying 2-3 times higher transaction fees to get our trans-
actions packaged by miners. This experience shows how
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a single actor can force high mining fees on the rest of
the network (although in this case there was a cost fac-
tor attached to the attack). We believe that networking
attacks on blockchains, like the one we experienced or
other DDoS attacks [37], are likely to become more fre-
quent. Protections against such attacks is an important
area of future research.

6 Related Work

Binding names to values in naming systems is a well-
explored problem space. UIA [24] gives a great overview
of global naming systems and their importance. We
encourage the reader to UIA [24] for a detailed back-
ground on naming systems. Unlike Namecoin [41] or
Blockstack, UIA doesn’t try to provide globally unique
names. In authentication systems like InCommon [27],
OpenID [47], and the Web’s certificate authorities, a fed-
eration of authorities attests to bindings. Blockstack,
however, does not require a federation.

Other than Namecoin, blockchains like Ethereum [7]
and BitShares [5] also have support for human-readable
names. Further, sidechains [10] enable implementation
of naming systems as an alternate blockchain that is
linked to the main Bitcoin blockchain. All these de-
signs involve smaller, alternate blockchains and Block-
stack directly uses the most secure blockchain (Bitcoin).
Non-blockchain based PKI systems, like Keybase [34]
and CONIKS [38], achieve some of the same goals as
Blockstack for automating key management. The main
difference is that Blockstack both provides users with di-
rect access and control over their data, without placing
trust in any specific principals while giving global state.

In networked systems it’s hard to get global state with-
out involving central trusted parties [33], Blockstack is
able to provide global state (and not just approximate
global state). Our system is open (“permissionless”),
whereas existing wide-area systems like OceanStore [21]
and Bonafide [16] have a closed (“permissioned”) set
of peers that use BFT agreement to make progress for
the whole system. Blockstack differs from decentralized
storage systems which allow open membership but offer
stronger-than-eventual data consistency (like Shark [9],
Pond [48], and Scatter [25]) by focusing on decentral-
ization while supporting a wide variety of external data-
stores that give strong consistency.

Storage-oriented cryptocurrency blockchains like
Filecoin [23], Permacoin [40], and Storj [50] seek to re-
place cloud storage by distributing files as sets of trans-
actions within a blockchain, and rewarding miners for
proof-of-storage (instead of proof-of-work). Blockstack
differs from these systems by decoupling hosting data
from operations of the underlying blockchain, allowing
developers to use storage systems appropriate for their

problem domains. Blockstack currently uses a simple
Kademlia [36] based DHT as discovery layer, but other
protocols like Chord [51] or caching optimizations like
Beehive [46] are possible.

7 Conclusion

Our experience with running a production network on
Namecoin, one of the oldest and largest cryptocurrency
blockchains other than Bitcoin, shows how a single
miner consistently had more than 51% hashing power
and how network reliability was far inferior to Bitcoin.
Our data shows that out of the hundreds of blockchains
currently in use [6], even the more stable and more pop-
ular blockchains like Namecoin are not suitable for pro-
duction use. Currently, the security of Bitcoin far out-
weighs other blockchains.

We have presented Blockstack, a blockchain-based
naming and storage system. Blockstack introduces sep-
arate control and data planes, and by doing so, it en-
ables the introduction of new functionality without mod-
ifying the underlying blockchain. The design of Block-
stack was informed by a year of production experience
from one of the largest blockchain-based production sys-
tems to date. We have made several novel improvements
(like introducing the ability to do cross-chain migrations,
faster bootstrapping of new nodes, and keeping data up-
dates off the slow blockchain network) that make it easier
to build decentralized services using publicly-available
infrastructure. Our performance results show that Block-
stack can give comparable performance to the underlying
storage service and only introduces a small CPU over-
head. We’ve released Blockstack as open-source [13].
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