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Abstract. We consider the problem of computing the intersection of
private datasets of two parties, where the datasets contain lists of ele-
ments taken from a large domain. This problem has many applications
for online collaboration. We present protocols, based on the use of ho-
momorphic encryption and balanced hashing, for both semi-honest and
malicious environments. For lists of length k, we obtain O(k) communi-
cation overhead and O(k ln ln k) computation. The protocol for the semi-
honest environment is secure in the standard model, while the protocol
for the malicious environment is secure in the random oracle model. We
also consider the problem of approximating the size of the intersection,
show a linear lower-bound for the communication overhead of solving
this problem, and provide a suitable secure protocol. Lastly, we inves-
tigate other variants of the matching problem, including extending the
protocol to the multi-party setting as well as considering the problem of
approximate matching.

1 Introduction

This work considers several two-party set-intersection problems and presents
corresponding secure protocols. Our protocols enable two parties that each hold
a set of inputs – drawn from a large domain – to jointly calculate the intersection
of their inputs, without leaking any additional information. The set-intersection
primitive is quite useful as it is extensively used in computations over databases,
e.g., for data mining where the data is vertically partitioned between parties
(namely, each party has different attributes referring to the same subjects).

One could envision the usage of efficient set-intersection protocols for online
recommendation services, online dating services, medical databases, and many
other applications. We are already beginning to see the deployment of such
applications using either trusted third parties or plain insecure communication.

Contributions. We study private two-party computation of set intersection,
which we also denote as private matching (PM):

– Protocols for computing private matching, based on homomorphic encryp-
tion and balanced allocations: (i) a protocol secure against semi-honest ad-
versaries; and (ii) a protocol, in the random oracle model, secure against
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malicious adversaries.4 Their overhead for input lists of length k is O(k)
communication and O(k ln ln k) computation, with small constant factors.
These protocols are more efficient than previous solutions to this problem.

– Variants of the private matching protocol that (i) compute the intersection
size, (ii) decide whether the intersection size is greater than a threshold, or
(iii) compute some other function of the intersection set.

– We consider private approximation protocols for the intersection size (similar
to the private approximation of the Hamming distance by [10]). A simple
reduction from the communication lower-bound on disjointness shows that
this problem cannot have a sublinear worst-case communication overhead.
We show a sampling-based private approximation protocol that achieves
instance-optimal communication.

– We extend the protocol for set intersection to a multi-party setting.
– We introduce the problem of secure approximate (or “fuzzy”) matching and

search, and we present protocols for several simple instances.

2 Background and Related Work

Private equality tests (PET). A simpler form of private matching is where
each of the two datasets has a single element from a domain of size N . A cir-
cuit computing this function has O(log N) gates, and therefore can be securely
evaluated with this overhead. Specialized protocols for this function were also
suggested in [9, 18, 17], and they essentially have the same overhead. A solution
in [3] provides fairness in addition to security.

A circuit-based solution for computing PM of datasets of length k requires
O(k2 log N) communication and O(k log N) oblivious transfers. Another trivial
construction compares all combinations of items from the two datasets using k2

instantiations of a PET protocol (which itself has O(log N) overhead). The com-
putation of this comparison can be reduced to O(k log N), while retaining the
O(k2 log N) communication overhead [18]. There are additional constructions
that solve the private matching problem at the cost of only O(k) exponenti-
ations [12, 8]. However, these constructions were only analyzed in the random
oracle model, against semi-honest parties.

Disjointness and set intersection. Protocols for computing (or deciding)
the intersection of two sets have been researched both in the general context
of communication complexity and in the context of secure protocols. Much at-
tention has been given to evaluating the communication complexity of the dis-
jointness problem, where the two parties in the protocol hold subsets a and b of
{1, . . . , N}. The disjointness function Disj(a, b) is defined to be 1 if the sets a, b
have an empty intersection. It is well known that Rǫ(Disj) = Θ(N) [14, 22]. An
immediate implication is that computing |a ∩ b| requires Θ(N) communication.
Therefore, even without taking privacy into consideration, the communication
complexity of private matching is at least proportional to the input size.

4 For malicious clients, we present a protocol that is secure in the standard model.



One may try and get around the high communication complexity of comput-
ing the intersection size by approximating it. In the context of secure protocols,
this may lead to a sublinear private approximation protocol for intersection size.5

If one settles for an approximation up to additive error ǫN (for constant ǫ), it is
easy to see that very efficient protocols exist, namely O(log N) bits in the private
randomness model [16, Example 5.5]. However, if we require multiplicative er-
ror (e.g., an (ǫ, δ)-approximation), we show a simple reduction from disjointness
that proves that a lower-bound of Ω(N) communication bits is necessary for any
such approximation protocol. See Section 6 for details.

3 Preliminaries

3.1 Private matching (PM)

A private matching (PM) scheme is a two-party protocol between a client
(chooser) C and a server (sender) S. C’s input is a set of inputs of size kC , drawn
from some domain of size N ; S’s input is a set of size kS drawn from the same
domain. At the conclusion of the protocol, C learns which specific inputs are
shared by both C and S. That is, if C inputs X = {x1, . . . , xkC

} and S inputs
Y = {y1, . . . , ykS

}, C learns X ∩ Y : {xu|∃v, xu = yv} ← PM(X, Y ).

PM Variants. Some variants of the private matching protocol include the fol-
lowing. (i) Private cardinality matching (PMC) allows C to learn how many

inputs it shares with S. That is, C learns |X ∩ Y |: |PM| ← PMC(X, Y ). (ii)
Private threshold matching (PMt) provides C with the answer to the decisional

problem whether |X ∩ Y | is greater than some pre-specified threshold t. That is,
1 ← PMt(X, Y ) if PMC > t and 0 otherwise. (iii) Generalizing PMC and PMt,
one could define arbitrary private-matching protocols that are simple functions
of the intersection set, i.e., based on the output of PM or PMC .

Private Matching and Oblivious Transfer. We show a simple reduction
from oblivious transfer (OT) to private matching. The OT protocol we design
is a 1-out-of-2 bit-transfer protocol in the semi-honest case. The sender’s input
contains two bits b0, b1. The chooser’s input is a bit σ. At the end of the protocol
the chooser learns bσ and nothing else, while the sender learns nothing.

First, the parties generate their respective PM inputs: The sender generates
a list of two strings, {0|b0, 1|b1}, and the chooser generates the list {σ|0, σ|1}.
Then, they run the PM protocol, at the end of which the chooser learns σ|bσ. It
follows by the results of Impagliazzo and Rudich [13] that there is no black-box
reduction of private matching from one-way functions.

Since the reduction is used to show an impossibility result, it is sufficient to
show it for the simplest form of OT, as we did above. We note that if one actually
wants to build an OT protocol from a PM primitive, it is possible to directly
construct a 1-out-of-N bit transfer protocol. In addition, the PM-Semi-Honest

protocol we describe supports OT of strings.

5 Informally, a private approximation is an approximation that does not leak informa-
tion that is not computable given the exact value. See the definition in [10].



3.2 Adversary models

This paper considers both semi-honest and malicious adversaries. Due to space
constraints, we only provide the intuition and informal definitions of these mod-
els. The reader is referred to [11] for the full definitions.

Semi-honest adversaries. In this model, both parties are assumed to act
according to their prescribed actions in the protocol. The security definition is
straightforward, particularly as in our case where only one party (C) learns an
output. We follow [18] and divide the requirements into (i) protecting the client
and (ii) protecting the sender.

The client’s security – indistinguishability: Given that the server S gets
no output from the protocol, the definition of C’s privacy requires simply that the
server cannot distinguish between cases in which the client has different inputs.

The server’s security – comparison to the ideal model: The definition
ensures that the client does not get more or different information than the output
of the function. This is formalized by considering an ideal implementation where
a trusted third party (TTP) gets the inputs of the two parties and outputs the
defined function. We require that in the real implementation of the protocol—
that is, one without a TTP—the client C does not learn different information
than in the ideal implementation.

Malicious adversaries. In this model, an adversary may behave arbitrarily.
In particular, we cannot hope to avoid parties (i) refusing to participate in the
protocol, (ii) substituting an input with an arbitrary value, and (iii) prematurely
aborting the protocol. The standard security definition (see, e.g., [11]) captures
both the correctness and privacy issues of the protocol and is limited to the case
in which only one party obtains an output. Informally, the definition is based
on a comparison to the ideal model with a TTP, where a corrupt party may give
arbitrary input to the TTP. The definition also is limited to the case where at
least one of the parties is honest: if C (resp. S) is honest, then for any strategy
that S (resp. C) can play in the real execution, there is a strategy that it could
play in the ideal model, such that the real execution is computationally indis-
tinguishable from execution in the ideal model. We note that main challenge in
ensuring security is enforcing the protocol’s correctness, rather than its privacy.

3.3 Cryptographic primitives – Homomorphic encryption schemes

Our constructions use a semantically-secure public-key encryption scheme that
preserves the group homomorphism of addition and allows multiplication by a
constant. This property is obtained by Paillier’s cryptosystem [20] and subse-
quent constructions [21, 7]. That is, it supports the following operations that can
be performed without knowledge of the private key: (i) Given two encryptions
Enc(m1) and Enc(m2), we can efficiently compute Enc(m1+m2). (ii) Given some
constant c belonging to the same group, we can compute Enc(cm). We will use
the following corollary of these two properties: Given encryptions of the coef-



ficients a0, . . . , ak of a polynomial P of degree k, and knowledge of a plaintext
value y, it is possible to compute an encryption of P (y).6

4 The Semi-Honest Case

4.1 Private Matching for set intersection (PM)

The protocol follows the following basic structure. C defines a polynomial P
whose roots are her inputs:

P (y) = (x1 − y)(x2 − y) . . . (xkC
− y) =

kC
∑

u=0

αuyu

She sends to S homomorphic encryptions of the coefficients of this polynomial.
S uses the homomorphic properties of the encryption system to evaluate the
polynomial at each of his inputs. He then multiplies each result by a fresh random
number r to get an intermediate result, and he adds to it an encryption of the
value of his input, i.e., S computes Enc(r · P (y) + y). Therefore, for each of
the elements in the intersection of the two parties’ inputs, the result of this
computation is the value of the corresponding element, whereas for all other
values the result is random.7 See Protocol PM-Semi-Honest.8

4.2 Efficiently evaluating the polynomial

As the computational overhead of exponentiations dominates that of other op-
erations, we evaluate the computational overhead of the protocol by counting
exponentiations. Equivalently, we count the number of multiplications of the
homomorphically-encrypted values by constants (in Step 2(a)), as these multi-
plications are actually implemented as exponentiations.

Given the encrypted coefficients Enc(αu) of a polynomial P , a naive compu-

tation of Enc(P (y)) as Enc(
∑kC

u=0 yuαu) results in an overhead of O(kC) exponen-
tiations, and hence in a total of O(kCkS) exponentiations for PM-Semi-Honest.

The computational overhead can be reduced by noting that the input domain
is typically much smaller than the modulus used by the encryption scheme.

6 We neglect technicalities that are needed to make sure the resulting ciphertext hides
the sequence of homomorphic operations that led to it. This may be achieved, e.g.,
by multiplying the result by a random encryption of 1.

7 This construction can be considered a generalization of the oblivious transfer proto-
cols of [19, 1, 17]. In those, a client retrieving item i sends to the server a predicate
which is 0 if and only if i = j where j ∈ [N ].

8 It is sufficient for Step 3 of the protocol that C is able to decide whether some
ciphertext corresponds to x ∈ X (i.e., decryption is not necessary). This weaker
property is of use if, for example, one uses the El Gamal encryption scheme and
encodes an element x by gx (to allow the homomorphic properties under addition).
This may prevent rP (y) + y from being recovered in the decryption process, yet
it is easy for C to decide whether rP (y) + y = x. The Paillier [20] homomorphic
encryption scheme recovers rP (y) + y.



Protocol PM-Semi-Honest

Input: C’s input is a set X = {x1, . . . , xkC
}, S ’s input is a set Y = {y1, . . . , ykS

}.
The elements in the input sets are taken from a domain of size N .

1. C performs the following:
(a) She chooses the secret-key parameters for a semantically-secure homomor-

phic encryption scheme, and publishes its public keys and parameters. The
plaintexts are in a field that contains representations of the N elements
of the input domain, but is exponentially larger.

(b) She uses interpolation to compute the coefficients of the polynomial
P (y) = ΣkC

u=0
αuyu of degree kC with roots {x1, . . . , xkC

}.
(c) She encrypts each of the (kC + 1) coefficients by the semantically-secure

homomorphic encryption scheme and sends to S the resulting set of ci-
phertexts, {Enc(α0), . . . , Enc(αkC

)}.
2. S performs the following for every y ∈ Y ,

(a) He uses the homomorphic properties to evaluate the encrypted polynomial
at y. That is, he computes Enc(P (y)) = Enc(ΣkC

u=0
αuyu). See Section 4.2.

(b) He chooses a random value r and computes Enc(rP (y) + y). (One can
also encrypt some additional payload data py by computing Enc(rP (y) +
(y|py)). C obtains py iff y is in the intersection.)

He randomly permutes this set of kS ciphertexts and sends the result back to
the client C.

3. C decrypts all kS ciphertexts received. She locally outputs all values x ∈ X for
which there is a corresponding decrypted value .

Hence one may encode the values x, y as numbers in the smaller domain. In
addition, Horner’s rule can be used to evaluate the polynomial more efficiently
by eliminating large exponents. This yields a significant (large constant factor)
reduction in the overhead.

We achieve a more significant reduction of the overhead by allowing the
client to use multiple low-degree polynomials and then allocating input values
to polynomials by hashing. This results in reducing the computational overhead
to O(kC + kS ln ln kC) exponentiations. Details follow.

Exponents from a small domain. Let λ be the security parameter of the
encryption scheme (e.g., λ is the modulus size). A typical choice is λ = 1024
or larger. Yet, the input sets are usually of size ≪ 2λ and may be mapped
into a small domain—of length n ≈ 2 log(max(kc, ks)) bits—using pairwise-
independent hashing, which induces only a small collision probability. The server
should compute Enc(P (y)), where y is n bits long.

Using Horner’s rule. We get our first overhead reduction by applying Horner’s
rule: P (y) = α0 + α1y + α2y

2 + · · ·+ αkC
ykC is evaluated “from the inside out”

as α0 + y(α1 + y(α2 + y(α3 + · · · y(αkC−1 + yαkC
) · · · ))). One multiplies each

intermediate result by a short y, compared with yi in the naive evaluation,
which results in kC short exponentiations.

When using the “text book” algorithm for computing exponentiations, the
computational overhead is linear in the length of the exponent. Therefore, Horner’s
rule improves this overhead by a factor of λ/n (which is about 50 for kC , kS ≈



1000). The gain is substantial even when fine-tunes exponentiation algorithms—
such as Montgomery’s method or Karatsuba’s technique—are used.

Using hashing for bucket allocation. The protocol’s main computational
overhead results from the server computing polynomials of degree kC . We now
reduce the degree of these polynomials. For that, we define a process that throws
the client’s elements into B bins, such that each bin contains at most M elements.

The client now defines a polynomial of degree M for each bin: All items
mapped to the bin by some function h are defined to be roots of the polynomial.
In addition, the client adds the root x = 0 to the polynomial, with multiplicity
which sets the total degree of the polynomial to M . That is, if h maps ℓ items
to the bin, the client first defines a polynomial whose roots are these ℓ items,
and then multiplies it by xM−ℓ. (We assume that 0 is not a valid input.) The
process results in B polynomials, all of them of degree M , that have a total of
kC non-zero roots.
C sends to S the encrypted coefficients of the polynomials, and the mapping

from elements to bins.9 For every y ∈ Y , S finds the bins into which y could be
mapped and evaluates the polynomial of those bins. He proceeds as before and
responds to C with the encryptions rP (y) + y for every possible bin allocation
for all y.

Throwing elements into bins – balanced allocations. We take the map-
ping from elements to bins to be a random hash function h with a range of size
B, chosen by the client. Our goal is to reduce M , the upper bound on the number
of items in a bin. It is well known that if the hash function h maps each item
to a random bin, then with high probability (over the selection of h), each bin
contains at most kC/B+O(

√

(kC/B) log B+logB) elements. A better allocation
is obtained using the balanced allocation hashing by Azar et al. [2]. The function
h now chooses two distinct bins for each item, and the item is mapped into the
bin which is less occupied at the time of placement. In the resulting protocol,
the server uses h to locate the two bins into which y might have been mapped,
evaluates both polynomials, and returns the two answers to C.

Theorem 1.1 of [2] shows that the maximum load of a bin is now exponentially
smaller: with 1 − o(1) probability, the maximum number of items mapped to a
bin is M = (1 + o(1)) ln lnB/ ln 2 + Θ(kC/B). Setting B = kC/ ln ln kC , we get
M = O(ln ln kC).

A note on correctness and on constants. One may worry about the case
that C is unlucky in her choice of h such that more than M items are mapped to
some bin. The bound of [2] only guarantees that this happens with probability
o(1). However, Broder and Mitzenmacher [4] have shown that asymptotically,
when we map n items into n bins, the number of bins with i or more items
falls approximately like 2−2.6i

. This means that a bound of M = 5 suffices with
probability 10−58. Furthermore, if the hashing searches for the emptiest in three
bins, then M = 3 suffices with probability of about 10−33. The authors also

9 For our purposes, it is sufficient that the mapping is selected pseudo-randomly, either
jointly or by either party.



provide experimental results that confirm the asymptotic bound for the case of
n = 32, 000. We conclude that we can bound ln ln kC by a small constant in our
estimates of the overhead. Simple experimentation can provide finer bounds.

Efficiency. The communication overhead, and the computation overhead of
the client, are equal to the total number of coefficients of the polynomials. This
number, given by B ·M , is O(kC) if B = kC/ ln ln kC . If k ≤ 224, then using
B = kC bins implies that the communication overhead is at most 4 times that
of the protocol that does not use hashing.

The server computes, for each item in his input, M exponentiations with a
small exponent, and one exponentiation with a full-length exponent (for com-
puting r ·P (y)). Expressing this overhead in terms of full-length exponentiations
yields an overhead of O(kS + kS

ln ln kC·n
λ

) for B = kC/ ln ln kC . In practice, the
overhead of the exponentiations with a small exponent has little effect on the
total overhead, which is dominated by kS full-length exponentiations.

4.3 Security of PM-Semi-Honest

We state the claims of security for PM in the semi-honest model.

Lemma 1 (Correctness). Protocol PM-Semi-Honest evaluates the PM func-

tion with high probability.

(The proof is based on the fact that the client receives an encryption of y for
y ∈ X ∩ Y , and an encryption of a random value otherwise.)

Lemma 2 (C’s privacy is preserved). If the encryption scheme is semanti-

cally secure, then the views of S for any two inputs of C are indistinguishable.

(The proof uses the fact that the only information that S receives consists of
semantically-secure encryptions.)

Lemma 3 (S’s privacy is preserved). For every client C∗ that operates in

the real model, there is a client C operating in the ideal model, such that for every

input Y of S, the views of the parties C,S in the ideal model is indistinguishable

from the views of C∗,S in the real model.

(The proof defines a polynomial whose coefficients are the plaintexts of the
encryptions sent by C∗ to S. The kC roots of this polynomial are the inputs that
C sends to the trusted third party in the ideal implementation.)

Security of the hashing-based protocol. Informally, the hashing-based pro-
tocol preserves C’s privacy since (i) S still receives semantically-secure encryp-
tions, and (ii) the key is chosen independently of C’s input. Thus, neither the key
nor h reveal any information about X to S. The protocol preserves S’s privacy
since the total number of non-zero roots of the polynomials is kC .



4.4 Variant: Private Matching for set cardinality (PMC)

In a protocol for private cardinality matching, C should learn the cardinality of
X ∩ Y , but not the actual elements of this set. S needs only slightly change
his behavior from that in Protocol PM-Semi-Honest to enable this functionality.
Instead of encoding y in Step 2(b), S now only encodes some “special” string,
such as a string of 0’s, i.e., S computes Enc(rP (y) + 0+). In Step 3 of the
protocol, C counts the number of ciphertexts received from S that decrypt to
the string 0+ and locally outputs this number c. The proof of security for this
protocol trivially follows from that of PM-Semi-Honest.

4.5 Variants: Private Matching for cardinality threshold (PMt) and
other functions

In a protocol for private threshold matching, C should only learn whether c =
|X∩Y | > t. To enable this functionality, we change PM-Semi-Honest as follows.
(i) In Step 2(b), S encodes random numbers instead of y in PM (or 0+ in PMC).
That is, he computes Enc(rP (y)+ry), for random ry . (ii) Following the basic PM

protocol, C and S engage in a secure circuit evaluation protocol. The circuit takes
as input kS values from each party: C’s input is the ordered set of plaintexts she
recovers in Step 3 of the PM protocol. S’s input is the list of random payloads he
chooses in Step 2(b), in the same order he sends them. The circuit first computes
the equality of these inputs bit-by-bit, which requires kSλ′ gates, where λ′ is a
statistical security parameter. Then, the circuit computes a threshold function
on the results of the kS comparisons.

Hence, the threshold protocol has the initial overhead of a PM protocol plus
the overhead of a secure circuit evaluation protocol. Note, however, that the
overhead of circuit evaluation is not based on the input domain of size N . Rather,
it first needs to compute equality on the input set of size kS , then compute some
simple function of the size of the intersection set. In fact, this protocol can be
used to compute any function of the intersection set, e.g., check if c within some
range, not merely the threshold problem.

5 Security against Malicious Parties

We describe modifications to our PM protocol in order to provide security in the
malicious adversary model. Our protocols are based on protocol PM-Semi-Honest,
optimized with the balanced allocation hashing.

We first deal with malicious clients and then with malicious servers. Finally,
we combine these two protocols to achieve a protocol in which either party may
behave adversarially. We take this non-standard approach as: (i) It provides
conceptual clarity as to the security concerns for each party; (ii) These protocols
may prove useful in varying trust situations, e.g., one might trust a server but
not the myriad clients; and (iii) The client protocol is secure in the standard
model, while the server protocol is analyzed in the random oracle model.



Protocol PM-Malicious-Client

Input: C has input X of size kC, and S has input Y of size kS , as before.

1. C performs the following:
(a) She chooses a key for a pseudo-random function that realizes the balanced

allocation hash function h, and she sends it to S .
(b) She chooses a key s for a pseudo-random function F and gives each item

x in her input X a new pseudo-identity, Fs(G(x)), where G is a collision-
resistant hash function.

(c) For each of her polynomials, C first sets roots to the pseudo-identities of
such inputs that were mapped to the corresponding bin. Then, she adds
a sufficient number of 0 roots to set the polynomial’s degree to M .

(d) She repeats Steps (b),(c) for L times to generate L copies, using a different
key s for F in each iteration.

2. S asks C to open L/2 of the copies.
3. C opens the encryptions of the coefficients of the polynomials for these L/2

copies to S , but does not reveal the associated keys s. Additionally, C sends
the keys s used in the unopened L/2 copies.

4. S verifies that the each opened copy contains kC roots. If this verification fails,
S halts. Otherwise, S uses the additional L/2 keys he receives, along with
the hash function G, to generate the pseudo-identities of his inputs. He runs
the protocol for each of the polynomials. However, for an input y, rather than
encoding y as the payload for each polynomial, he encodes L/2 random values
whose exclusive-or is y.

5. C receives the results, organized as a list of kS sets of size L/2. She decrypts
them, computes the exclusive-or of each set, and compares it to her input.

5.1 Malicious clients

To ensure security against a malicious client C, it must be shown that for any
possible client behavior in the real model, there is an input of size kC that the
client provides to the TTP in the ideal model, such that his view in the real
protocol is efficiently simulatable from his view in the ideal model.

We first describe a simple solution for the implementation that does not use
hashing. We showed in Lemma 3 that if a value y is not a root of the polynomial
sent by the client, the client cannot distinguish whether this item is in the
server’s input. Thus, we have to take care of the possibility that C sends the
encryption of a polynomial with more than kC roots. This can only happen if all
the encrypted coefficients are zero (P ’s degree is indeterminate). We therefore
modify the protocol to require that at least one coefficient is non-zero – in Step
1(b) of Protocol PM-Semi-Honest, C generates the coefficients of P with α0 set
to 1, then sends encryptions of the other coefficients to S.

In the protocol that uses hashing, C sends encryptions of the coefficients of
B polynomials (one per bin), each of degree M . The server must ensure that
the total number of roots (different than 0) of these polynomials is kC . For that
we use a cut-and-choose method, as shown in Protocol PM-Malicious-Client.
With overhead L times that of the original protocol, we get error probability
that is exponentially small in L.



Proof. (sketch) In our given cut-and-choose protocol, note that C learns about
an item iff it is a root of all the L/2 copies evaluated by S. Therefore, to learn
about more than kC items, she must have L/2 copies such that each has more
than kC roots. The probability that all such polynomials are not checked by S
is exponentially small in L. This argument can be used to show that, for every
adversarial C∗ whose success probability is not exponentially small, there is a
corresponding C in the ideal model whose input contains at most kC items.10

5.2 Malicious servers

Protocol PM-Semi-Honest of Section 4 enables a malicious server to attack the
protocol correctness.11 He can play tricks like encrypting the value r · (P (y) +
P (y′))+ y′′ in Step 2(b), so that C concludes that y′′ is in the intersection set iff
both y and y′ are X . This behavior does not correspond to the definition of PM

in the ideal model. Intuitively, this problem arises from S using two “inputs” in
the protocol execution for input y—a value for the polynomial evaluation, and
a value used as a payload—whereas S has a single input in the ideal model.12

We show how to modify Protocol PM-Semi-Honest to gain security against
malicious servers. The protocol based on balanced allocations may be modified
similarly. Intuitively, we force the server to run according to its prescribed proce-
dure. Our construction, PM-Malicious-Server, is in the random oracle model.

The server’s privacy is preserved as in PM-Semi-Honest: The pair (e, h) is
indistinguishable from random whenever P (y) 6= 0. The following lemma shows
that the client security is preserved under malicious server behavior.

Lemma 4 (Security for the client). For every server S∗ that operates in the

real model, there is a server S operating in the ideal model, such that the views

of the parties C,S in the ideal model is computationally indistinguishable from

the views of C,S∗ in the real model.

Proof. (sketch) We describe how S works.

1. S generates a secret-key/public-key pair for the homomorphic encryption
scheme, chooses a random polynomial P (y) of degree kC and gives S∗ his
encrypted coefficients. Note that S∗ does not distinguish the encryption of
P (y) from the encryption of any other degree kC polynomial.

2. S records all the calls S∗ makes to the random oracles H1, H2. Let Ŝ be the
set of input values to H1 and Ŷ be the set of y input values to H2.

10 In the proof, the pseudo-random function F hides from S the identities of the values
corresponding to the roots of the opened polynomials. The collision-resistant hash
function G prevents C from setting a root to which S maps two probable inputs.

11 He cannot affect C’s privacy as all the information C sends is encrypted via a
semantically-secure encryption scheme.

12 Actually, the number of “inputs” is much higher, as S needs to be consistent in using
the same y for all the steps of the polynomial-evaluation procedure.



Protocol PM-Malicious-Server

Input: C has input X of size kC, and S has input Y of size kS , as before.
Random Oracles: H1, H2.

1. C performs the following:
(a) She chooses a secret-key/public-key pair for the homomorphic encryption

scheme, and sends the public-key to S .
(b) She generates the coefficients of a degree kC polynomial P whose roots are

the values in X. She sends to S the encrypted coefficients of P .
2. S performs the following for every y ∈ Y ,

(a) He chooses a random s and computes r = H1(s). We use r to “deran-
domize” the rest of S ’s computation for y, and we assume that it is of
sufficient length.

(b) He uses the homomorphic properties of the encryption scheme to compute
(e, h)← (Enc(r′ ·P (y)+ s),H2(r

′′, y)). In this computation, r is parsed to
supply r′, r′′ and all the randomness needed in the computation.

S randomly permutes this set of kS pairs and sends it to C.
3. C decrypts all the kS pairs she received. She performs the following operations

for every pair (e, h),
(a) She decrypts e to get ŝ and computes r̂ = H1(ŝ).
(b) She checks whether, for some x ∈ X, the pair (e, h) is consistent with x and

ŝ. That is, whether the server yields (e, h) using her encrypted coefficients
on y ← x and randomness r̂. If so, she puts x in the intersection set.

3. For every output pair (e, h) of S∗, S checks whether it agrees with some ŝ ∈ Ŝ
and ŷ ∈ Ŷ . We call such a pair a consistent pair. That is, S checks that (i) e
is a ciphertext resulting from applying the server’s prescribed computation
using the encrypted coefficients, the value ŷ, and randomness r′; and (ii)
h = H2(r

′′, ŷ), where r′, r′′ and the randomness in the computation are
determined by H1(ŝ). If such consistency does occur, S sets y = ŷ, otherwise
it sets y =⊥.

4. S sends the values y it computed to the TTP, and S outputs the same output
as S∗ in the real model.

It is easy, given the view of S∗, to decide whether a pair is consistent. As S∗

cannot distinguish the input fed to it by S from the input it receives from C in
the real execution, we get that S∗’s distributions on consistent and inconsistent
pairs, when run by the simulator and in the real execution, are indistinguishable.

Whenever (e, h) forms an inconsistent pair, giving an invalid symbol ⊥ as
input to the TTP does not affect its outcome. Let (e, h) be a consistent pair,
and let y be the value that is used in its construction. In the real execution,
y ∈ X would result in adding y to the intersection set, and this similarly would
happen in the simulation. The event that, in the real execution, an element x 6= y
would be added to the intersection set occurs with negligible probability.

We get that the views of the parties C,S in the ideal model is computationally
indistinguishable from the views of C,S∗ in the real model, as required.



5.3 Handling both malicious clients and servers

We briefly describe how to combine these two schemes yield a PM protocol
fully secure in the malicious model. We leave the detailed description to the full
version of this paper.
C generates B bins as before; for each bin Bi, she generates a polynomial of

degree M with P (z) = 0, where z ∈ Bi if it is (1) mapped to Bi by our hashing
scheme (for z = Fs(G(x)) for x ∈ X) or (2) added as needed to yield M items.
The latter should be set outside the range of Fs. For each polynomial, C prepares
L copies and sends their commitments to S.

Next, S opens the encryptions of L/2 copies and verifies them. If verification
succeeds, S opens the Fs used in the other L/2 copies. He chooses a random s,
splits it into L/2 shares, and then acts as in PM-Malicious-Server, albeit using
the random shares as payload, H1(s) as randomness, and appending H2(r

′′, y).
Finally, C receives a list of the unopened L/2 copies. For each, she computes

candidates for s’s shares and recovers s from them. She uses a procedure similar
to PM-Malicious-Server to check the consistency of the these L/2 shares.

6 Approximating Intersection

In this section, we focus on a problem related to private matching: set intersection
and its approximation. Assume C and S hold strings X and Y respectively,
where |X | = |Y | = N . Define Intersect(X, Y ) = |{i : Xi = Yi}|. Equivalently,
Intersect(X, Y ) is the scalar product of X, Y . Let 0 < ǫ, δ be constants. An
(ǫ, δ)-approximation protocol for intersection yields, on inputs X, Y , a value α̂
such that Pr[(1−ǫ)α < α̂ < (1+ǫ)α] ≥ 1−δ where α = |X∩Y |. The probability
is taken over the randomness used in the protocol.

A lower bound. Let 0 < η ≤ N . It is easy to see that an (ǫ, δ)-approximation
may be used for distinguishing the cases |X ∩ Y | ≤ η and |X ∩ Y | ≥ η(1 + ǫ)2,
as (with probability 1− δ) its output is less than η(1+ ǫ) in the former case and
greater than η(1 + ǫ) in the latter.

A protocol that distinguishes |X∩Y | ≤ η and |X∩Y | ≥ η(1+ǫ) may be used
for deciding disjointness, as defined in Section 2. Given inputs a, b of length m for
Disj, C sets her input to be X = 1η|a(2ǫ+ǫ2)η (i.e., η ones followed by (2ǫ + ǫ2)η

copies of a). Similarly, S sets Y = 1η|b(2ǫ+ǫ2)η. The length of these new inputs
is N = |X | = |Y | = η + (2ǫ + ǫ2)ηm bits. Note that if a, b are disjoint, then
|X ∩Y | = η; otherwise, |X ∩Y | ≥ η(1+ ǫ)2. Hence, for constant ǫ, it follows that
the randomized communication complexity of distinguishing the two cases is at
least Ω(m) = Ω(N/η). By setting η to a constant, we get that the randomized
communication complexity of an (ǫ, δ) approximation for Intersect is Θ(N).

A private approximation protocol for intersection. We describe a proto-
col for the semi-honest case. Informally, a protocol realizes a private approxima-
tion to a function f(X, Y ) if it computes an approximation to f(X, Y ) and does
not leak any information that is not efficiently computable from f(X, Y ). This



Protocol Private-Sample-B

Input: C and S hold N-bit strings X, Y , respectively.

1. C picks a random mask mC ∈R {0, 1} and shift amount rC ∈R [N ]. She com-
putes the N-bit string X ′ = (X ≪ rC) ⊕ mC (i.e., she shifts X cyclicly rC
positions and XORs every location in the resulting string with mC). Similarly,
S picks mS , rS and computes Y ′ = (Y << rS)⊕mS .

2. C and S invoke two
`

N

1

´

-OT protocols where C retrieves sC = Y ′
rC

and S
retrieves sS = X ′

rS
.

3. C computes T00 = B(mC, sC), T01 = B(mC, sC ⊕1), T10 = B(mC⊕1, sC), T11 =
B(mC ⊕ 1, sC ⊕ 1).

4. C and S invoke a
`

4

1

´

-OT protocol where S retrieves TmS ,sS . S sends TmS ,sS

back to C.

is formulated by the requirement that each party should be able to simulate her
view given her input and f(X, Y ). We refer the reader to [10] for the formal
definition.

Our building block – protocol Private-Sample-B – is a simple generalization
of the private sampler of [10]. Private-Sample-B samples a random location ℓ
and checks if a predicate B holds on (Xℓ, Yℓ). The location ℓ is shared by C and S
as ℓ = rC +rS (mod N), with each party holding one of the random shares rC , rS
at the end of Step 1. Step 2 results in C and S holding random shares of Xℓ =
mC⊕sS and Yℓ = mS⊕sC . Finally, both parties learn B(mC ⊕ sC , mS ⊕ sS) =
B(Xℓ, Yℓ).

It is easy to see that the views of C and S in Protocol Private-Sample-B
are simulatable given v = |{i : B(Xi, Yy)}|. It follows that any approximation
based on the outcome of the protocol is a private approximation for v.

The communication costs of Private-Sample-B are dominated by the cost of
the

(

N
1

)

-OT protocol in use. Naor and Pinkas [19] showed how to combine a
(

N
1

)

-
OT protocol with any computational PIR scheme, under the DDH assumption.
Combining this result with PIR scheme of Cachin et al. [5] (or of Kiayias and
Yung [15]) results in λ polylog(N) communication, for security parameter λ.

Our protocol Intersect-Approx repeatedly invokes Private-Sample-B with
B(α, β) = α∧β, for a maximum of M invocations. We call an invocation positive

if it concludes with B evaluated as 1. If T invocations occur in t < M rounds, the
protocol outputs T/t and halts. Otherwise (after M invocations) the protocol
outputs 0 and halts.

The random variable t is the sum of T independent geometric random vari-
ables. Hence, E[t] = T/p and Var[t] = T (1 − p)/p2, where p = v/N . Using the

Chebyshev Inequality, we get that Pr
[

|t−T/p| ≥ βT/p
]

≤
(

T 1−p
p2

)/(

(β T
p
)2

)

≤
1

β2T
. Let β = ǫ

1+ǫ
, taking T = 2

β2δ
ensures that, if T positive invocations occur,

then the protocol’s output is within (1− ǫ) v
N

and (1+ ǫ) v
N

, except for δ/2 prob-
ability. To complete the protocol, we set M = N(ln δ + 1) so that if v 6= 0, the
probability of not having T positive invocations is at most δ/2.



Note that the number of rounds in protocol Intersect-Approx is not fixed,
and depends on the exact intersection size v. The protocol is optimal in the sense
that it matches the lower-bound for distinguishing inputs with intersection size
k from inputs with intersection size k(1 + ǫ) in an expected O(N/k) invocations
of Private-Sample-B.

Caveat. As the number of rounds in our protocol is a function of its outcome,
an observer that only counts the number of rounds in the protocol, or the time
it takes to run it, may estimate its outcome. The problem is inherent in our
security definitions—both for semi-honest and malicious parties—as they only
take into account the parties that “formally” participate in the protocol (unlike,
e.g., in universal composability [6]). In particular, these definitions allow for any
information that is learned by all the participating parties to be sent in the
clear. While it may be that creating secure channels for the protocol (e.g., using
encryption) prevents this leakage in many cases, this is not a sufficient measure
in general nor specifically for our protocol (as one must hide the communication
length of Intersect-Approx).

7 The Multi-Party Case

We briefly discuss computing the intersection in a multi-party environment. As-
sume that there are n parties, P1, . . . , Pn, with corresponding lists of inputs
X1, . . . , Xn; w.l.o.g., we assume each list contains k inputs. The parties compute
the intersection of all n lists. We only sketch a protocol for semi-honest par-
ties, starting with a basic protocol that is secure with respect to client parties
P1, . . . , Pn−1 and then modifying it get security with respect to all parties.

A strawman protocol. Let client parties P1, . . . , Pn−1 each generate a poly-
nomial encoding their input, as for Protocol PM-Semi-Honest in the two-party
case. Each client uses her own public key and sends the encrypted polynomials
to Pn, which we refer to as the leader. This naming of parties as clients and the
leader is done for conceptual clarity.

For each item y in his list, leader Pn prepares (n−1) random shares that
XOR to y. He then evaluates the (n−1) polynomials he received, encoding the
lth share of y as the payload of the evaluation of the lth polynomial. Finally,
he publishes a shuffled list of (n−1)-tuples. Each tuple contains the encryptions
that the leader obtained while evaluating the polynomials on input y, for every
y in his input set. Note that every tuple contains exactly one entry encrypted
with the key of client Pl, for 1 ≤ l ≤ n−1.

To obtain the outcome, each client Pl decrypts the entries that are encrypted
with her public key and publishes them. If XOR-ing the decrypted values results
in y, then y is in the intersection.

Achieving security with respect to semi-honest parties. This strawman
approach is flawed. The leader Pn generates the shares that the clients decrypt.
Hence, he may recognize, for values y in his set but not in the intersection, which
clients also hold y: these clients, and only these clients, would publish the right



shares. We can fix this problem by letting each client generate k sets of random
shares that XOR to zero (one set for each of the leader’s inputs). Then, each
client encrypts one share from each set to every other client. Finally, the clients
publish the XOR of the original share from the leader with the new shares from
other clients. If y is in the intersection set, then the XOR of all published values
for each of the leader’s k inputs is still y, otherwise it looks random to any
coalition. More concretely, the protocol for semi-honest parties is as follows.

1. A client party Pi, for 1 ≤ i ≤ n−1, operates as in the two-party case. She
generates a polynomial Qi of degree k encoding her inputs, and generates ho-
momorphic encryptions of the coefficients (with her own public key). Pi also
chooses k sets of n− 1 random numbers, call these {si

j,1, . . . , s
i
j,n−1}

k
j=1. We

can view this as a matrix with k rows and (n−1) columns: Each column cor-
responds to the values given to party Pl; each row corresponds to the random
numbers generated for one of the leader’s inputs. This matrix is chosen such
that the XOR of each row sums to zero, i.e., for j =1 . . . k,

⊕n−1
l=1 si

j,l = 0.
For each column l, she encrypts the corresponding shares using the public
key of client Pl. She sends all her encrypted data to a public bulletin board
(or just to the leader who acts in such a capacity).

2. For each item y in his list Xn (the rows), leader Pn prepares (n−1) random

shares σy,l (one for each column), where
⊕n−1

l=1 σy,l = y. Then, for each of
the k elements of the matrix column representing client Pl, he computes the
encryption of (ry,l · Ql(y) + σy,l) using Pl’s public key and a fresh random
number ry,l. In total, the leader generates k tuples of (n−1) items each. He
randomly permutes the order of the tuples and publishes the resulting data.

3. Each client Pl decrypts the n entries that are encrypted with her public
key: namely, the lth column generated by Pn (of k elements) and the (n−1)
lth columns generated by clients (each also of k elements). Pl computes the

XOR of each row in the resulting matrix: (
⊕n−1

i=1 si
j,l) ⊕ σj,l. She publishes

these k results.
4. Each Pi checks if the XOR of the (n−1) published results for each row is equal

to a value y in her input: If this is the case,
⊕n−1

l=1

(

(
⊕n−1

i=1 si
j,l) ⊕ σj,l

)

= y,

and she concludes that y is in the intersection.

Intuitively, the values output by each client (Step 3) appear random to the
leader, so he cannot differentiate between the output from clients with y in their
input and those without, as he could in the strawman proposal.

Note that the communication involves two rounds in which P1, . . . Pn−1 sub-
mit data, and a round where Pn submits data. This is preferable to protocols
consisting of many rounds with n2 communication. The computation overhead
of Pn can be improved by using the hashing-to-bins method of Section 4.2.

8 Fuzzy Matching and Fuzzy Search

In many applications, database entries are not always accurate or full (e.g., due
to errors, omissions, or inconsistent spellings of names). In these cases, it would



be useful to have a private matching algorithm that reports a match even if two
entries are only similar.

We let each database entry be a list of T attributes, and consider X =
(x1, . . . , xT ) and Y = (y1, . . . , yT ) similar if they agree on (at least) t < T at-
tributes. One variant is fuzzy search, where the client specifies a list of attributes
and asks for all the database entries that agree with at least t of the attributes.
This may be achieved by a simple modification of our basic PM-Semi-Honest

protocol, by letting the server reply with the encryptions of ri ·Pi(yi)+si, where
t shares of s1, . . . , sT are necessary and sufficient for recovering Y . This fuzzy
search scheme may be used to compare two “databases” each containing just
one element comprised of many attributes.

The protocol may be modified to privately compute fuzzy matching in larger
databases, e.g., when a match is announced if entries agree on t out of T at-
tributes. In this section, we present a scheme, in the semi-honest model, that
considers a simple form of this fuzzy private matching problem.

A 2-out-of-3 fuzzy matching protocol A client C has kC 3-tuples X1, . . . , XkC
.

Let P1, P2, P3 be polynomials, such that Pj is used to encode the jth element of

the three tuple, Xj
i , for 1 ≤ i ≤ kC . For all i, let C choose a new random value Ri

and set Ri = P1(X
1
i ) = P2(X

2
i ) = P2(X

3
i ). In general, the degree of each such

polynomial is kC , and therefore, two non-equal polynomials can match in at most
kC positions. C sends (P1, P2, P3) to S as encrypted coefficients, as earlier. The
server S, for every three-tuple Yi in his database of size kS , responds to C in a
manner similar to Protocol PM-Semi-Honest: He computes the encrypted values
r(P1(Y

1
i )−P2(Y

2
i ))+Yi, r′(P1(Y

2
i )−P3(Y

3
i ))+Yi, and r′′(P1(Y

1
i )−P3(Y

3
i ))+Yi.

If two elements in Yi are the same as those in Xi, the client receives Yi in one
of the entries.

We leave as open problems the design of more efficient fuzzy matching pro-
tocols (without incurring a

(

T
t

)

factor in the communication complexity) and of
protocols secure in the malicious model.
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