
On-the-Fly Verification of Erasure-Encoded File Transfers
(Extended Abstract)

Max Krohn and Michael J. Freedman
New York University

{max,mfreed}@cs.nyu.edu

Abstract

The quality of peer-to-peer content distribution can suffer
from the malicious behavior of participants that corrupt or
mislabel content. While systems using simple block-by-
block downloading can verify blocks using traditional cryp-
tographic signatures, these same techniques may not be ap-
plied to more elegant systems that rely on erasure codes for
efficient multi-source download. This paper presents a prac-
tical scheme, based on homomorphic hashing, that enables
a downloader to perform on-the-fly verification of erasure-
encoded blocks.

1 Introduction

The Problem. Many users of peer-to-peer content-
distribution networks have had the experience of waiting for
a large download to complete, only to discover that the en-
deavor was doomed from the very first byte: the file in ques-
tion was mislabeled. Some content publishers accidentally err
in naming their files. Others maliciously distribute incorrect
content to either promote their own preferences, or to detract
from the experience of “honest” users of the system.

This paper takes up the problem of on-the-fly content ver-
ification, both from the perspective of the publisher and the
downloader. Our goal is to allow a downloader to detect
unauthenticated content almost immediately.

Consider content-distribution networks composed of three
types of actors: publishers, mirrors, and downloaders. Pub-
lishers introduce files into the network and cryptographically
sign files they publish. Unlike mirrors, they are well-known
or trusted by the downloaders. If a downloader has access to
a publisher’s public key, she can verify that a file she down-
loaded from a mirror is the very same file that the publisher
originally published. In traditional, centralized content dis-
tribution networks, mirrors are often honest, so a downloader
will almost always retrieve the file that the publisher intended.
In a peer-to-peer content-distribution network, mirrors may
be frequently malicious.

A traditional publisher signs a file by cryptographically
hashing it with a hash function such as SHA-1, and then sign-
ing the hash with a public-key signature system such as RSA.
Thus, a downloader must wait for a download to complete
before verifying it. One can imagine naı̈ve improvements on
this scheme that allow a downloader to verify a file on-the-
fly. A publisher might break a large file into a sequence of
much-smaller chunks and sign a concatenation of the hashes

of those chunks. In this scheme, when a downloader encoun-
ters a chunk boundary, she hashes the chunk and verifies that
it matches the publisher’s hash. If not, then the downloader
terminates the download and finds another, hopefully more
honest mirror. Chunks that hashed correctly earlier in the
download clearly need not be thrown away.

Motivation. A recent trend toward erasure encoding of
large file transfers in peer-to-peer networks complicates the
picture [2, 5]. A downloader can download the same file from
multiple mirrors concurrently. By using erasure codes, the
downloader need not coordinate which mirrors send which
parts of the file. Rather, all mirrors generate a random stream
of encoded file blocks, and once the receiver has received
a sufficient amount of these blocks, she can reconstruct the
original file. A shallow analysis suggests that erasure encod-
ing and the file-chunk-hashing scheme mentioned above are
incompatible. The publisher cannot possibly hash all possi-
ble block encodings that the mirror might produce, nor can
the downloader establish any connection between the hashes
of encoded blocks and the encoding of hashed blocks.

This paper proposes a scheme that enables a downloader
to perform on-the-fly verification of erasure-encoded blocks.
We construct a discrete-log-based homomorphic hash func-
tion for such a purpose, and describe how to make this scheme
efficient by probabilistic batch verification. We believe that
the authenticated distribution of publishers’ public keys is an
orthogonal problem, and hence we do not consider it here.

2 Brief Review of Erasure Codes

Consider a large file F, comprised of n uniformly-sized
blocks, B1 || B2 || . . . || Bn, known as message blocks. Most
efficient erasure-encoding schemes [3, 4] use the bitwise
XOR operation (⊕) over messages blocks to produce check-
blocks. For instance, a checkblock C1 might be defined as
C1 = B2 ⊕ B10. A checkblock’s degree is defined to be
the number of message blocks that compose it. In this ex-
ample, the degree of C is 2. Thus, message blocks can be
thought of as checkblocks with degree 1. An encoding of a
file consists of a sequence of checkblocks.1 The properties
of the particular code determine how the check blocks are
constructed. “Rateless” erasure codes — those that generate
an arbitrary-length sequence of blocks — are well-suited for
multi-sourced download in content-distribution networks.

1The encoding also includes index information, either implicit or explicit,
so that the receiver knows which message blocks comprise the checkblocks.

1

A downloader decodes a file by iteratively discovering
message blocks. If she has received C1 as above, and C2 =
B2, the she can recover B10 = C1 ⊕ B2. The properties of
a given erasure code ensure that downloader can reconstruct
the original file F with high probability after receiving, e.g.,
(1 + ε)n checkblocks for small ε, depending on the code.

The operation used to form checkblocks need not be the
typical bitwise XOR, however. Rather, it need only be fast to
compute, and easy to invert.

3 Our Solution: Homomorphic Hashing

This section presents a homomorphic collision-resistant hash
function (CRHF) that enables a downloader to verify encoded
blocks retrieved from mirrors.

3.1 Mathematical Primitives

Each publisher picks hash parameters, which can be used for
multiple files. Vector exponentiation is defined component-
wise, i.e., if r = (r1 · · · rm), then gr = (gr1 · · · grm).

name description e.g.
λ discrete log security parameter 1024
p random prime, |p| = λ |p| = 1024
q random prime, q|(p− 1) |q| = 257
β block size in bits 65536
m = dβ/|q−1|e 256
g random element in

�
∗

p, order q
r random row vector in

�
m
q

g = gr

G the group, given by (p, q,g)
d average degree of checkblocks 10

Unless stated otherwise, all addition is taken over
�

q, and all
multiplication (and exponentiation) is taken over

�
∗

p.
Encoding. To encode a file F, consider it as an m × n

matrix in
�

m×n
q , where n = d|F|/βe. Each file block bj

then consists of columns of the matrix, or rather, m |q|-bit
sub-blocks. We write bj = (b1,j , . . . , bm,j), thus:

F = (b1 · · · bn) =
{

{bi,j}
m

i=1

}n

j=1

Addition of blocks is defined as component-wise addition of
their corresponding columns in the matrix. That is, to com-
bine the ith and jth blocks of the file, compute:

bi + bj = (b1,i + b1,j , . . . , bm,i + bm,j) mod q

Now, proceed with erasure encoding as normal, using vector
addition over

�
q instead of the ⊕ operator.

Hash Generation. To hash a file, we use a collision-
resistant hash function (CRHF), secure under the discrete-log
assumption. Recall that a CRHF is informally defined as a
function for which finding any two inputs that yield the same
hash-value is difficult.

For an arbitrary file block bj, define its hash in G:

hG(bj) =

m
∏

i=1

g
bi,j

i mod p (1)

Define the hash of a complete file F as a 1 × n row-vector
whose elements are the hashes of its constituent blocks:

HG(F) = (hG(b1) · · · hG(bn)) (2)

Since the publisher generated g = gr in the first place, she
can compute HG(F) directly and efficiently:

HG(F) = grF (3)

Note that |HG(F)| = |F|/m. Thus, HG is length-reducing,
but unlike more conventional hashes (such as SHA-1), does
not have a fixed output size.

Hash Verification. If a downloader knows HG(F), he can
verify any checkblock of the form

c =
∑

k∈S

bk for any S ⊂ {1, .., n}

by verifying that

hG(c) =
∏

k∈S

hG(bk) (4)

Note that HG functions here as a homomorphic hash function.
We are using the fact that addition distributes over multipli-
cation in

�
p to verify checkblocks.

Decoding. A downloader can reconstruct the file F after
receiving a sufficient number of checkblocks, n′ = (1 + ε)n,
for small ε. Call these checkblocks c1, . . . , cn′ . To decode,
we use scalar multiplication of a block bj by x ∈

�
q, defined

as normal:
xbj = (xb1,j , . . . , xbm,j)

The decoding algorithm proceeds as normal, but with the use
of additive inverses over the m-vectors. Given c = bj + bk

and bj, bk = c− bj.

3.2 Content-Distribution Protocol

Publishers, mirrors, and downloaders behave as follows.
Publishers. When publishing a file F, a publisher P

should split it into blocks and sub-blocks as mentioned
above. She then should compute HG(F), and publish F and
((G, HG(F)), σP (G, HG(F))) where σ is a public-key sig-
nature scheme that accepts arbitrary-length inputs. Publish-
ers should use erasure codes to distribute large files F, but
should distribute ((G, HG(F)), σP (G, HG(F))) as an unen-
coded, single-source download. Finally, we note publishers
must be careful never to disclose their r vectors. So doing
would enable malicious parties to compute arbitrarily many
hash-collisions for their function HG.2

2In the given protocol, the hashes of files might be large and hence their
transmission might be susceptible to bandwidth-wasting attacks. A slightly
more complex system allows the signatures themselves to be treated as nor-
mal files; iteratively invoking the protocol i times yields hashes 1/2

8i the
size of the original file. Further details are beyond the scope of this paper.

2

operation MultCost(q) per block e.g. MultCost(p) per block e.g. approx. CPU time

Hash Generation m 256 |q|/(2n) 0 256 µsecs
Naı̈ve Verification 0 0 m(|q|/2 + 1) + d 32788 131 msec
Fast Verification m 256 d + l/2 + [m(|q|/2 + 1) + l] /t 294 1.3 msecs

Figure 1: Computational costs required by our different algorithms. Note that n � |q|, and we approximate MultCost(p) ≈ 4 µsecs and
MultCost(q) ≈ .5 µsecs on a 1.75GHz Athlon XP. Also, we do not consider the cost of additions.

Mirrors. An honest mirror M shares a file F

from a publisher P first by downloading the signature
((G, HG(F)), σP (G, HG(F))) from P or another mirror.
M validates this signature using P ’s public key. Assum-
ing that the signature validates, M then starts a (poten-
tially multi-sourced) erasure-encoded transfer of the file F.
If ever any checkblock c yields a hash hG(c) that fails
to equal the hash given the appropriate linear combina-
tion of elements of HG(F), then the mirror will discon-
nect from the corrupted source. When downloaders or other
mirrors request the file F from M , M will transmit the
same ((G, HG(F)), σP (G, HG(F))) that it received from its
source. When transferring file F, however, it will formulate
its own erasure-encoding of the file. Note that mirrors need
never generate HG(F).

Downloaders. Downloaders behave exactly like mirrors,
but clearly do not serve files to other mirrors or downloaders.

3.3 Efficiency Improvements

Our mathematical primitives, as presented above, are rather
inefficient. Component-wise addition over

�
∗

p is slower than
the bitwise XOR operation. More important, our hash func-
tion HG is order of magnitudes slower than a more conven-
tional hash function like SHA-1. Our most important goal
here is to improve the performance of a downloader or mirror
verifying the hash of a file HG(F). The bare bones primitives
above imply that a client must recompute HG(F) and com-
pare it with the HG(F) signed by the publisher, but without
knowing r.

A technique suggested by Bellare, Garay, and Rabin [1] is
used to improve verification performance. Instead of verify-
ing each checkblock ci exactly and on the fly, we verify them
probabilistically and in batches. Please see Appendix A for a
fuller description of the batching protocol.

4 Analysis

In this section, we briefly sketch the running time and secu-
rity analysis of our homomorphic hashing scheme; please see
Appendix A for more in-depth analysis and proofs of security.

4.1 Running Time Analysis

In analyzing the running time of our algorithms, we count
the number of multiplications over

�
∗

p and
�

q needed. In
our analysis, we denote MultCost(p) as the cost of multipli-
cation in

�
∗

p, and MultCost(q) as the cost of multiplication

in
�

q. Computing arbitrary yx in
�

∗

p has an expected cost of
|x|MultCost(p)/2. Figure 3.1 lists the running time of the
scheme’s formulae.

Hash Generation. Publishers first precompute a table g2
z

for all z such that 1 ≤ 2z < q. To compute rF as in Equa-
tion 3, mn multiplications are needed in

�
q. Disregarding

the one-time precomputation of g2
z

, each exponentiation in
Equation 3 requires an expected |q|/2 multiplications in

�
∗

p.
Naı̈ve Hash Verification. Hash verifiers first precompute

tables of g2
z

i for all gi, costing m|q|MultCost(p)/2. We dis-
regard this cost in Figure 3.1 since for large files, n � m|q|.
Next, verifiers compute hG(c) without knowing r via Equa-
tion 1 (total cost: m(|q|/2 + 1)MultCost(p)). Finally, the
right side of Equation 4 necessitates d multiplications in

�
∗

p,
where d, we recall, is the average degree of a checkblock c.

Fast Hash Verification. Appendix A includes a analysis of
the batching verification algorithm following its description.

4.2 Security

An adversary in this system is a mirror who attempts to trick
downloaders and other mirrors into downloading and accept-
ing a file different from the one that they requested. If a pub-
lisher P publishes a file F, and its complete hash and sig-
nature ((G, HG(F)), σP (G, HG(F))), an adversary attempts
to generate a “forged” file F′. When a downloader or mirror
requests the file F, the adversary returns the file F′ and the
original signature and hash generated by P . A downloader
will continue the transfer as long as the checkblocks gener-
ated from F′ continue to match the hashes given by HG(F).

In Appendix B, we show that the fast hash verification
scheme is correct, and use the hardness of the discrete log
problem to prove the scheme’s security: The probability of a
false-negative is negligible in the security parameter.

Note that in this paper, we do not consider the problem of
how a publisher might reliably distribute his public key to in-
terested downloaders and mirrors. For simplicity, we assume
that downloaders and mirror can securely pair publishers with
their associate public keys, perhaps through an out-of-band
and trusted channel. Nor do we discuss naming semantics
that specify the desired content to the downloaded, although
self-certifying pathnames [6] are one possible technique.

5 Conclusions

Current peer-to-peer content distribution networks, such as
the widely popular file-sharing systems, suffer from unveri-
fied downloads: A participant may download an entire file,

3

increasingly in the hundreds of megabytes, before determin-
ing that the file is corrupted or mislabeled. Current down-
loading techniques can use simple cryptographic primitives,
such as signatures and hash trees, to authenticate data. How-
ever, the introduction of erasure-encoding for more efficient
multi-source download invalidates these straight-forward ap-
proaches.

This paper considers the problem of on-the-fly verification
of erasure-encoded content. We present a hash scheme based
on a discrete-log construction that provides useful homomor-
phic properties for verifying check blocks against authenti-
cated file blocks. However, this basic construction is quite
inefficient; therefore, we apply batching techniques for prob-
abilistic verification that yield an efficient online algorithm.
It is an open question whether more efficient schemes exist.

Acknowledgments

We wish to thank Petar Maymounkov, David Mazières, and
Benny Pinkas for helpful discussions. This research was
conducted as part of the IRIS project (http://project-
iris.net/), supported by the NSF under Cooperative
Agreement No. ANI-0225660.

References
[1] Mihir Bellare, Juan Garay, and Tal Rabin. Fast batch verification for

modular exponentiation and digital signatures. In Kaisa Nyberg, edi-
tor, Advances in Cryptology—EUROCRYPT 98, volume 1403 of Lecture
Notes in Computer Science. Springer-Verlag, May 31–June 4 1998.

[2] John Byers, Michael Luby, and Michael Mitzenmacher. Accessing mul-
tiple mirror sites in parallel: Using Tornado codes to speed up down-
loads. In Proceedings of IEEE INFOCOM ’99, pages 275–283, New
York, NY, 1999.

[3] Michael Luby. LT codes. In 43rd Annual Symposium on Foundations of
Computer Science, Vancouver, Canada, November 2002. IEEE.

[4] Petar Maymounkov. Online codes. Technical Report 2002-833, NYU,
November 2002.

[5] Petar Maymounkov and David Maziéres. Rateless codes and big down-
loads. In Proceedings of the 2nd International Workshop on Peer-to-
Peer Systems (IPTPS03), Berkeley, CA, February 2003.

[6] David Mazières and M. Frans Kaashoek. Escaping the evils of central-
ized control with self-certifying pathnames. In Proceedings of the 8th
ACM SIGOPS European workshop, Sintra, Portugal, September 1998.

A Batch Verification of Hashes

Instead of verifying each checkblock cj exactly and on the
fly, we verify them probabilistically and in batches [1]. Each
downloader and mirror picks the following parameters:

name description e.g.
t batch size 128 blocks
l security parameter 32

To verify, the downloader collects t checkblocks of the file
F, which for convenience, we will call C = (c1 · · · ct). For
each j ∈ {1, .., t} the downloader knows Sj ⊂ {1, .., n} such
that cj =

∑

k∈Si
bk. She then proceeds as follows:

1. Pick s = (s1, . . . , st) ∈
{

{0, 1}l
}t

at random

2. Compute z = Cs

3. Compute hG(cj) =
∏

k∈Sj
hG(bk) for all j ∈ {1, .., t}.

4. Compute y′ =
∏m

i=1
gzi

i , and y =
∏t

j=1
hG(cj)

sj

5. Verify that y′ ≡ y mod p

In Step 2, we recall that C is a m × t matrix, and hence
the matrix multiplication costs mt MultCost(q). We deter-
mine hG(cj) in Step 3 with d multiplications over

�
∗

p, at a
total cost of td MultCost(p). In Step 4, we use brute force to
compute y′ at a cost of m(|q|/2 + 1) MultCost(p). However,
we compute y efficiently with the FastMult algorithm [1], at
a total cost of (l + tl/2) MultCost(p).3 Summing these com-
putations together yields the value given in Figure 3.1.

B Security analysis

B.1 Correctness of Batched Verification

To prove the correctness of batched verification in the semi-
honest model, consider an arbitrary pair (C, HG(C)). We
write y and y′ computed in Step 4 in terms of the generator g
and the random vector r. Recall that gi ≡ gri mod p. Thus,

y′ =

m
∏

i=1

gzi

i =

m
∏

i=1

grizi = g
� m

i=1
ziri = grz

By the definition of z from Step 2, we conclude y′ = grCs.
Now we examine the other side of the verification, y. Re-

calling Equation 1, and rewriting in terms of the common
generator g, we have that:

hG(cj) =

m
∏

i=1

grici,j = g
�

m
i=1

rici,j = grcj

Combining with the computation of y in Step 4:

y =
t

∏

j=1

gsjrcj = g
�

t
j=1

sjrcj = grCs

Thus we have that y′ ≡ y mod p, proving the correctness of
the validator.

B.2 Soundness of Batched Verification

We use the hardness of the discrete log problem to prove the
scheme’s soundness against a malicious adversary. For the
purposes of this proof, define a group G as before, but without
the pre-generated vector of generators, g. That is, the group
G can be described as the elements of

�
p of order q. Note

that all elements of the group G can be written as gr, for a
fixed g and a random r ∈

�
q.

3FastMult offers no per-block performance improvement for naı̈ve veri-
fication, thus we only consider it for fast verification.

4

Consider a discrete-log hash adversary AG who takes as
input a random set of generators in G and attempts to find a
collision. Define the probability that AG succeeds:

Adv0(AG) = Pr[g ← G; r←
� m

q ; (a, a′)← AG(gr) :

gra = gra′

∧ a 6= a′]

Assuming the discrete-log problem is hard in G, Adv0(AG)
is negligible in λ, for all PPT adversaries AG. The proof is
canonical, and we do not reiterate it here.

The adversary in our model takes as input a file F from a
samplable non-uniform distribution of files F , and outputs
a potentially “forged” erasure encoding. Let us represent
checkblocks recipes as (sparse) row bit vectors in {0, 1}n.
Given such a vector x, the corresponding checkblock is then
the vector c = Fx. Thus, an adversary hopes to output a vec-
tor x, and a forged checkblock c′ such that hG(c′) = hG(Fx)
and c′ 6= Fx. Considering such an adversary,A′

G, we define
the probability that it succeeds in its forgery:

Adv1(A
′

G) = Pr[g ← G; r←
� m

q ; F← F ;

(x, c′)← A′

G(gr,F) :

hG(Fx) = hG(c′) ∧ Fx 6= c′]

It is easy to see that given a PPT A′

G, we can construct a
corresponding algorithm AG that finds hash-collisions as in
above. Given gr, AG chooses a random F from the distri-
bution F and then runs (x, c′) ← A′

G(gr,F). Lastly, AG

outputs (Fx, c′). By construction of the two preceding ran-
dom experiments, we can state quite simply:

Adv1(A
′

G) = Adv0(AG) (5)

Note that we do not consider the properties ofF here. Rather,
the publisher’s selection of r from the uniform distribution

�
q

ensures the collision-resistance of the hash function.
Now consider our verifier function VG. VG takes as in-

put an m × t batch C, the batch’s supposed hash y, and a
random t-vector s of l-bit numbers. It then should output 1
if HG(C) = y, and 0 otherwise. Define an adversary A′′

G

who attempts to trick VG into wrongly verifying a batch of t
checkblocks. As above, we define its likelihood of success in
terms of randomized experiment:

Adv2(A
′′

G) = Pr[g ← G; r←
� m

q ; F← F ;

(X,C′)← A′′

G(gr,F); s←
� t

2l :

FX 6= C′ ∧ VG(C′, HG(FX), s) = 1]

In this experiment, the adversary outputs his checkblock
recipes as a batch of t n-vectors, or rather, as an n× t matrix
X, whose cells are in {0, 1}. While the batch of checkblocks
the verifier expects is C = FX, the adversary also outputs a
forged batch of checkblocks C′.

Consider cases in which V outputs 1. For VG to verify
(C′, HG(C)), it computes y and y′ as given in Step 4 of the
batch verification procedure. More succinctly:

y′ = grC′s, y =

t
∏

j=1

hG(cj)
sj

If we were to run the same batch verification procedure on
the original C, we would find y′′ = grCs. We have that y ≡
y′ mod p because V output 1. We also have that y ≡ y′′ mod
p because V will always verify (C, H(C)). Hence, y′ ≡
y′′ mod p. Because g is a generator of G, we claim that the
exponents of y′ and y′′ are equivalent modq. Rearranging:

r(C−C′)s ≡ 0 mod q (6)

That is, VG will output 1 on input (C′, HG(C)) if and only
if Equation 6 holds. Let u = r(C − C′). We consider two
different cases: when u ≡ 0v mod q and when it is non-zero.
In the first case, we rearrange to see that rC ≡ rC′ mod q,
therefore grC ≡ grC′

, and by definition of HG, HG(C) =
HG(C′). If we assume such a batch-forging adversaryA′′

G to
exist, then we can easily construct a derived PPT adversary
A′

G that forges single checkblocks. A′

G would call A′′

G as
normal, and then find column j such that Fxj 6= cj

′. Since
FX 6= C′, such a column must exist. A′

G would then output
(xj, cj

′). This simple reduction shows that

Adv2(A
′′

G) = Adv1(A
′

G) when u ≡ 0v mod q (7)

We can now compose Equations 5 and 7. For any given
A′′

G, we can construct a corresponding adversary AG who
finds collisions of the discrete-log CRHF in G such that
Adv2(A

′′

G) = Adv0(AG). Recall that for all PPT AG,
Adv0(AG) is negligible in λ by the discrete log assumption.
Hence for all PPT A′′

G:

Adv2(A
′′

G) ≤ negl(λ) when u ≡ 0v mod q (8)

In the second case, let u 6≡ 0v mod q. Again, by Equa-
tion 6, us ≡ 0 mod q. If s = 0v, then clearly us ≡ 0 mod q,
but such an s is selected only with probability 2−lt. Other-
wise, there exists at least one element of s that is non-zero.
Call this element s1 without loss of generality. We can write:

u1s1 ≡ −
t

∑

j=2

ujsj mod q

Since q is prime, u1 has exactly one multiplicative inverse,
and consequently there is exactly one such s1 ∈ {0, 1}l such
that the above equation holds, and it is chosen with probabil-
ity 2−l. Thus:

Pr
[

us ≡ 0 mod q
∣

∣ u 6≡ 0v mod q
]

= 2−l(1 + 2−t) (9)

Combining the two independent cases in Equations 8 and 9
we can write the upper bound:

Adv2(A
′′

G) ≤ negl(λ) + 2−l(1 + 2−t) (10)

for all PPT A′′

G. Since l � λ, we conclude that the success
of any PPT algorithmA′′

G in making VG incorrectly verify is
negligible in the security parameter l.

5

