

analytics-hotos13.pdf

Appeared in Proceedings of the 14th Workshop on
Hot Topics in Operating Systems (HotOS ’13)

Santa Ana Pueblo, New Mexico, May 2013

Making Every Bit Count in Wide-Area Analytics

Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek Pai, and Michael J. Freedman
Princeton University

Abstract
Many data sets, such as system logs, are generated from
widely distributed locations. Current distributed systems
often discard this data because they lack the ability to
backhaul it efficiently, or to do anything meaningful with
it at the distributed sites. This leads to lost functionality,
efficiency, and business opportunities. The problem with
traditional backhaul approaches is that they are slow and
costly, and require analysts to define the data they are
interested in up-front. We propose a new architecture that
stores data at the edge (i.e., near where it is generated) and
supports rich real-time and historical queries on this data,
while adjusting data quality to cope with the vagaries of
wide-area bandwidth. In essence, this design transforms
a distributed data collection system into a distributed data
analysis system, where decisions about collection do not
preclude decisions about analysis.

1 Introduction
Recent years have seen an explosion in the number and
variety of devices producing data streams, from software
logs to handheld phones to aerial cameras. About 2.5
quintillion bytes of data are created globally each day [1].
Much of this data starts its life widely distributed. How-
ever, users often want to analyze data across the system
as a whole. By focusing only on data processing within
datacenters, the research community is overlooking an
increasingly important part of the Big Data challenge.

Today, a common technique for data analysis is to back-
haul all the data generated at wide-area sources to a central
datacenter, where it is then stored and processed. This ap-
proach allows analysts to use existing tools developed for
single-datacenter large-scale analytics. Backhaul, how-
ever, incurs the high cost associated with wide-area data
transfer. This tradeoff is a bad one given historical and
contemporary trends in computing cost.

Historically, local storage and processing costs have
been dropping faster than WAN costs. For example, prices
from 2003-2008 of wide-area bandwidth to large ISPs
dropped only 2.7x, while CPU and storage dropped 16x
and 10x, respectively [5].

A few short-term factors are slowing the decline in
some of these areas, but should have little impact on the
long-term cost trend: disk prices have been impacted by

supply chain problems caused by floods in Thailand [20],
and bandwidth prices are being temporarily suppressed
by recession economics and government subsidies [22].
So in the short term, WAN bandwidth prices are expected
to decline at about 25% per year [26], while CPU and
disk prices should fall 15-30% and 10-20% per year [20].

In the long run, though, the bottleneck for wide-area
bandwidth is capacity at trans-oceanic crossings, and
the fundamentals there have not changed: from 2007 to
2011, transatlantic cable bandwidth grew at a 19% annual
rate [25], and prices only fell insignificantly. The high
capital costs for laying trans-oceanic cables are unlikely
to change significantly; the bandwidth available through
these cables is also unlikely to increase quickly.

These cost trends point to the fact that it is simply not
economical to copy all the data that is collected globally
to a central location. The question that analysts face is
how to prioritize the data that is transferred across the
wide-area for analysis. A common approach is to create a
static policy of which data to backhaul, but this approach
forces analysts to commit, in advance, to a valuation of
the data. The value of data is hard to predict, however, and
may also change over time [14]. For example, monitoring
data may either be vital for debugging, or pointless trivia,
depending on the context. While some wide-area stream-
processing systems (e.g., Hourglass [21]) reduce data
volumes by aggregating near the source, they still suffer
from the same flaw of requiring users to decide up-front
which data to transfer.

As a motivating example, suppose a content distribu-
tion network operator wants to know the 100 most popular
domains, each minute. A naive approach is for each node
to send the popularity of each domain to a central location
for analysis, each minute. This is wasteful of bandwidth.
An optimized, though sometimes inaccurate, approach is
to send only the top-k domains, for some k > 100. Now
suppose the popularity of some domain surges. An analyst
might wish to inspect the history of the domain, before
it entered the top 100. However, that data is unavailable
because it was never backhauled.

A great deal of valuable data is never collected due to
costs. Many CDNs discard or do not collect low-level con-
nection monitoring and progress information, for example.
Such data has value, but backhauling it incurs high eco-

1

nomic costs and is slow when system resources are under
load and bandwidth is limited, precisely the times when
monitoring data is needed typically most. (We use CDNs
as a running example due to our familiarity with them.
Additional widely distributed data sources are discussed
in the next section.)

Ignoring the changing value of data necessarily leads
to mischosen data, which translates to lost functionality,
efficiency, and business opportunities. A better analysis
system would let user queries transparently span data at
the edge and data that has been backhauled.

This paper proposes a new architecture for wide-area
data analysis. Rather than statically defining the data to be
collected and backhauled, we envision systems that priori-
tize data in the presence of changing requirements and re-
sources, and that can re-plan if the perceived value of data
changes. Realizing this vision requires wide-area analysis
systems to embrace three high-level design choices:

Store data near the edge, either within the local net-
work where the data is generated, or as close to it as
physically possible, such as points of presence or com-
pute platforms co-located with sensors. This retains data
in case its perceived value changes and it becomes subse-
quently worth backhauling for further processing.

Incorporate aggregation and approximation as
first-class primitives to reduce data volume while pre-
serving value. The user needs to express how data will
be used and the requirements on data quality. This extra
information can allow the system to degrade gracefully
when resources are limited, giving approximate answers
promptly and refining them later if desired and possible.

Use structured storage that tracks data quality. We
envision using data cubes from online analytical pro-
cessing (OLAP) as a unifying abstraction for tracking
incrementally-refined data.

A system that incorporates these techniques can cope
with expensive and unreliable wide-area bandwidth. It
will move data only when necessary, prioritize data based
on its value, and compensate when bandwidth becomes
more available.

2 Uses
We now provide some example applications that could
benefit from efficient analysis of large, dynamic, wide-
area data sets to illustrate the importance of the topic.

Content analytics: CDNs can generate very large vol-
umes of log data (e.g., recording full HTTP header data
for each request), spread across widely distributed servers.
Yet detecting hot spots or popular items requires only
aggregate statistics, while forensic analysis of anomalies
typically involves only a few servers in detail.

Debugging logs: Systems can keep extensive logs of
their internal behavior to enable debugging. This data
is useful only when an issue is detected; centralizing all

debugging data may be overly costly in the normal case.
On the other hand, centralizing aggregates derived from
such logs may also be useful, since statistical methods for
log analysis have become increasingly effective [19].

Adaptive resource control: Many large distributed
systems collect nodes’ performance data to better manage
and coordinate resources. Having all nodes report to a
centralized controller does not scale well, especially in
the wide area. Rather than building ad-hoc monitoring,
a general-purpose data-stream analysis engine can effi-
ciently track resource utilization across the entire system.

Imaging data: Highways and public places are in-
creasingly festooned with cameras, mounted on both fixed
and aerial platforms. While the data collected is large im-
ages or video, the answers to queries of interest are often
much smaller (e.g., “what was the average speed of traf-
fic on this stretch of highway over the last month?” or
“where are there unexpectedly large gatherings of peo-
ple?”). In many cases, there are no technical barriers
(space, power, etc.) to installing large compute or storage
resources near the point of data generation. For exam-
ple, IP-based closed-circuit television (CCTV) cameras
support recording to on-site network-attached storage, or
to internal flash. In contrast, bandwidth to widely dis-
persed sites (sometimes over cellular or satellite links) is
expensive and likely to remain so.

Medical records: The barrier to backhauling data is
not always cost. There are many useful queries one might
wish to run on medical records data, such as searching for
population-wide trends or trying to assess the frequency
of a given genetic variation. However, a centralized na-
tional medical records repository poses significant privacy,
economic, and regulatory challenges (as does centraliza-
tion in many other application domains). Past work has
addressed data integration and schema changes in feder-
ated query systems, yet efficient standing queries remain
an open problem [13].

The above applications all share a common thread: (i)
high data volumes are generated across the wide-area and
(ii) most analysis tasks require a small fraction of this data
or generate summaries that are much smaller than the raw
data. In each application, there will be some computation
and storage resources at each site where data is generated,
and some centrally.

We envision two classes of queries: (i) ad-hoc queries
that use stored data to produce detailed information about
past events, and (ii) standing queries that continuously
update their results as new data comes in. In practice, the
two are not only both necessary, but are mutually depen-
dent. One-off queries execute more quickly and reliably if
they can use continuously-maintained centralized aggre-
gates, rather than touching many edge storage locations.
Standing queries can indicate surprises or anomalies that
are investigated with ad-hoc queries.

2

3 Requirements of wide-area analytics
To understand the requirements that shape design deci-
sions for a wide-area analytics system, we discuss some
key factors and how they differ from local-area systems.

Local domains as visible abstractions. We expect users
will have strong views about which data will be stored in
what locations, and when data will be backhauled. Like
the decision of which database indices to maintain, the
decision of what to backhaul will shape the performance
landscape of subsequent queries. As a result, we foresee
the need for novel “region” abstractions that group related
systems and allow the user to explicitly define which data
is transferred between them. Regions can even represent
a highly-connected local area domain, such as a cluster
or a point-of-presence, or may define legal domains with
specific data retention and reporting policies. Analysis
systems cannot conceal region boundaries since users
need to control what data is stored where.

In comparison, systems like MapReduce expose the
boundaries between both task instances and separate clus-
ters, but do not explicitly expose nodes or racks to users.
Related systems may internally use rack- or node-locality
to optimize performance, but users do not refer to these
boundaries when defining computations to perform.

Dealing with bandwidth variability. Local-area analy-
tics clusters can be provisioned to match the worst-case
expected inputs, since compute and local networking re-
sources are predictable and reliable. In contrast, wide-area
bandwidth availability may be affected by shared lines
and congestion, while the bandwidth demands of a service
may be affected by diurnal variation, unexpected peak de-
mands on the service, or popularity differences among
the nodes of a geographically-distributed service. When
available network resources become too scarce to transfer
all the data for a standing query, system designers are
faced with a choice: that query must either abort, fall ever
farther behind, or be modified to stay within the resource
limits. We believe the right approach is to alter the query,
delivering as much data quality as possible to the user.

We refer to these query modifications as adaptation,
and think it is likely to be a characteristic of wide-area
streaming analytics. In the local domain, processing sys-
tems can mitigate stragglers via speculative execution.
This strategy does not help if wide-area bandwidth is the
bottleneck. Since data is not replicated across the wide
area, there is no alternate location where a task can be
usefully relocated; stragglers and data unavailability have
to be mitigated in some other way. Possible adaptation
strategies may include keeping only a sample of incom-
ing data, sending data less often (e.g., emitting aggregate
statistics every minute instead of every second), or even
filtering data, discarding records judged likely irrelevant.

Network resources can fluctuate on a minute-by-minute
and hour-by-hour basis, and applications like real-time
anomaly detection and load balancing require up-to-date
information on timescales of seconds. As a result, an ana-
lysis system for these purposes must continuously probe
bandwidth and quickly detect if it is falling behind. In con-
trast, local-area bandwidth is relatively predictable, and
systems can use admission control to prevent overloads.

The sort of dynamic tracking and query adaptation we
envision cannot be easily deployed atop current frame-
works. MapReduce, streaming databases, and most other
distributed systems do not collect or expose resource us-
age at fine granularities and do not have mechanisms for
modifying currently-running jobs.

Backfill to improve data. Some current streaming sys-
tems support backfill, i.e., situations in which a query
result has already been output, but then the result changes
due to the arrival of new data. In wide-area systems, how-
ever, not only do we expect backfill to be more frequent
due to the variability of wide-area systems, but we also
expect greater delays between initial results and the ar-
rival of more data. As a result, it makes sense to think of
backfill as a first-class part of the system, which can be
intentionally exploited to make the system more adaptive.

While backfill naturally arises from things like band-
width shortages and temporary failures, it can also be
paired with approximation. When a system encounters
a bandwidth shortage, it can send approximate or coarse
data immediately, and then fill in precise values later
if and when bandwidth allows. This approach allows
time-shifting bulk data transfer of raw records, while still
allowing real-time analytics. Backfill ensures that the
long-term quality of the data is not impaired.

As a result, backfill cannot simply be bolted onto exist-
ing processing frameworks; it must be considered early
in the design process. Enforcing policy requires user
specification, a global view of running queries, and the
ability to change the data quality requirements for one
query to support new downstream queries. Past research
has looked at efficient incremental mechanisms for back-
fill [4, 9, 17, 18], and we expect to be able to leverage
their design efficiencies.

4 Structuring Wide-Area Computation
We now discuss approaches for incorporating widely dis-
tributed storage into analytics systems, and processing
steps that can make it feasible and bandwidth adaptive.

Structuring storage with cubes. We believe that analy-
tics systems should incorporate structured storage in ways
that simplify analysis tasks. Analysts working with on-
line analytics processing (OLAP) databases often find it
useful to represent data using a structure called an OLAP
cube, which is a multi-dimensional array that encapsulates

3

numerical properties and relationships between fields in
structured input data, similar to a database relation [10].
It is defined by a set of dimensions, which specify the
coordinates of an array cell, and a set of aggregates, which
specify the statistics stored in a cell. Each dimension in-
dexes some properties of the input data, such as the URL
or time period of web requests. The cells addressed by
these dimensions contain statistics about a given URL and
time period: for example, the total number of requests
and the maximum request latency.

Unlike a relational database, the aggregates are part of
schema. Each field in a cell is associated with a particular
aggregation function, such as count or max. When new
data is added is added to a cell (i.e., a new web request
comes in), that aggregation function is applied to the old
and new values, and the result stored back into the cell.
Aggregation functions yield the same result regardless of
the input data order.

A key benefit of the cube abstraction is that it decom-
poses gracefully: given two cubes with the same schema,
there is one unambiguous way to merge them. Cells with
the same dimension values get merged together by com-
bining their partial aggregates. As a result, a cube-based
system can reason about aggregation trees, and can intro-
duce partial aggregation without altering the result. This
is not possible in a purely key-value or relational model.

Using data cubes as a storage abstraction does not con-
strain the choice of programming model. Today’s stream-
ing systems often use a dataflow model, in which data
flows through a network of operators that transform the
data flowing past [2, 6, 8, 24]. One can integrate cubes
into this model, treating them as part of the dataflow graph.
One might also write purely declarative SQL-style pro-
grams for querying or transforming cubes. One might
even combine cubes with a data-parallel imperative pro-
gramming model.

Reasoning about data quality. Wide-area streaming
analytics will sometimes have to trade away some data
quality to reduce bandwidth consumption. Analytics sys-
tems, particularly if they are dynamically adjusting data
quality, need to track the ways in which data has been
degraded. This lets the system put error bounds on query
results. It also lets the system notify the user if data is not
available at the requested granularity but is available in a
less precise form.

Different data sources may have different quality lev-
els. In a CDN, for example, some nodes may be at peak
diurnal usage and sending only rough data, while other
nodes may be lightly loaded and sending complete data.
The analytics system must be able to gracefully combine
these disparate intermediate inputs.

Coarsening is an adaptation that fits particularly well
with the cube model. In this context, coarsening means

keeping aggregate statistics about larger items, such as
per-minute instead of per-second data. The cube data
model makes it easy to reason about and support coars-
ening, since a cube cell can explicitly indicate the range
of dimension values that it covers. If the input data is at
different granularities, the system can aggregate all the
data together at the coarsest level of granularity.

Coarsening is not the only useful adaptation that re-
duces data precision. Data might also be sampled or
filtered according to (potentially complex) criteria. To
help the user assess a system’s output, the system must
keep enough metadata to explain the accuracy and lineage
of data. The cube model, by making aggregation explicit,
helps. In addition, addressing collections of cells through
dimension value ranges is a compact way of tracking and
querying metadata.

Incorporating explicit degradation policies. A wide-
area system can dynamically adjust queries in several
different ways, where the right strategy depends on the
query and the user’s needs. Analytics systems can ease
the pain of articulating such policies, via interactive tools
for authoring and reasoning about degradation policies.

Data quality has many aspects, and is not a simple lin-
ear scale [15]. A delay of ten seconds might be acceptable
for one query but not another. Sampling is most effective
for aggregates that are not sensitive to outliers. No sin-
gle strategy is appropriate for all queries. Instead, users
will need a way to specify the appropriate bandwidth-
conservation strategy for each query.

Reasonable policies may be complex. A user might de-
sire the following policy: “Under normal circumstances,
report a histogram of latencies every second. If band-
width is scarce, the reporting interval should be gradually
increased up to every thirty seconds. Beyond that point,
the reporting interval should remain unchanged, but the
histogram itself should be coarsened (represented with
fewer buckets).” A system’s policy language should be
expressive enough to represent policies of this sort.

The policy language should also be extensible. The
scope of possible data degradations is very large and users
will sometimes need to introduce new degradations. Con-
sider the case of quantiles (such as medians). Quantiles
are a so-called holistic aggregate that require storage over-
head proportional to the size of the full data set [16]. To
compensate, a wide variety of approximation (synopsis)
techniques have been developed, appropriate for different
data volumes, distributions, and accuracy goals [7]. Users
should be able to add additional synopsis techniques tai-
lored to their specific needs, and have the analytics system
use these techniques appropriately.

Optimizing across queries. Analytics systems typically
have many concurrent queries. Multi-query optimization
has therefore been extensively researched [23]. The topic

4

takes on new aspects, however, in a system with widely
distributed storage and with data at multiple fidelities.
Today’s cross-query optimizers look for sub-queries that
can be reused. In wide-area analytics, the cost of reusing
a sub-query depends strongly on where it is computed,
and on the resultant precision.

Consider the following concrete example, to see how
precision can enter into these calculations. Suppose that
data from several sources is being copied to a central
location and then combined. If one source is sending data
at five-second granularity, while another is sending data
every second, then the combined data will only be at five-
second granularity. Depending on the situation, it might
or might not be useful to keep a copy of the fine-grained
disaggregated data. If future backfill is likely to replace
the coarse data with higher-precision values, for example,
then it would make sense to keep the central copy of the
fine-grained data. The decision of which data to retain
(and where) depends on whether a future computation
will use the data.

5 Related Work
Our work is inspired by existing data stream management
systems, such as Borealis and Storm [2, 6, 8, 24]. These
systems do not handle storage, but instead aim to process
incoming updates with minimal latency. In contrast, our
interest is in processing dispersed and changing data sets,
in the presence of network limitations and failures.

Most streaming systems were designed for single-
datacenter deployments, but there has been some work on
wide-area deployment [12, 21]. That work assumed that
computation resources, sources, and destinations were
scattered around ad-hoc, e.g., as PlanetLab nodes. As a
result, sophisticated techniques were needed for place-
ment. We believe this assumption is too pessimistic and
that placement decisions can be handled relatively simply.
For our applications, there will generally be only two
or three options for data placement: the site where the
data is generated, the nearest point-of-presence, or else a
centralized datacenter. Placement within a datacenter or
point-of-presence can be delegated to existing scheduling
systems or scale-out processing engines. As a result, it
will be sufficient for users to give guidance about data
placement, and the system can then evaluate the (small)
set of reasonable options for placing computation.

There has been a great deal of work on scalable process-
ing systems for the datacenter. This includes traditional
databases, MapReduce, and a range of systems in between.
As we noted above, this work is predicated on flat, reli-
able, and high-performance networks. Much of this work
is therefore inapplicable in the wide area, particularly if
wide-area replication is to be avoided.

We are investigating system architectures that reduce
data volumes while minimizing the reduction in accu-

racy. Similarly, BlinkDB [3] deploys sampling-based
approximations on top of MapReduce and Hive to reduce
latency. In BlinkDB, the data is carefully pre-sampled
with specific statistical goals; small probing jobs are used
to estimate query run-time. In contrast, continuous wide-
area analytics systems will have to measure and adapt to
available bandwidth, without the benefit of a prior data-
import step. We also envision a range of degradation
techniques, not just sampling.

Tree aggregation can be used to reduce bandwidth with-
out reducing accuracy. The sensor network community
has used this technique extensively for power-constrained
devices, such as in the seminal Tiny Aggregation Ser-
vice [22]. Much subsequent work looked at using redun-
dant routes to compensate for unreliable connections and
faulty nodes. In contrast, the applications we envision use
hardware that is not power-constrained, and we expect
conventional IP networking to deliver suitable routes.

There has been substantial recent work on incremental
view maintenance [4, 9, 11, 17, 18], allowing databases
to promptly incorporate updates. We expect many of
the ideas from this work to be applicable to the wide
area. However, the problems to be solved are divergent:
incremental computation tries to reduce the CPU cost of
updates. We are concerned with incorporating updates in
the presence of limited or sporadic connectivity.

Twitter has built an analytics system atop Cassandra
called Rainbird [27]. Rainbird is designed to do near-real-
time counting and statistics on large data volumes. This
demonstrates the industrial need for the sort of analysis
we envision. Rainbird is designed for single datacenter
deployment, however, and does not explore widely dis-
tributed storage or adaptive control.

6 Conclusions
Many data sources create widely distributed data. Back-
hauling the data before storing requires culling data too
early, and therefore results in suboptimal choices of what
to keep and collect. We believe it is time to embrace edge
storage and distributed queries instead.

Edge storage will require far-reaching changes to the
modern analysis software stack. Without wide-area repli-
cation, we need new mechanisms for handling slow and
unavailable nodes. We advocate structured storage and
degradation policies. OLAP cubes are an ideal abstraction
for this, since they are familiar to users, they can be imple-
mented efficiently, and they are sufficiently structured for
the system to plan queries in the face of changing network
conditions.

“Big data”, until now, has predominantly meant data in
big centralized datacenters. It is time to build systems for
storing and processing widely dispersed data. Doing so
will let users get the greatest value from each bit of data.

5

References
[1] Bringing big data to the enterprise. http://www-01.

ibm.com/software/data/bigdata/, 2012.

[2] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B. Zdonik.
The design of the Borealis stream processing engine. In
CIDR, 2005.

[3] S. Agarwal, A. P. Iyer, A. Panda, S. Madden, B. Mozafari,
and I. Stoica. Blink and it’s done: interactive queries on
very large data. VLDB, 5(12), 2012.

[4] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic.
Dbtoaster: Higher-order delta processing for dynamic,
frequently fresh views. VLDB, 5(10), 2012.

[5] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, et al.
Above the Clouds: A Berkeley View of Cloud Computing.
Technical Report 2009-28, UC Berkeley, 2009.

[6] S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin,
J. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden,
F. Reiss, and M. Shah. TelegraphCQ: Continuous dataflow
processing. In SIGMOD, 2003.

[7] G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applications.
J. Algorithms, 55(1):58–75, 2005.

[8] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo.
Spade: the system s declarative stream processing engine.
In SIGMOD, 2008.

[9] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk.
Stream warehousing with DataDepot. In SIGMOD, 2009.

[10] J. Gray et al. Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. Data
Mining and Knowledge Discovery, 1(1):29–53, 1997.

[11] J. Han, Y. Chen, G. Dong, J. Pei, B. W. Wah, J. Wang,
and Y. D. Cai. Stream cube: An architecture for multi-
dimensional analysis of data streams. Distributed and
Parallel Databases, 18(2):173–197, 2005.

[12] J.-H. Hwang, U. Cetintemel, and S. B. Zdonik. Fast and
reliable stream processing over wide area networks. In
Data Engineering Workshop, 2007.

[13] Z. Ives, T. Green, G. Karvounarakis, N. Taylor, V. Tannen,
P. Talukdar, M. Jacob, and F. Pereira. The orchestra col-
laborative data sharing system. SIGMOD Record, 37(3),
2008.

[14] S. Jarr. The big data value continuum. http://blog.
voltdb.com/big-data-value-continuum/,
2012.

[15] K. Keeton, P. Mehra, and J. Wilkes. Do you know your
IQ?: A research agenda for information quality in systems.
SIGMETRICS PER, 37(3):26–31, 2010.

[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: A Tiny AGgregation service for ad-hoc sensor net-
works. In OSDI, 2002.

[17] F. McSherry, D. Murray, R. Isaacs, and M. Isard. Differ-
ential dataflow. In CIDR, 2013.

[18] S. R. Mihaylov, Z. G. Ives, and S. Guha. Rex: recursive,
delta-based data-centric computation. VLDB, 5(11), 2012.

[19] A. Oliner, A. Ganapathi, and W. Xu. Advances and chal-
lenges in log analysis. Comm. ACM, 55(2), 2012.

[20] B. Panzer. Technology, market and cost trends 2012.
https://espace.cern.ch/WLCG-document-
repository/Technical_Documents/
Technology_Market_Cost_Trends_2012_
v23.pdf, 2012.

[21] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer. Network-aware operator place-
ment for stream-processing systems. In ICDE, 2006.

[22] A. Reisman. Wired bandwidth prices, and what to
expect in the future. http://netequalizernews.
com/2012/06/27/wired-bandwidth-prices-
what-to-expect-in-the-future/, 2012.

[23] T. K. Sellis. Multiple-query optimization. ACM Trans.
Database Syst., 13(1):23–52, Mar. 1988.

[24] Storm. https://github.com/nathanmarz/
storm/, 2012.

[25] TeleGeography. Telegeography submarine cable
map. http://submarine-cable-map-2012.
telegeography.com/, 2012.

[26] TeleGeography. Global bandwidth research service
executive summary. http://www.telegeography.
com/page_attachments/products/website/
research-services/global-bandwidth-
research-service/0002/8233/gb12-exec-
sum.pdf, 2012.

[27] K. Weil. Rainbird: Real-time analytics @twitter.
http://www.slideshare.net/kevinweil/
rainbird-realtime-analytics-at-
twitter-strata-2011, 2011.

6

http://www-01.ibm.com/software/data/bigdata/

http://www-01.ibm.com/software/data/bigdata/

http://blog.voltdb.com/big-data-value-continuum/

http://blog.voltdb.com/big-data-value-continuum/

https://espace.cern.ch/WLCG-document-repository/Technical_Documents/Technology_Market_Cost_Trends_2012_v23.pdf

https://espace.cern.ch/WLCG-document-repository/Technical_Documents/Technology_Market_Cost_Trends_2012_v23.pdf

https://espace.cern.ch/WLCG-document-repository/Technical_Documents/Technology_Market_Cost_Trends_2012_v23.pdf

https://espace.cern.ch/WLCG-document-repository/Technical_Documents/Technology_Market_Cost_Trends_2012_v23.pdf

http://netequalizernews.com/2012/06/27/wired-bandwidth-prices-what-to-expect-in-the-future/

http://netequalizernews.com/2012/06/27/wired-bandwidth-prices-what-to-expect-in-the-future/

http://netequalizernews.com/2012/06/27/wired-bandwidth-prices-what-to-expect-in-the-future/

https://github.com/nathanmarz/storm/

https://github.com/nathanmarz/storm/

http://submarine-cable-map-2012.telegeography.com/

http://submarine-cable-map-2012.telegeography.com/

http://www.telegeography.com/page_attachments/products/website/research-services/global-bandwidth-research-service/0002/8233/gb12-exec-sum.pdf

http://www.telegeography.com/page_attachments/products/website/research-services/global-bandwidth-research-service/0002/8233/gb12-exec-sum.pdf

http://www.telegeography.com/page_attachments/products/website/research-services/global-bandwidth-research-service/0002/8233/gb12-exec-sum.pdf

http://www.telegeography.com/page_attachments/products/website/research-services/global-bandwidth-research-service/0002/8233/gb12-exec-sum.pdf

http://www.telegeography.com/page_attachments/products/website/research-services/global-bandwidth-research-service/0002/8233/gb12-exec-sum.pdf

http://www.slideshare.net/kevinweil/rainbird-realtime-analytics-at-twitter-strata-2011

http://www.slideshare.net/kevinweil/rainbird-realtime-analytics-at-twitter-strata-2011

http://www.slideshare.net/kevinweil/rainbird-realtime-analytics-at-twitter-strata-2011

			Introduction

			Uses

			Requirements of wide-area analytics

			Structuring Wide-Area Computation

			Related Work

			Conclusions

causal-login13.pdf

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 41

SYSTEMSA Short Primer on Causal Consistency
W Y A T T L L O Y D , M I C H A E L J . F R E E D M A N , M I C H A E L K A M I N S K Y ,
A N D D A V I D G . A N D E R S E N

Wyatt Lloyd is a Postdoctoral
Researcher at Facebook and will
begin a position as an Assistant
Professor at the University of
Southern California in 2014.

His research interests include the distributed
systems and networking problems that underlie
the architecture of large-scale Web sites, cloud
computing, and big data. He received his Ph.D.
from Princeton University in 2013 and his BS
from Penn State University in 2007, both in
Computer Science.  Wyatt.Lloyd@gmail.com

The growing prevalence of geo-distributed services that span mul-
tiple geographically separate locations has triggered a resurgence of
research on consistency for distributed storage. The CAP theorem

and other earlier results prove that no distributed storage system can simul-
taneously provide all desirable properties—e.g., CAP shows this for strong
Consistency, Availability, and Partition tolerance—and some must be sacri-
ficed to enable others. In this article, we suggest causal consistency repre-
sents an excellent point in this tradeoff space; it is compatible with strong
performance and liveness properties while being far easier to reason about
than the previously-settled-for choice: “eventual” consistency.

Geo-distributed services are growing in popularity because they can survive datacenter fail-
ures and because they move services closer to end users, which lowers page load time and in
turn drives up user engagement. For example, companies such as Facebook distribute their
service across datacenters on the West Coast, East Coast, and Europe. The recent work in
this space includes systems such as PNUTS [2], Walter [11], Gemini [6], Spanner [3], MDCC
[5], and Bolt-on [1], as well as our own work on COPS [7] and Eiger [8].

So why does the increasing number of geo-distributed services make consistency a hot
topic? Because there is a fundamental, unavoidable tradeoff between having guaranteed
low-latency access (which we define as not having to send packets back-and-forth across
the country) and making sure that every client sees a single ordering of all operations in the
system (strong consistency) [7]. Guaranteed low latency is important because it keeps page
load times low. Consistency is important because it makes systems easier to program. In our
first work on this subject, COPS, we coined a term for low-latency-favoring systems: ALPS
(“Availability, Low-latency, Partition tolerance, and Scalability”). This tradeoff is unavoid-
able as readers familiar with the famous CAP theorem might remember. Here’s an example:

Consider concurrent writes and reads at two different datacenters. If you want both the
write to have low latency and the read to have low latency, then you must satisfy them faster
than the information can propagate to the other datacenter. In some circumstances, for
example, a client might write data to the West Coast datacenter just before another client
reads that object from the East Coast datacenter. The East Coast read will return stale infor-
mation (i.e., it won’t reflect that write that actually happened first) because, although the
write completed on the West Coast, it hasn’t propagated to the other datacenter. You could
avoid this behavior and make the write take longer (wait for it to propagate to the East Coast)
or the read take longer (fetch the data from the West Coast), but you cannot have both.

This tradeoff is pretty well understood, and is one of the several reasons behind the increas-
ing prevalence of “eventual consistency,” popularized by Amazon’s Dynamo [4]. The other, of
course, is availability: in this example, if the two datacenters cannot communicate, at least
one of them must stop processing requests. Eventual consistency allows the datacenters to
each return local results, rapidly, even if the other one is down. What it sacrifices, of course,
is consistency: queries at different datacenters may see different results, in different order.

Michael J. Freedman is
an Associate Professor
of Computer Science at
Princeton University, with a
research focus on distributed

systems, networking, and security.
Recent honors include a Presidential Early
Career Award (PECASE), as well as early
investigator awards through the NSF and
ONR, a Sloan Fellowship, and DARPA CSSG
membership.  mfreed@cs.princeton.edu

Michael Kaminsky is a Senior
Research Scientist at Intel
Labs and is an adjunct faculty
member of the Computer
Science Department at

Carnegie Mellon University. He is part of the
Intel Science and Technology Center for Cloud
Computing (ISTC-CC), based in Pittsburgh,
PA. His research interests include distributed
systems, operating systems, and networking.
michael.e.kaminsky@intel.com

David G. Andersen is an Asso-
ciate Professor of Computer
Science at Carnegie Mellon
University. He completed his
S.M. and Ph.D. degrees at MIT,

and holds BS degrees in Biology and Computer
Science from the University of Utah. In 1995,
he co-founded an Internet Service Provider in
Salt Lake City, Utah.  dga@cs.cmu.edu

42  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SYSTEMS
A Short Primer on Causal Consistency

This is where causality comes in: you can provide something
better than “eventual” consistency without sacrificing availabil-
ity or low latency. That something is causal consistency, and it
has been proved that no stronger form of consistency exists that
can also guarantee low latency [9].

What Is Causal Consistency?
Causal consistency means that two events that are “causally”
related (or potentially so) must appear in the same order. In other
words, if action B occurred after action A (either because a user
did A and then B, or because a different user saw A and then did
B), then B must appear after A. As a concrete example, consider
replying to a snarky comment on someone’s Facebook post: your
reply should be causally ordered after the snark. And, indeed,
this is exactly what causally consistent replication can provide:
your reply will never appear to have happened before the snark
that triggered it.

Causal Consistency Is Good for Users
Causal consistency improves user experience because with
it actions appear to everyone in the correct order. A common
scenario where causality is important, but often isn’t provided, is
comments on social network posts, which sometimes appear out
of order.

Consider this stream of posts:

Oh no! My cat just jumped out the window.
[a few minutes later] Whew, the catnip plant broke her fall.
[reply from a friend] I love when that happens to cats!

It looks a little weird if what shows up on someone else’s screen is:

Oh no! My cat just jumped out the window.
[reply from a friend] I love when that happens to cats!

There are even better examples, widely used, when talking about
access control:

[Removes boss from friends list]
[Posts]: “My boss is the worst, I need a new job!”

If these two actions occur in the wrong order, then my post will
not have been hidden from my boss as intended. Bad news bears.

Causal Consistency Is Good for Programmers
A stronger consistency model restricts the potential orderings of
events that can show up at a remote datacenter. This simplifies
the reasoning required of a programmer. Imagine two causally
related events: Creating a new photo album and then uploading
an image to it. If those events are replicated out-of-order, your
code might have to try to cope with the idea of an image being
uploaded to a nonexistent photo album. Or crash, because you
never expected it to happen. In contrast, in a causally consis-
tent system, you might never see the photo upload (or it could be

delayed), but it will always occur after the creation of the album.
This is the big win from causal consistency for programmers:
They do not need to reason about out-of-order actions. Easier
code, happier programmers.

What Are the Limitations of Causal Consistency?
Causal consistency is achievable with low latency, and it benefits
users and programmers. But it has three drawbacks that practi-
tioners should be aware of.

Drawback #1: Can only capture causality it sees. Actions
that take place outside of the system are not seen and, unfortu-
nately, not ordered by the system. A common example of this is a
phone call: if I do action A, call my friend on another continent to
tell her about A, and then she does action B, we will not capture
the causal link between A and B.

Drawback #2: Cannot always enforce global invariants.
Each datacenter in a causally consistent system is optimistic in
that writes return once they are accepted in the local datacen-
ter. This optimism makes it impossible to allow writes at every
datacenter and guarantees global invariants, such as enforcing
the rule that bank accounts never drop below 0 dollars.

True global invariants, however, may be rarer than you think.
E-commerce is an often cited example, but online stores often
handle stock that falls below 0 by issuing back orders for any
sales that cannot be filled immediately. And readers familiar
with the recent string of concurrent withdrawal attacks where
bandits withdrew $40 million from 12 accounts [10] will recog-
nize that even banks rarely enforce global invariants.

Drawback #3: Programmers must reason about concurrent
writes. The optimism inherent in causality (when accepting
writes at all datacenters) that prevents causal systems from
enforcing global invariants also allows there to be concurrent
writes to the same data. For instance, a person on the West
Coast could update a data item while a person on the East Coast
is simultaneously updating that same data item. What should a
datacenter do when it has both updates? One common strategy—
called the last-writer-wins rule or Thomas’s write rule—is to
pick one update arbitrarily and have it overwrite the other. This
simple procedure is often sufficient: e.g., a social network user
can only have one hometown.

There are situations, however, where a more complicated proce-
dure is necessary. For instance, consider a friend request on the
East Coast being accepted concurrently with a friend request on
the West Coast. Each accepted friend request should increase
the count of a user’s friends by one (for a total of +2), but if we use
the last-writer-wins rule, one update will overwrite the other
(for only +1). Instead, we need programmers to write special
functions to merge the concurrent updates together (that add the
+1s together).

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 43

SYSTEMS
A Short Primer on Causal Consistency

Reasoning about concurrent writes is the main difficulty with
using causal consistency for programmers. Specifically, they
must ask “are overwrite semantics sufficient?” and if they are
not, they must write special functions that preserve the seman-
tics they need.

References
[1] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica,
“Bolt-on Causal Consistency,” SIGMOD, June 2013.

[2] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava,
Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick
Puz, Daniel Weaver, and Ramana Yerneni, “PNUTS: Yahoo!’s
Hosted Data Serving Platform,” VLDB, August 2008.

[3] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew
Fikes, Christopher Frost, J.J. Furman, Sanjay Ghemawat,
Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson
Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexan-
der Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean
Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal
Szymaniak, Christopher Taylor, Ruth Wang, and Dale Wood-
ford, “Spanner: Google’s Globally Distributed Database,” OSDI,
October 2012.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels, “Dynamo: Amazon’s Highly Available Key-Value Store,”
SOSP, October 2007.

[5] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Mad-
den, and Alan Fekete, “MDCC: Multi-Datacenter Consistency,”
EuroSys, April 2013.

[6] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke,
Nuno Preguiça, and Rodrigo Rodrigues, “Making Geo-Repli-
cated Systems Fast as Possible, Consistent When Necessary,”
OSDI, October 2012.

[7] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and
David G. Andersen, “Don’t Settle for Eventual: Scalable Causal
Consistency for Wide-Area Storage with COPS,” SOSP, October
2011.

[8] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and
David G. Andersen, “Stronger Semantics for Low-Latency Geo-
Replicated Storage,” NSDI, April 2013.

[9] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin, “Consis-
tency, Availability, and Convergence,” Technical Report TR-11-
22, University of Texas at Austin, Department of Computer
Science, 2011.

[10] Marc Santora, “In Hours, Thieves Took $45 Million in
A.T.M. Scheme,” New York Times, May 5, 2013.

[11] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jin-
yang Li, “Transactional Storage for Geo-Replicated Systems,”
SOSP, October 2011.

Conclusion
Causal consistency is a better-than-eventual consistency model
that still allows guaranteed low latency operations. It captures
the causal relationships between operations and ensures that
everyone sees operations in that order. This makes Web sites
more intuitive for users, because their actions appear, and are
applied, in the order they intended. Causal consistency also
makes programming simpler by eliminating the need for pro-
grammers to reason about out-of-order operations.

dcn-mcast-conext13.pdf

Scaling IP Multicast on Datacenter Topologies

Xiaozhou Li and Michael J. Freedman
Princeton University

ABSTRACT
IP multicast would reduce significantly both network and server
overhead for many datacenter applications’ communication. Unfor-
tunately, traditional protocols for managing IP multicast, designed
for arbitrary network topologies, do not scale with aggregate hard-
ware resources in the number of supported multicast groups. Prior
attempts to scale multicast in general settings are all bottlenecked
by the forwarding table capacity of a single switch.

This paper shows how to leverage the unique topological structure
of modern datacenter networks in order to build the first scale-out
multicast architecture. In our architecture, a network controller care-
fully partitions the multicast address space and assigns the partitions
across switches in datacenters’ multi-rooted tree networks. Our ap-
proach further improves scalability by locally aggregating multicast
addresses at bottleneck switches that are running out of forwarding
table space, at the cost of slightly inflating downstream traffic. We
evaluate the system’s scalability, traffic overhead, and fault tolerance
through a mix of simulation and analysis. For example, experiments
show that a datacenter with 27,648 servers and commodity switches
with 1000-entry multicast tables can support up to 100,000 multicast
groups, allowing each server to subscribe to nearly 200 multicast
groups concurrently.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design

Keywords
IP Multicast; Datacenter Networks; Scalability

1. INTRODUCTION
Many datacenter applications rely on multicast communication

patterns, such as publish-subscribe services for data dissemina-
tion [31], web cache updates [33], system monitoring [28], and so
on. Further, emerging datacenter virtualization standards that bridge
multiple subnets into one large layer-2 VLAN, such as VXLAN [27]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CoNEXT’13, December 9-12, 2013, Santa Barbara, California, USA.
ACM 978-1-4503-2101-3/13/12.
http://dx.doi.org/10.1145/2535372.2535380.

and NVGRE [39], often translate broadcasts in the virtualized sub-
net into multicasts in the physical network. IP multicast offers a
prime means to support these types of communication, as it greatly
conserves network bandwidth and reduces server load.

Unfortunately, IP multicast is often unscalable and unstable [11],
which causes network operators to eschew its use. While various
multicast protocols have been developed by researchers over the past
two decades to address reliability [8, 13, 3], security [22, 2], and
congestion control [44], our work aims to scale multicast in terms
of the number of supported multicast groups in datacenter networks.
We believe this to be an important enabling property for the adop-
tion of datacenter IP multicast. Scalability limitations arise because
switches only support limited numbers of multicast addresses in
their forwarding tables (e.g., 100s to 1000s of entries [30]). This
problem is compounded because multicast addresses are not topo-
logically assigned and thus cannot be hierarchically aggregated in
the traditional fashion. Network failures also introduce challenges
for IP multicast. Rerouted or retransmitted packets may be resent
to large numbers of group subscribers, and reconstructing multicast
trees is an expensive process.

While these problems with IP multicast are not new and have
been well documented in both ISP and enterprise networks [11],
we reconsider possible solutions by leveraging the unique topolog-
ical properties of modern datacenter network architectures. The
multicast addressing and routing mechanisms we present scale to
much larger numbers of multicast groups than in previous designs,
while providing greater robustness to switch and link failures. In
particular, we address IP multicast within datacenter networks that
are multi-rooted trees [6, 15, 29, 26]. We exploit the properties of
these network topologies to make four key contributions.

First, we introduce a general method for scaling out the number
of supported multicast groups. Rather than treating each switch as
an independent entity—as done by all prior work, perhaps given
their starting point using fully decentralized control protocols like
IGMP—we leverage ideas from scale-out storage systems to par-
tition the multicast address space and distribute address partitions
across cooperating switches. In particular, all “core” switches in the
datacenter network act as one cooperating set, as well as each set of
upper-layer switches in each datacenter network “pod”. Yet because
the aggregate capacity of each pod’s upper layer is less than that of
the core layer, the number of groups supported by the datacenter de-
pends on a number of factors, which we later quantify. In summary,
however, this mechanism allows a fat-tree network, when composed
of more than 27K servers and with switches holding at most 1000
group addresses, to support 4K to 30K multicast groups (depending
on the distribution and placement of group members).

Second, we further increase the network’s group capacity through
local multicast address aggregation. Unfortunately, multicast ad-

dresses do not naturally aggregate into compact IP prefixes, as group
members may be spread across the network. Instead, we introduce
a novel indirection and rewriting mechanism that aggregates local
groups into virtual meta-groups for addressing and routing. In doing
so, we provide an efficient heuristic to the NP-Hard channelization
problem [5], while minimizing additional downstream traffic load
arising from such aggregation. With local meta-groups, the same
network as above supports 10K to 100K multicast groups.

Third, we provide mechanisms that are resilient and adapt quickly
to switch and link failures. In particular, prior to initiating or during
the process of multicast tree reconstruction for longer-term failures,
we support fast failover through local multicast rerouting. This
rerouting avoids redundant traffic caused by rerouting or retransmit-
ting multicast packets.

Finally, the new multicast mechanisms we introduce are deploy-
able in today’s switches. Namely, they can be implemented us-
ing OpenFlow-compliant switches [32]—which support prefix for-
warding, multicast addresses, packet rewriting, and a remotely-
configurable forwarding plane—and software-defined networking
(SDN) controllers for remote management. In particular, each set
of cooperating switches (i.e., at the core level and in each network
pod) can be managed independently for both address allocation
and failure recovery. Our mechanisms should also be applicable to
datacenter networks primarily using layer-2 forwarding (e.g., [29]),
although we do not further detail such approaches.

2. TOWARDS SCALABLE MULTICAST
We next review the current challenges in using IP multicast within

datacenters. We also detail the opportunities provided by emerging
multi-rooted trees as datacenter network topologies, as well as the
use of software controllers to remotely manage switches.

2.1 Limitations of Today’s IP Multicast
Many datacenter services use group communication that could

benefit greatly from multicast. However, current IP multicast pro-
tocols face severe scalability challenges, largely in terms of the
number of supported multicast groups and their robustness against
network failures. These challenges arise in both control and data
planes of the network.

In the control plane, most current multicast deployments use
IGMP [10] to manage group membership and PIM protocols [12,
18, 17] to construct multicast routing trees. Such protocols require
the switches1 to track the status of all associated groups, which
may involve many control messages and periodic queries to each
broadcast domain. Switches need additional memory to handle these
control-plane tasks; this serves to limit the number of supported
multicast groups [43]. Further, existing multicast protocols behave
poorly with network failures. A single point of failure may affect
many multicast trees, and reconstructing a multicast tree may need
many network communication and redundant states in switches.

The number of multicast groups is also limited by multicast for-
warding table sizes in switches. Multicast addresses cannot be
aggregated by prefixes; thus, a switch has to maintain per-group
routing rules for all associated multicast groups. Though the hard-
ware implementation of multicast forwarding may vary for different
switches, the number of multicast entries that a switch supports is
typically a scarce resource. This is particularly true for the com-
modity switches common to datacenters, which have much smaller
forwarding tables than the high-end routers found in ISP networks,

1We use the term switches and routers indistinguishably. Datacenter
network devices handle both layer-2 and layer-3 traffic, and they
support a variety of management and routing protocols.

and even less rule-table space available to multicast entries. For
example, benchmarks conducted in 2008 found popular commodity
switches to support as few as 70 and as many as 1500 multicast
addresses per switch [30].

2.2 Next-Generation Datacenter Architecture
Given the dynamic nature of datacenter traffic and the significant

network demands of data-centric processing, modern datacenter
network designs seek to provide high bisection bandwidth, reducing
or even eliminating any network oversubscription. To do so, the
research community has extensively studied the use of multi-rooted
tree network topologies (e.g., the Clos network [15] or its fat-tree
variants [6, 29, 26]), and such topologies are beginning to be de-
ployed in production [15, 1]. This makes them an attractive target
for further investigation, as opposed to some more radical design
proposals that use more exotic topologies [16, 4, 37, 38]. While
the multicast techniques described in this paper generalize to multi-
rooted tree topologies, we focus our design and evaluation on the
fat-tree network.

Figure 1 shows three examples of fat trees built with 4-port
switches. In general, a 3-tiered fat tree consists of a top layer of core
switches and multiple pods. Each pod has two layers of switches:
the edge switches that connect to end hosts and the aggregation
switches that connect to the core layer. Each pod switch uses half of
its ports to connect with higher-level switches and the other half for
lower-level devices. All core switches are connected to every pod,
and all aggregation switches are connected to every edge switch in
the same pod. With such a design, all hosts can communicate with
any other host at full bandwidth of their network interface through
multiple equal-cost paths. The difference between the three types
of fat trees in the figure is mainly related to their behavior under
failure, as discussed later.

2.3 Scale-Out IP Multicast in Datacenters
With an eye towards the multi-rooted tree topology of datacenter

networks, we introduce three techniques to increase the number of
multicast groups and enhance communication robustness against
common network failures. Here, we present a high-level motivation
and description of these techniques, while Section 3 specifies our
algorithms and provides analysis justifying each technique.

1. Partition and distribute the multicast address space to in-
crease the number of groups at core and aggregation layers. To
leverage the potential advantages of a multi-rooted tree topology,
we partition the multicast address space into multiple blocks with
unique prefixes. Each partition is assigned to some core switches
at the top level, and to some aggregation switches in every pod. So,
each core or aggregation switch only has a fraction of the multicast
address space. Yet, the system coordinates the forwarding state be-
tween switches, so that the entire multicast forwarding state is stored
collectively by all core switches, and by all aggregation switches in
each pod (similar to keyspace partitioning in scale-out storage [23]).

With such an approach—which we refer to as multicast address
distribution—the datacenter network as a whole can support many
more groups than the capacity of a single switch. When combined
with the multi-rooted tree topology, these partition assignments
ensure that multicast packets of each group still have a sufficient
number of equal-cost paths to reach all group members.

2. Enable local multicast address aggregation to further in-
crease the number of groups in each pod. Multicast addresses
are hard to aggregate, since they are not assigned based on locations.

Core

Aggregation

Edge

Pod

(a) “Standard” fat tree [6]

Core

Aggregation

Edge

Pod

(b) Portland fat tree [29]

Core

Aggregation

Edge

Pod

(c) AB fat tree [26]

Figure 1: Three types of fat tree topologies built with 4-port switches. All use a basic pod structure with fully connected aggregation and edge
switches, and differ only in the connectivity between core and aggregation switches. Pods using different connectivity patterns in each network
are represented by different colors.

We introduce a local aggregation2 mechanism to aggregate multicast
entries in switches, by locally rewriting the addresses of groups with
same or similar forwarding state to new local addresses sharing a
common IP prefix. In this fashion, the switch can forward multicast
packets through prefix matching.

This process requires per-group address translation in switches
both above and below the layer of interest (which in this figure is the
aggregation layer): the layer above maps the real multicast address
to a new, local address, and the layer below maps it back to its real
one. To enable the greatest scalability, the layer of interest across
which this occurs should be the pod’s bottleneck in terms of the
number of supported groups.

Local group aggregation may cause redundant traffic on down-
stream links, as all traffic to the common prefix will be sent out all
downstream ports that have groups sharing the prefix. We model
this problem—minimizing link congestion while aggregating groups
subject to switches’ multicast address capacity—as an optimization
problem. While this problem is NP-hard, we provide an heuristic
that aggregates groups effectively with low cost.

3. Handle failures with fast rerouting and multicast tree recon-
struction. It usually takes a longer period for multicast routing to
recover from network failures, since reconstructing a multicast tree
is more complex than recomputing a unicast route. Thus, instead of
waiting for the multicast tree to be reconstructed every time a failure
occurs, we seek to quickly reroute the packets to bypass the failed
links or switches, especially when dealing with short-term failures.

Recent work [26] shows how to rapidly restore unicast routes
after a switch or link failure, by using local rerouting. However,
rerouting multicast traffic introduces its own challenges, as a switch
may re-multicast a rerouted packet to all group members, even if
most are not affected by the failure. This would introduce lots of
redundant traffic.

To enable local rerouting in multicast, we add a location identifier
to the headers of the rerouted packets. This allows switches to
know where to forward the rerouted packet (i.e., to which pod),
without causing unnecessarily duplicated traffic. Our evaluation
shows that such local rerouting yields both low route stretch and high
availability. While such rerouting occurs, the network controller can
recompute the multicast routing tree (with less urgent priority) and
disseminate updated rules to the appropriate switches.

2.4 Managing Multicast using SDN
Rather than using decentralized management protocols like IGMP,

emerging standards in software-defined networking (SDN) [32] pro-
2There is some risk of terminology confusion here: address aggre-
gation corresponds to grouping together like multicast addresses
under the same multicast IP prefix, while an aggregation switch
is the standard term for the upper-layer switch in each pod, as it
aggregates connections to the core layer.

vide new opportunities for programmatic control and global visi-
bility over network switches. Our design assumes the datacenter
runs an SDN platform with centralized or distributed software con-
trollers to manage the membership of multicast groups, to compute
multicast routing trees, and to disseminate forwarding rules to the
appropriate switches. We designed our protocols to use features
found in today’s OpenFlow-enabled commodity switches, which are
commonly capable of prefix routing, multicast forwarding, VLAN
tagging, rewriting packet headers, and group operations. Such SDN
architectures have already been deployed in production datacenters
(e.g., [24]), as well as in backbone networks linking datacenters
(such as by Google [20]).

Rather than having switches query their subnets to determine
multicast group membership (as in IGMP), network controllers can
collect information about the group subscriptions of virtual ma-
chines (VMs). Our architecture is agnostic about how this informa-
tion is collected. For example, datacenters using a centralized VM
manager (like VMWare vSphere) can have this manager pass such
information to the controllers directly; alternatively, each server’s
hypervisor can keep track of the group memberships of its VMs and
inform its controller(s) about any changes. Both approaches reduce
the control overhead and memory use at switches.

Our protocols can be easily supported by fully distributed network
controllers (e.g., Onix [24]). One of the controllers can compute
the initial address partitioning and switch assignment when the
network is brought online. Then each controller can compute the
local address aggregation for switches in its subnet, and update
multicast forwarding tables in the local switches in response to the
group join/leave events or network failures in the subnet. Recent
studies show that a network controller running on a commodity
server can handle 1.6 million requests per second [41], and today’s
OpenFlow switches can set up 600-1000 flows per second [34],
enough to handle common multicast group dynamics.

2.5 Related Work
Given the large body of research literature on IP multicast, we re-

strict our consideration to those proposals applicable in datacenters.
In short, to our knowledge, no prior work introduces a scale-out
design for datacenter multicast.

PortLand [29] supports multicast routing on fat trees, as well as
multicast tree reconstruction, but does not address any scalability
issues. ESM [25] leverages the hierarchical topology to accelerate
the multicast tree computation process, but again, it does not utilize
the multi-rooted tree’s properties to scale beyond the capacity of a
single switch.

Several other proposals seek to increase the number of multicast
groups that can be supported by a single switch; work that is comple-
mentary to our interests in scaling out capacity by leveraging many
switches and datacenter topologies. For example, some proposals

C multicast address capacity of a switch
k # of ports per switch
n # of partitions of the multicast address space
rc # of core switches with the same partition
ra # of aggr switches with the same partition in each pod
rp # of pods over which a group spreads on average
re # of edge switches over which a group spreads in each pod

on average

Table 1: Key notations and definitions in this paper

use Bloom filters to reduce multicast forwarding states. FRM [35]
encodes group addresses into group Bloom filters in routers, while
LIPSIN [21] and ESM [25] encode forwarding states into Bloom
filters carried in packet headers. The overhead of these approaches
arise from the trade-off between Bloom filter sizes and their false-
positive rates (which lead to unnecessary multicast transmissions).
To keep false-positive rates manageable, such approaches would
lead to prohibitively large filters given the number of multicast
groups we seek to support.

Dr. Multicast [43] scales multicast by only supporting real IP
multicast operations to selected addresses that fit within a single
switch’s capacity, and otherwise using iterated unicast by end hosts.
This approach can expose large numbers of multicast groups to
applications, but sacrifices network bandwidth and server load to
do so. Dr. Multicast also aggregates multiple groups with similar
members into one group, but again in a manner to fit in a single
switch’s forwarding table. Such network-wide aggregation is not as
scalable or efficient as our pod-based aggregation (see §3.2.2).

3. SYSTEM DESIGN
We now detail our IP multicast mechanisms for datacenters and

analyze their scalability and fault tolerance.

3.1 Multicast Address Distribution
Recall that we partition the multicast address space into multiple

blocks and assign these partitions to core switches and aggregation
switches in each pod. Using such a strategy, the core switches can
cooperatively support a much larger number of multicast groups
across the entire datacenter. Similarly, each pod’s aggregation layer
can support a larger number of groups within its pod.

3.1.1 Calculating the Multicast Group Capacity
Before detailing the distribution process for the multicast address

space, we briefly analyze the number of multicast groups (or group
capacity) supported by a fat-tree datacenter network. We assume
the partitioning parameters from Table 1.

A 3-tiered fat tree with k-port switches can support a total of k3/4
end hosts, connected by k2/4 core switches and k pods, each with
k/2 aggregation and k/2 edge switches [6].

Let C denote the number of multicast addresses supported by a
single switch. If we partition the multicast address space into n
blocks with unique prefixes, and assign each partition to rc core
switches (“r” for replication factor), then the maximum number of
multicast addresses that can be supported by the core layer is

Ccores =
k2

4rc
·C (1)

If each partition is assigned to ra aggregation switches in each
pod, then the maximum number of multicast addresses supported

by the aggregation layer of each pod is

Caggrs =
k

2ra
·C (2)

Suppose the host members of each group in a pod spread across
re edge switches on average, then the multicast addresses capacity
of the edge layer in the pod is

Cedges =
k

2re
·C (3)

Figure 2 shows an example of multicast address space distribution
in a 3-tiered fat tree with 8-port switches, with n= rc = 4, and ra = 2
for all pods. The network can support up to 4C groups at the core
layer, and each pod’s aggregation layer can support up to 2C groups.

In practice, for a datacenter network with k = 48-port switches,
each holding C = 1000 multicast addresses, if we set n = 64 and
rc = 9, then the core layer of the network can support up to 64,000
multicast addresses. This scale is far beyond the group capacity of
any current multicast system. We will further discuss each pod’s
address capacity in §3.2.

3.1.2 Distributing the Multicast Address
Figure 2 provides an intuition on how to distribute multicast

addresses to increase the system’s group capacity. Some common
steps in multicast address distribution include:

1. Choose the values of n, rc and ra. Smaller values of rc and ra
lead to increased system capacity of multicast addresses, while
greater values of rc and ra give better fault tolerance and load
balance for multicast routing.

2. Partition and allocate the multicast address space, as the connec-
tivity pattern between the pods and core switches affects how
to assign address partitions to switches. Each core or aggrega-
tion switch with an address space partition should connect to
at least one switch with the same partition at the other layer. It
only needs to be processed once when the datacenter network is
brought online.

3. Assign a multicast address to every new group. The new address
should belong to a partition with (1) fewer addresses currently in
use and (2) fewer addresses associated with heavy-traffic groups,
if necessary.

The concrete algorithm for allocating address space partitions
varies for different types of fat trees. Here we list three types of well
studied fat trees,3 with simple examples built with 4-port switches
shown in Figure 1.

• The “Standard” [6] fat tree (Fig. 1a) uses the same connection
pattern in all pods. Distributing multicast addresses in a standard
fat tree is very simple. However, it does not perform well when
network failures occur [26].

• The PortLand [29] fat tree (Fig. 1b) has a different connection
pattern for each pod, yielding a more complex network struc-
ture. It can handle network failures better, although its multicast
address distribution is more complex.

• The AB [26] fat tree (Fig. 1c) improves routing fault tolerance.
AB fat trees have two different types of pods (“A” and “B”),
each with different connection patterns. Its address distribution
algorithm is relatively simple: first allocate the address partitions

3The ‘Standard” and PortLand topologies were not explicitly for-
mulated in their papers, but rather just illustrated (see Fig. 3 in [6]
and Fig. 1 in [29]).

00/

00/
01/

00/ 01/ 01/ 00/ 00/ 01/ 01/ 10/ 11/ 11/ 10/ 10/ 10/ 11/ 11/

00/
01/

10/
11/

10/
11/

01/
11/

01/
11/

00/
10/

00/
10/

01/
11/

01/
11/

00/
10/

00/
10/

00/
01/

00/
01/

10/
11/

10/
11/

Figure 2: Example of multicast address distribution in a 3-tiered AB fat tree with 8-port switches. Each 2-bit prefix represents a partition.
Each switch stores separate forwarding rules for all multicast addresses with associated partition prefixes. Red and blue colors represent the
two different connection patterns between pods and core switches.

Algorithm 1 Multicast Address Distribution in AB Fat Trees

Require: n · rc = k2/4, r2
a = rc, 2ra|k.

1: function DISTRIBUTION(k, n, rc, ra)
2: Np← 2nra/k . number of partitions in each aggr switch
3: aggrS← aggr switches of a type-A pod
4: for ia in [0, k/2) do . each aggr switch
5: coreS← core switches connected to aggrS[ia]
6: ic← 0 . index of coreS
7: R← bia/rac . the range index of the partitions to be assigned
8: for R ·Np ≤ ip < (R+1) ·Np do . assign Np partitions
9: ASSIGN(partition[ip], aggrS[ia])

10: for 0≤ count < rc/ra do
11: ASSIGN(partition[ip], coreS[ic])
12: ic← ic +1
13: for all other pods do
14: aggrS← aggr switches of the pod
15: for ia in [0, k/2) do . each aggr switch
16: coreS← core switches connected to aggrS[ia]
17: for ic in [0, k/2) do
18: ip← the partition assigned to coreS[ic]
19: ASSIGN(partition[ip], aggrS[ia])

to the core switches and aggregation switches in one pod, then
assign each aggregation switch in other pods with all the partitions
in the core switches connected to it.

The AB fat tree is both structurally simple and more fault tolerant,
so we focus on its use for much of this paper. Algorithm 1 shows
an example of address distribution with the given parameters for
an AB fat tree. Due to the topological simplicity of AB fat trees,
partition assignments made to one pod determine the assignments
in all other pods. The algorithm first assigns the address partitions
to the aggregation switches in a type-A pod, then to core switches
connected to each aggregation switch in that pod accordingly. Fi-
nally, each aggregation switch in all other pods is assigned all the
partitions of the core switches to which it connects. This algorithm
runs only once when the datacenter network is brought online.

Additional optimizations for managing forwarding table space
could be explored. For example, multicast addresses for impor-
tant, popular, and/or long-lived groups can be replicated at more
switches. On the other hand, addresses for groups rapidly changing
could be replicated at fewer switches, to reduce the switches’ up-
date load.With sufficient multicast address replication in both core
and aggregation layers, we can apply similar load-aware [7, 36] or
load-agnostic [15, 9] flow-scheduling techniques for load balancing
and traffic engineering. We leave the further exploration of these
optimizations and techniques to future work.

For more general multi-rooted tree networks, C and k in Table 1
may be different for the core, aggregation, and edge switches. In this

case, the detailed address distribution scheme needs to be adjusted
for specific network settings, but the key approach and its effect
on scaling the number of multicast groups remain the same. For
example, a datacenter may have fewer core switches, each with more
ports and higher multicast address capacity. Then each core switches
can be assigned more address partitions, which will not affect the
scalability of multicast group numbers of the whole network.

3.2 Scaling Address Aggregation in Pods
Earlier, we showed that the number of multicast groups supported

by the aggregation and edge layer in each pod is much lower than
that of the core layer (Eq. 1, 2, 3), which results in the core layer
being under-utilized, especially if many pods have similar groups.
In this section, we analyze the multicast address capacity in the
pods, and propose a technique using local address translation and
aggregation to further increase the number of groups in each pod.

The bottleneck for a pod’s group capacity may arise at either
its aggregation or edge layer, depending on how many addresses
are stored by each layer’s switches. This number depends on both
the network configuration and the distribution of end-host’s group
memberships. Given these two layer’s capacities (Eq. 2 and 3), the
maximum number of supported multicast groups in a pod is

Cpod =
C · k

2 ·max(ra,re)
, (4)

which means a pod’s group capacity is limited by the bottleneck
layer in the pod that can support fewer groups.

In this section, we introduce a new scheme that increases the
number of groups supported in a pod to the group capacity of the
non-bottleneck layer, i.e., calculated with the min of (ra,re) in the
denominator of Eq. 4. This leads to a significant improvement if the
values of ra and re differ greatly.

Let rp denote the average number of pods over which a group
may spread, pm denote the percentage of groups across multiple
pods. In combination with Eq. 1, the maximum number of supported
multicast groups of the system is

Csystem = min(Ccores/pm , ∑pod Cpod/rp). (5)

3.2.1 Apply Local Address Aggregation
To increase the multicast address capacity in a pod, we intro-

duce an address translation mechanism to enable multicast address
aggregation at the bottleneck layer. With local aggregation, the
bottleneck layer in a pod can support as many groups as the other
layer’s address capacity.

A0

000	 to	 E0,	 E2	
001	 to	 E1,	 E3	
010	 to	 E1,	 E3	
011	 to	 E0,	 E2	

000	 …	
011	 …	

E0 E3

C0
000	 to	 A0,	 …	
001	 to	 A0,	 …	 C1

10*	 to	 E0,	 E2	
11*	 to	 E1,	 E3	

000	 to	 A0	 (-‐>100),	 …	
001	 to	 A0	 (-‐>110),	 …	

100	 (-‐>000),	 …	
101	 (-‐>011),	 …	

upper layer

lower layer

bottleneck switch

010	 to	 A0	 (-‐>111),	 …	
011	 to	 A0	 (-‐>101),	 …	

A0

E0 E3

C0 C1

010	 to	 A0,	 …	
011	 to	 A0,	 …	

addr	 ac)on	

upper layer

lower layer

bottleneck switch

Figure 3: Example of local group aggregation. Action -> signifies
rewriting the destination address to that specified. A0’s multicast
forwarding table has 4 entries initially (up), but 2 entries after local
aggregation (bottom).

Suppose the network controller wants a bottleneck switch with
multicast address capacity C to support N(> C) groups. It can
aggregate the N groups into M (≤ C) meta-groups, and assign a
unique prefix to each meta-group. The multicast groups in each
meta-group have the similar forwarding states in the bottleneck
switch, and they are assigned new local addresses that share their
meta-group’s prefix.

The switches above and below this bottleneck layer maintain
a map between the global and local multicast addresses, and for-
ward multicast packets to the bottleneck switch with translated local
addresses. Then, the bottleneck switch forwards the multicast pack-
ets based on local meta-group prefixes. The lower-layer switches
rewrite local addresses back to their original global ones. If such ag-
gregation is applied at an edge switch, this lower-layer functionality
must be performed on soft switches running on each end host.

Figure 3 shows an example in which the bottleneck arises at the
aggregation switches. As shown, the aggregation switch initially has
to keep one entry for each group; after local address translation and
aggregation, the aggregation switch only needs to keep two entries
for the two meta-groups.

3.2.2 The Multicast Group Aggregation Algorithm
Figure 3 shows an ideal case for group aggregation, where groups—

in this example, (000 and 011) and (001 and 010)—have multicast
receivers at the identical edge switches. Thus, these groups have
identical forwarding state in higher-layer switches. In practice,
however, multicast groups in the same meta-group usually do not
have exactly the same forwarding state, which results in lower-layer
switches or hosts receiving traffic from multicast groups to which
they do not subscribe.

Therefore, we want an aggregation algorithm that minimizes
unnecessary network load, or cost. The general group aggrega-
tion problem (sometimes called the channelization problem) is NP-

complete [5], although various heuristic solutions have been pro-
posed [5, 40, 43]. Compared to prior work, however, our solution:

1. Scales much better due to its decomposition into many smaller
independent subproblems, since groups only need to be aggre-
gated locally to increase the bottleneck’s capacity. Each one only
has k/2 possible outgoing ports, and at most C · ra or C · re/ra
groups to be aggregated. Both numbers are much smaller than
those in traditional problems. This reduces the network and com-
putational overhead by orders of magnitudes. For a datacenter
with distributed network controllers, each controller only needs
to compute the local aggregation for switches in its subnet.
On the contrary, past projects tried to aggregate all multicast
groups across the entire network, where the number of possible
members (VMs) across all groups may reach hundreds of thou-
sands or more. This scale makes groups with similar members
much less common, and the computation very slow.

2. Can be applied with a more realistic model. While traditional
group aggregation methods assume routing paths to all receivers
have a same linear cost function, our model is able to handle the
real-world link cost function, which could be nonlinear and con-
vex because additional traffic increasingly degrades performance
when links become congested. This is much more computa-
tionally expensive for traditional approaches that operate on the
whole network.

Algorithm for group aggregation. To design an effective algo-
rithm for local group aggregation, we first model it as a characterized
channelization problem [5], and introduce a practical optimization
objective function. Suppose we have following initial sets for a
bottleneck switch:

• A set of downlink ports P, where |P|= k/2.

• A set of multicast groups G.

• A set of meta-groups M, where |M| ≤C.

For g ∈ G, p ∈ P, m ∈M, define three types of sets:

• Pg = {p | p subscribes to g}
• Gm = {g | g is assigned to m}
• Mp = {m | p subscribes to m}= {m | ∃ g ∈ Gm∧ p ∈ Pg}

Let λg denote the traffic rate of group g, F(.) denote the conges-
tion cost function on a downlink of the bottleneck switch, and µp
denote the background traffic (e.g., unicast) rate over the downlink
of port p. Then given input sets Pg for each g, we want to find opti-
mal aggregation sets Gm and Mp to minimize the total congestion
cost (Φ) of all links after local aggregation:

Φ(G, M) = ∑p F
(

∑m∈Mp

(
∑g∈Gm

λg
)
+µp

)
(6)

The optimization problem is NP-hard, so we provide an heuristic
method to greedily assign values Gm under the constraints, while
keeping the value of the optimization objective cost function Φ as
low as possible. Algorithm 2 shows the core part of our heuristic
method. COST(g,m) computes the increase in Φ if group g is
assigned to meta-group m, and δ (g,m) computes the cost threshold
to create a new meta-group. The running time of the algorithm is
O(|G| · |M| · |P|), which is equal to O(k ·C · |G|).

To handle churn in the group membership (Pg) and changes in the
traffic rates (λ , µ), we track cost changes on groups or meta-groups,
and then recompute the aggregation if necessary. The track function
can be either run periodically, or it can be triggered by certain group
membership or traffic rate changes.

Algorithm 2 Multicast Group Local Aggregation

1: function AGGREGATION(X)
2: M̃←M−{m0, . . . ,m|P|} . initial set of empty meta-groups
3: for g ∈ G do
4: if |Pg| ≥ |P|−∆ then
5: ASSIGN(g, m|P|) . m|P| forwards to all ports
6: else if |Pg|= 1 then
7: p← p ∈ Pg
8: ASSIGN(g, mp) . mp only forwards to port p
9: else

10: ḿ← argmin
m∈M̃

COST(g, m) . minimal extra cost

11: if |M|> 0 and COST(g, ḿ)> δ (g, ḿ) then
12: m← M̃.pop() . create new meta-group
13: ASSIGN(g, m)
14: else
15: ASSIGN(g, ḿ)

16: function ASSIGN(g,m) . assign group g to meta-group m
17: update Gm, Mp, Φ(G, M) and other auxiliary data

3.3 Recovering Quickly from Failures
Network failures in datacenters may significantly impact network

performance, especially for multicast traffic, since reconstructing
the multicast tree can be an expensive process. A recent study [14]
shows that many of the failures in datacenter networks are short
term, however, so immediately reconstructing the multicast tree can
be inefficient and unnecessary.

A better approach may be to have switches locally reroute the
packets immediately after a failure, and let the network controller
compute the new multicast tree in the background if necessary.
Therefore, our fault-tolerant routing solution consists of two parts:
(1) short-term local rerouting for fast failover and (2) long-term
multicast tree reconstruction.

3.3.1 Using Local Rerouting for Fast Failover
Unicast local rerouting has been well studied by Liu et al. [26]

for AB fat trees (Figure 1c and 2), from which we base our design
for multicast rerouting. Here, we focus on the unique problems
of rerouting multicast traffic, without limiting our solutions to any
specific types of fat tree.

Upstream rerouting (flows from end hosts up to aggregation or
core switches) is easy to support in our design. Because all multicast
address partitions are assigned to multiple aggregation switches in
each pod and more core switches, each edge or aggregation switch
has multiple uplinks for all its multicast addresses. Thus, if one
uplink fails, the switch only needs to forward the packets to other
upper-layer switches that are assigned with the associated partitions.

Downstream rerouting (flows from core or aggregation switches
down to end hosts) is more complex. Liu et al. [26] proposed
two downstream rerouting schemes for core switches in an AB
fat tree. Let coreSx denote the x-th core switch, and aggrSi.a and
edgeSi.a denote the a-th aggregation and edge switch in the i-th
pod. Suppose coreSx’s downlink to aggrSi.a fails, in most cases, the
packets can still reach the i-th pod by a three-hop rerouting through
an aggregation switch in other pods (e.g., coreSx → aggrS j.c →
coreSy→ aggrSi.b). In less common cases, the packets can reach the
i-th pod by a five-hop rerouting, which involves both aggregation and
edge switches in other pods (e.g., coreSx→ aggrS j.c→ edgeS j.d→
aggrS j.e→ coreSy→ aggrSi.b).

However, multicast rerouting cannot directly use such techniques.
When a core switch receives rerouted multicast packets, it would

otherwise forward them out all ports listed in its forwarding table’s
group entry. This behavior adds network overhead, as only the pod
experiencing the failure needs the rerouted packets. To make local
rerouting effective, we add a location identifier to the rerouted pack-
ets (specifying either a destination pod or edge switch), allowing
other switches to know the true destination of rerouted packets.

Core→ aggregation route failure. When a core switch notices
that its downlink to one pod fails, it seeks to reroute all multicast
packets to that pod through other pods. To avoid forwarding rerouted
multicast packets to unwanted pods, it adds a pod identifier to the
header of the rerouted packets. Other switches can then quickly
determine to which pod these packets should be sent, and they
forward them via unicast routing accordingly.

Aggregation→ edge route failure. When an aggregation switch
detects a downlink failure, it needs to reroute the packets through
other edge and aggregation switches in the same pod. The process is
similar as above. When sending a rerouted packet, the aggregation
switch adds an edge identifier to the packet header. Then other edge
and aggregation switches can tell to which edge switch they should
forward upon receiving the rerouted packet.

The location identifiers can be implemented in various ways. For
example, if using VLAN tags, a switch pushes a VLAN tag rep-
resenting the correct destination when sending rerouted packets to
other pods or edge switches. The switch in the correct destination
then pops the VLAN tag before further processing. An alternative
is to utilize some unused bits in the multicast address, e.g., these
bits could be set to zero by default, and switches could then rewrite
them to specify certain destinations. That said, the current Open-
Flow specification only supports setting the entire address to some
specified constant, not selected bits.

Edge identifiers can be reused in different pods. Thus, a data-
center built with k-port switches only needs 3k/2 VLAN tags or
dlog2(3k/2)e unused bits in the header, and each edge and aggre-
gation switch needs k/2 and 3k/2 unicast rules, respectively, to
support this multicast rerouting protocol.

OpenFlow support. There are two possible approaches to local
rerouting with OpenFlow-compliant switches. First, the switch can
include local backup rules, so that the switch will immediately figure
out what to do by itself after a failure happens. However, the current
OpenFlow specification [32] only supports backup rules for unicast
forwarding. Second, the network controller can be informed about
every network failure and then install the local rerouting rule to
associated switches.

3.3.2 Reconstructing the Multicast Tree
When long-term failures happen, we eventually want to rebuild

the multicast tree for affected multicast groups. However, with fast
failover to local rerouting, we can allow some reasonable delay until
multicast tree reconstruction, and thus lessen the computational
burden on network controllers.

After failure, if at least one core switch can still reach all the end
hosts belonging to the group, we can reconstruct the multicast tree
by changing the root core switch for corresponding groups.

If multiple failures happen, it is possible that no single core
switch can reach all group members, as the symmetry of the net-
work’s multi-rooted tree structure can be disrupted. In such cases,
the packets of the group have to be forwarded to multiple core
switches during upstream routing, and some pods may need more
than one aggregation switches to receive downstream packets. We
can reconstruct the multicast tree by solving a set cover problem for
the set of hosts and switches that are associated with the multicast
group [29].

0 50 100 150 200
Group size (a sample tenant with 200 VMs)

0.00

0.05

0.10

0.15

fre
qu

en
cy

10-3

10-2

10-1

100

CC
DF

101 102 103 104

Group size (all tenants)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

min=5, max=5000
median=11, mean=51.1

(a) Group size follows WVE distribution in each tenant.

0 50 100 150 200
Group size (a sample tenant with 200 VMs)

0.000

0.005

0.010

fre
qu

en
cy

101 102 103 104

Group size (all tenants)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

min=5, max=5000
median=133, mean=510.5

(b) Group size follows uniform distribution in each tenant.

Figure 4: Two types of group size distributions in the datacenter.

4. EVALUATION
This section evaluates the datacenter’s multicast address distribu-

tion and failover behavior through a series of simulation experiments.
Our evaluation answers the following questions:

• How do multicast address distribution and local aggregation in-
crease the number of supported groups?

• Can the network controller and switches handle common multi-
cast group dynamics?

• How do network failures affect multicast routing?

Because our primary technical focus is on multicast scalability,
we simulate full-sized datacenter topologies, rather than implement
our protocols on a small testbed. Even so, it is difficult to run packet-
level network simulation at such scale; further, we are not focused on
network throughput or latency. Instead, we first construct the entire
fat-tree network topology in simulation, then generate multicast
groups with different distributions, and statistically compute the
network’s group capacity and the performance of multicast routing
failover (in terms of route stretch and availability). We focus on
multi-tenant environments where each tenant runs multiple multicast
applications across its VMs, although our findings also apply to
settings eschewing virtualization.

As discussed in Section 2.5, our work is the first scale-out dat-
acenter multicast solution. Prior solutions were all ultimately bot-
tlenecked by the address capacity of each switch, which is orders-
of-magnitude smaller than our datacenter solution. Thus, we omit
further detailed comparison of our protocol with previous work.4

4.1 Experimental Setup
We simulate a 3-tiered AB fat-tree datacenter network built with

48-port switches, which connects 27,648 physical end hosts. We
split the multicast address space into 64 partitions, each of which is
replicated at 9 core switches and 3 aggregation switches per pod.

In our experiments, the datacenter network is populated by 3000
tenants. The number of VMs per tenant follows an exponential

4We attempted at first to construct a “scale-out” version of Dr. Mul-
ticast [43], but found ourselves recreating the algorithms introduced
in this paper, as confirmed by Dr. Multicast’s author [42].

distribution, with min = 10, median = 100, and max = 5000. Each
physical end host has at most 20 VMs.

We assume a tenant’s VMs do not share the same physical host
for reasons of resilience and load balance, and then evaluate two
types of VMs placement policies: (i) a tenant’s VMs are placed on
hosts near to one another, and (ii) a tenant’s VMs are distributed
across the network uniformly at random.

We then assign multicast groups to each tenant. Each tenant is
assigned to some number of groups roughly proportional to the
tenant’s size. Each tenant’s group sizes—the number of VMs be-
longing to that group—follow a similar distribution, although scaled
by the tenant’s size. Each group’s members in each tenant are picked
uniformly at random from among all VMs of the tenant. We set the
minimum group size to five, and evaluate two different distributions.

We generate the first group-size distribution by analyzing a trace
of multicast patterns from IBM WebSphere Virtual Enterprise (WVE),
which has 127 nodes and 1364 groups [19]. In this trace, most
groups have only a small set of members, while a few have nearly
all nodes as members. We model this WVE distribution and scale
it to each tenant’s size. Figure 4a shows the WVE distribution of
group sizes (for a particularly-sized tenant), as well the as the size
distribution across all tenants. While the average group size is 51,
nearly 80% of groups have fewer than 40 members, while about
0.4% of groups have more than 2000 members.

We generate the second distribution by setting each tenant’s group
sizes to be uniformly distributed between the minimum and entire
tenant size. Figure 4b shows such a distribution, where the average
group size is 510, which is 10 times larger than that of the WVE
distribution.

We also tested different network sizes, tenant size distributions,
and numbers of VMs per host. The key factors to scalability are
the size of multicast groups and the distribution of group members
decided by these settings. More multicast groups can be supported
when the network is larger, when the average group size is smaller,
and when the group members are closer to each other.

4.2 Multicast Address Capacity
We first evaluate how much the datacenter’s multicast address

capacity can be improved by multicast address space partition and
local aggregation. We have shown that with fixed network settings,

0 500 1000 1500 2000 2500 3000 3500
No. of multicast addresses on a switch

(la) E

E

A

C

0 500 1000 1500 2000
Traffic rate on a link

(la) E-H

E-H

A-E

C-A

(a) 100K groups. Group size follows WVE distri-
bution in each tenant. A tenant’s VMs are placed
on nearby hosts. Apply local aggregation at the
edge layer.

0 1000 2000 3000 4000 5000 6000 7000
No. of multicast addresses on a switch

(la) E

E

A

C

0 5000 10000 15000 20000 25000
Traffic rate on a link

(la) E-H

E-H

A-E

C-A

(b) 100K groups. Group size follows uniform distri-
bution in each tenant. A tenant’s VMs are placed on
nearby hosts. Apply local aggregation at the edge
layer.

0 200 400 600 800 1000 1200 1400
No. of multicast addresses on a switch

(m) E

E

(la) A

A

C

0 100 200 300 400 500 600 700
Traffic rate on a link

E-H

(la) A-E

A-E

C-A

(c) 30K groups. Group size follows WVE distri-
bution in each tenant. A tenant’s VMs are dis-
tributed randomly. Apply local aggregation at the
aggr layer.

Figure 5: Simulation results of the no. of multicast entries in switches and link rates. C stands for core switch, A for aggr switch, E for edge
switch, H for host, (la) for local aggregation, (m) for entries with multiple forwarding ports. Whiskers represent the min and max value; boxes
show the 25th, 50th (midline), and 75th percentiles; circles show the means.

the datacenter’s multicast address capacity is greatly affected by
group distributions, and it is proportional to the multicast address
capacity of a single switch (Eq. 4 and 5). We conduct our simulations
with different tenants and multicast group distributions.

The traffic rate of each group is randomly chosen from 1 to 10.
We evaluate the traffic rate overhead for local group aggregation
based on this setting. The rate unit is not specified since it does
not affect simulation results in these experiments. For most experi-
ments, we set each switch to have a multicast address capacity of
1000 entries, although we also evaluate scalability under different
capacities (Figure 6).

When a tenant’s VMs are placed on nearby hosts, local aggrega-
tion significantly increases group capacity. With this VM place-
ment policy, most multicast groups are spread over a very small
number of pods (max = 12, mean = 2.5 in our simulation). As a
result, the group capacity bottleneck should arise at the edge layer.

Figure 5a shows the simulation results for 100K multicast groups,
with group sizes for each tenant following the WVE distribution
(Fig. 4a). Each core and aggregation switch have less than 1000
multicast addresses. However, without local aggregation, more than
95% of edge switches have more than 1000 multicast addresses, and
the maximum number reaches 330% of the switch capacity, which
means the datacenter can support up to about 30K groups. If we
apply local aggregation to the edge switches, the multicast entries on
edge switches are reduced to 866 at maximum and 530 on average,
and thus can support 100K multicast groups. The traffic overhead
introduced by local aggregation is only about 0.2%.

Figure 5b shows the simulation results for 100K multicast groups,
with group sizes of each tenant following uniform distribution (Fig.
4b). The number of multicast addresses in core and aggregation
switches are about the same as the previous distribution, while the
edge switches have many more multicast addresses. Without local
aggregation, the maximum number of multicast entries in an edge
switch is 700% of the switch capacity, so the datacenter can only
support up to 15K multicast groups. By applying local aggregation
on the edge switches, however, the datacenter can support all 100K
multicast groups, which allows each end host to subscribe to 1850

different groups on average. Since the group sizes increase greatly,
the traffic overhead introduced by local aggregation now becomes
about 19.4% on average, and about 24.5% for 1% of the links with
the highest traffic rate. However, this overhead is still very small
compared to non-IP-multicast solutions (considering the average
group size is 510).

When a tenant’s VMs are distributed across the network ran-
domly, the use of unicast entries combined with local aggrega-
tion significantly increases group capacity. With this VM place-
ment policy, groups may spread over many pods (max = 48, mean =
16 in our simulation), but only to a small number of edge switches
within each pod (mean = 2.2). As a result, the group capacity
bottleneck should arise at the aggregation layer.

Random VM placement greatly reduces the multicast address
capacity of the whole system, since addresses are replicated at
more switches and more pods. Figure 5c shows the simulation
results for 30K groups, with group sizes of each tenant following the
WVE distribution. Each core and edge switch has fewer than 1000
multicast addresses, but each aggregation switch has more than 1000
multicast addresses. Applying local aggregation to the aggregation
layer reduces the number of entries in each aggregation switch to
fewer than 500. Because the maximum number of multicast entries
in edge switches is near to 1000, in this configuration, the datacenter
can support up to about 30K multicast groups, fewer than that shown
in Figures 5a and 5b.

With random VM placement, members of the same multicast
group have a low probability of being connected to the same edge
switch. As a result, most multicast entries in the edge switches only
have one forwarding port, which could be handled by a unicast entry.
In other words, an edge switch can reduce its multicast forwarding
table size by only allocating address entries with multiple forwarding
ports in the multicast forwarding table. Figure 5c (top) shows that
there are at most only 200 multicast address entries in each edge
switch that have multiple forwarding ports, shown in (m)E in the
figure. Therefore, with the same group distribution in this example,
the datacenter can support up to 150K groups by using about 4K
more unicast entries in each edge switch.

0 1000 2000 3000 4000 5000 6000
Multicast address capacity on a switch

0

50K

100K

150K

200K

250K

300K
Nu

m
be

r o
f g

ro
up

s
Near, U, la
Near, U
Rand, U, la
Rand, U

Near, WVE, la
Near, WVE
Rand, WVE, la
Rand, WVE

Figure 6: A datacenter’s maximum number of supported multicast
groups with different switch settings and group distributions. Near
and Rand stand for a tenant’s VMs are placed on nearby hosts or
randomly, WVE and U for group size follows WVE or uniform
distribution in each tenant, la for values after local aggregation. y
axis is cut at 300K. The two Near+la lines continue to near-linearly
increase as the switch address capacity increases to 6000.

A datacenter’s multicast group capacity is linearly related to
the switch’s multicast address capacity. We now vary switches’
address capacity and test the datacenter’s corresponding group ca-
pacity. To do so, we continuously generate multicast groups with
same distributions, until at least one switch reaches its capacity. Fig-
ure 6 shows the results. Generally, the number of supported groups
is higher when a tenant’s VMs are placed on hosts near to another,
because a same address would be replicated on fewer switches; and
when the group size follows the WVE distribution in each tenant,
because the average group size is much smaller (1/10th) than that of
uniform distribution.

We also simulate different replication factors (rc, ra) for multicast
address partitions. The results are fairly obvious: smaller replication
factors lead to more supported multicast groups. For example, when
a tenant’s VMs are placed on hosts near to another and the group
sizes follow the WVE distribution, by setting ra = 2 rather than 3 in
each pod, the datacenter can support about 50% more groups (e.g.,
150K when the single switch’s address capacity is 1000).

4.3 Group Membership Dynamics
In this section, we analyze and evaluate how frequently the

switches would update their multicast forwarding tables when (i)
a new group is created or a host joins an existing group, and (ii) a
group is removed or a host member leaves a group. Once a dynamic
event happens, the associated datacenter network controller will get
informed and then decide whether to install or remove rules in the
relevant switches.

Generally, a group member change will always trigger an edge
switch update, but will only trigger updates at higher layers if it
is the first join or last leave of this group at the lower layer. If a
multicast group has multiple join or leave events during a short
period of time, we can reduce the number of updates on switches
with batch operations. There are two types of batch operation effects:
first, collocated leaves and joins at about the same time may lead to
zero update on upper level switches; second, burst joins or leaves
only need one round of updates on related switches.

We next evaluate the benefit of batch operations, first using an
example to analyze the number of switch updates per dynamic event

0 200 400 600 800 1000
(N) Number of hosts that subscribe to the group

0
1
2
3
4
5
6
7
8
9

10

Nu
m

be
r o

f u
pd

at
es

 p
er

 e
ve

nt Next join when group size is N
Next leave when group size is N
N burst joins, w/o batch operation
N burst joins, with batch operation

Figure 7: Average number of switch updates per join or leave event,
for multicast groups in a tenant whose VMs spread over all 4608
end hosts in 8 pods.

Join Leave

number of events 500004 499996
average no. of edge updates per event 1 1
average no. of aggr updates per event 0.75 0.74
average no. of core updates per event 0.01 0.01
average no. of total updates per event 1.76 1.75

(a) A tenant’s VMs are placed on hosts near to one another.

Join Leave

number of events 149923 150077
average no. of edge updates per event 1 1
average no. of aggr updates per event 1.89 1.86
average no. of core updates per event 1.64 1.55
average no. of total updates per event 4.53 4.41

(b) A tenant’s VMs are distributed across the network randomly.

Table 2: Number of switch updates for dynamic events

within one group (§4.3.1), and then evaluate the group membership
dynamics for all multicast groups in the datacenter (§4.3.2).

4.3.1 Membership Dynamics within One Group
Suppose a tenant’s VMs are spread over all 192 edge switches

and 4608 end hosts in 8 pods. A multicast group G of the tenant
experiences three steps of group membership churn:

1. G is created, with no end host members.

2. N random hosts join G at about the same time.

3. End hosts randomly join or leave G.
We assume all the hosts who do not subscribe to G have equal

probability to join, and all the hosts who subscribe to G have equal
probability to leave. Figure 7 shows the average number of switch
updates for group G, across different sizes for G. For example, with
300 burst joins at the beginning, the average number of updates per
join is 2.78 without batching, yet only 0.62 with batching. With a
current group size is 300, the average number of switch updates for
the next join is 1.63, and the number for the next leave is 1.64.

4.3.2 Membership Dynamics of All Groups
For large scale evaluation, we simulate multicast membership

dynamics with the network and tenants settings specified in §4.1.

1.0 1.2 1.4 1.6 1.8 2.0
Average route stretch of a multicast group

10-6
10-5
10-4
10-3
10-2
10-1
100

CC
DF

200 failures
100 failures
50 failures
10 failures

0 20% 40% 60% 80% 100%
Unreachable hosts of a multicast group

10-4

10-3

10-2

10-1

100

CC
DF

200 failures
100 failures

(a) A tenant’s VMs are placed on hosts near to one another

1.0 1.2 1.4 1.6 1.8 2.0
Average route stretch of a multicast group

10-5

10-4

10-3

10-2

10-1

100

CC
DF

200 failures
100 failures
50 failures
10 failures

0 10% 20% 30% 40% 50%
Unreachable hosts of a multicast group

10-5

10-4

10-3

10-2

10-1

100

CC
DF

200 failures
100 failures

(b) A tenant’s VMs are distributed across the network randomly

Figure 8: Route stretch and percentage of unreachable hosts per group when using fast failover with local rerouting, when some random
aggregation switches among the 1152 aggregation switches in 48 pods of the network fail. All hosts are reachable when only a small number
of switches fail (e.g., 50 failures when each tenant’s VMs are near to one another). Group size follows WVE distribution in each tenant.

Group size follows the WVE distribution in each tenant. Join and
leave events are generated randomly for each group. The number of
events for a group is proportional to the group size. Table 2a shows
the results for 1 million join/leave events for 100K multicast groups
in the network where a tenant’s VMs are placed on hosts near to
one another. Table 2b shows the results for 300K join/leave events
for 30K multicast groups in the network where a tenant’s VMs are
distributed across the network randomly. The number of switch
updates are small on average, especially when a tenant’s VMs are
placed on hosts near to one another.

We can use this analysis to calculate the update load on switches.
Suppose each pod has 1000 dynamic events per second, then (in
the worse case with Table 2b) each edge switch has 42 updates per
second on average, each aggregation switch has 78 updates, and each
core switch has 133 updates. Given that (per §2.4), a commodity
network controller can handle more than a million requests per
second, and today’s OpenFlow switches can handle up to 1000
updates per second, these update rates can be easily handled even
without batching.

4.4 Fast Failover
If an edge switch fails, all hosts connected to it would lose their

connection to the network, and can do nothing but wait for their
switch to be fixed. If a core switch fails, aggregation switches can
just redirect upstream flows to other cores, without increasing the
routing stretch.

The fast failover protocols are most interesting when aggregation
switches fail. So, we simulate the network with random aggregation
switch failures and compute the route stretch and percentage of
unreachable hosts. Figure 8 shows our findings. Most multicast
groups have very low route stretch and high routing availability
with local rerouting, even if 5% of the switches fail. This indicates
that fast failover with local multicast rerouting can work well for
short-term network failures, and it can be used to provide additional
time for multicast tree reconstruction by the network controller.

5. CONCLUSION
Multicast is an important communication primitive in datacenter

networks. Providing multicast at the network layer achieves better
bandwidth and computational efficiency than emulating it within
applications or overlays. However, the use of IP multicast has been
traditionally curtailed due to scalability limitations.

This paper overcomes these traditional limits by leveraging the
structural properties of multi-rooted tree topologies and the capa-
bilities of a centralized network management platform emerging
in today’s datacenters. Our architecture can support large numbers
of multicast groups even given modest multicast forwarding tables,
and its mechanisms are robust to network failures. The system is
transparent to applications and deployable in today’s networks.

Acknowledgments. The authors are grateful to Jennifer Rexford
for her insightful feedback, as well as to Ymir Vigfusson for provid-
ing the IBM WVE traces and valuable suggestions. Matvey Arye,
Aaron Blankstein, Michael Chan, Xin Jin, Rob Kiefer, Wyatt Lloyd,
Ariel Rabkin, Peng Sun, the anonymous CoNEXT reviewers, and
our shepherd, Dejan Kostic, provided helpful comments. This work
was supported by funding from the National Science Foundation.

References
[1] Cisco’s Massively Scalable Data Center.
http://www.cisco.com/en/US/solutions/ns340/
ns414/ns742/ns743/ns994/landing_msdc.html.

[2] IETF Multicast Security Working Group (Concluded).
http://datatracker.ietf.org/wg/msec/.

[3] IETF Reliable Multicast Transport Working Group
(Concluded). http://datatracker.ietf.org/wg/rmt/.

[4] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and
A. Donnelly. Symbiotic Routing in Future Data Centers. In
SIGCOMM, 2010.

http://www.cisco.com/en/US/solutions/ns340/ns414/ns742/ns743/ns994/landing_msdc.html

http://www.cisco.com/en/US/solutions/ns340/ns414/ns742/ns743/ns994/landing_msdc.html

http://datatracker.ietf.org/wg/msec/

http://datatracker.ietf.org/wg/rmt/

[5] M. Adler, Z. Ge, J. F. Kurose, D. Towsley, and S. Zabele.
Channelization Problem in Large Scale Data Dissemination.
In ICNP, 2001.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In
SIGCOMM, 2008.

[7] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In NSDI, 2010.

[8] M. Balakrishnan, K. Birman, A. Phanishayee, and S. Pleisch.
Ricochet: Lateral Error Correction for Time-Critical
Multicast. In NSDI, 2007.

[9] Y. Cai, L. Wei, H. Ou, Y. Arya, and S. Jethwani. Protocol
Independent Multicast Equal-Cost Multipath (ECMP)
Redirect. RFC 6754, 2012.

[10] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and
A. Thyagarajan. Internet Group Management Protocol,
Version 3. RFC 3376, 2002.

[11] C. Diot, B. Neil, L. Bryan, H. Kassem, and D. Balensiefen.
Deployment issues for the IP multicast service and
architecture. IEEE Network, 14:78–88, 2000.

[12] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas.
Protocol Independent Multicast - Sparse Mode (PIM-SM):
Protocol Specification (Revised). RFC 4601, 2006.

[13] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang.
A Reliable Multicast Framework for Light-Weight Sessions
and Application Level Framing. Trans. Networking,
5(6):784–803, Dec. 1997.

[14] P. Gill, J. Navendu, and N. Nagappan. Understanding
Network Failures in Data Centers: Measurement, Analysis,
and Implications. In SIGCOMM, 2011.

[15] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandular, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable and Flexible Data Center Network. In SIGCOMM,
2009.

[16] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: a High Performance,
Server-centric Network Architecture for Modular Data
Centers. In SIGCOMM, 2009.

[17] M. Handley, I. Kouvelas, T. Speakman, and L. Vicisano.
Bidirectional Protocol Independent Multicast (BIDIR-PIM).
RFC 5015, 2007.

[18] H. Holbrook and B. Cain. Source-Specific Multicast for IP.
RFC 4607, 2006.

[19] IBM WebSphere. www-01.ibm.com/software/
webservers/appserv/was/.

[20] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat. B4: Experience with a
Globally-Deployed Software Defined Wan. In SIGCOMM,
2013.

[21] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and
P. Nikander. LIPSIN: Line Speed Publish/Subscribe
Inter-Networking. In SIGCOMM, 2009.

[22] P. Judge and M. Ammar. Security Issues and Solutions in
Multicast Content Distribution: A Survey. IEEE Network,
17:30–36, 2003.

[23] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
World Wide Web. In STOC, 1997.

[24] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutevski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A Distributed Control Platform for
Large-scale Production Networks. In OSDI, 2010.

[25] D. Li, Y. Li, J. Wu, S. Yu, and J. Yu. ESM: Efficient and
Scalable Data Center Multicast Routing. Trans. Networking,
20(3):944–955, 2012.

[26] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10:
A Fault-Tolerant Engineered Network. In NSDI, 2013.

[27] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger,
T. Sridhar, M. Bursell, and C. Wright. VXLAN: A Framework
for Overlaying Virtualized Layer 2 Networks over Layer 3
Networks. IETF Internet-Draft, May 2013.

[28] M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia
Distributed Monitoring System: Design, Implementation, and
Experience. Parallel Computing, 30:817–840, 2004.

[29] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat. PortLand:
A Scalable Fault-Tolerant Layer 2 Data Center Network
Fabric. In SIGCOMM, 2009.

[30] D. Newman. 10 Gig access switches: Not just packet-pushers
anymore. Network World, 25(12), Mar. 2008.

[31] Object Management Group. Data Distribution Service.
http://portals.omg.org/dds/.

[32] Open Networking Foundation. www.opennetworking.org.
[33] Oracle Coherence. http://coherence.oracle.com/

display/COH35UG/Network+Protocols.
[34] I. Pepelnjak. FIB update challenges in OpenFlow networks.

blog.ioshints.info/2012/01/
fib-update-challenges-in-openflow.html, Jan.
2012.

[35] S. Ratnasamy, A. Ermolinskiy, and S. Shenker. Revisiting IP
Multicast. In SIGCOMM, 2006.

[36] S. Sen, D. Shue, S. Ihm, and M. J. Freedman. Scalable,
Optimal Flow Routing in Datacenters via Local Link
Balancing. In CoNEXT, 2013.

[37] J.-Y. Shin, B. Wong, and E. G. Sirer. Small-World
Datacenters. In SOCC, 2011.

[38] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish:
Networking Data Centers Randomly. In NSDI, 2012.

[39] M. Sridharan, A. Greenberg, Y. Wang, P. Garg,
N. Venkataramiah, K. Duda, I. Ganga, G. Lin, M. Pearson,
P. Thaler, and C. Tumuluri. NVGRE: Network Virtualization
using Generic Routing Encapsulation. IETF Internet-Draft,
Aug. 2013.

[40] Y. Tock, N. Naaman, A. Harpaz, and G. Gershinsky.
Hierarchial Clustering of Message Flows in a Multicast Data
Dissemination System. In IASTED PDCS, 2005.

[41] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood. On Controller Performance in
Software-Defined Networks. In HotICE, 2012.

[42] Y. Vigfusson. Personal communication, 2013.
[43] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman,

R. Burgess, G. Chockler, H. Li, and Y. Tock. Dr. Multicast:
Rx for Data Center Communication Scalability. In EuroSys,
2010.

[44] J. Widmer and M. Handley. Extending Equation-based
Congestion Control to Multicast Applications. In SIGCOMM,
2001.

www-01.ibm.com/software/webservers/appserv/was/

www-01.ibm.com/software/webservers/appserv/was/

http://portals.omg.org/dds/

www.opennetworking.org

http://coherence.oracle.com/display/COH35UG/Network+Protocols

http://coherence.oracle.com/display/COH35UG/Network+Protocols

blog.ioshints.info/2012/01/fib-update-challenges-in-openflow.html

blog.ioshints.info/2012/01/fib-update-challenges-in-openflow.html

			Introduction

			Towards Scalable Multicast

			Limitations of Today's IP Multicast

			Next-Generation Datacenter Architecture

			Scale-Out IP Multicast in Datacenters

			Managing Multicast using SDN

			Related Work

			System Design

			Multicast Address Distribution

			Calculating the Multicast Group Capacity

			Distributing the Multicast Address

			Scaling Address Aggregation in Pods

			Apply Local Address Aggregation

			The Multicast Group Aggregation Algorithm

			Recovering Quickly from Failures

			Using Local Rerouting for Fast Failover

			Reconstructing the Multicast Tree

			Evaluation

			Experimental Setup

			Multicast Address Capacity

			Group Membership Dynamics

			Membership Dynamics within One Group

			Membership Dynamics of All Groups

			Fast Failover

			Conclusion

eiger-nsdi13.pdf

To appear in Proceedings of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’13), Lombard, IL, April 2013

Stronger Semantics for Low-Latency Geo-Replicated Storage

Wyatt Lloyd?, Michael J. Freedman?, Michael Kaminsky†, and David G. Andersen‡

?Princeton University, †Intel Labs, ‡Carnegie Mellon University

Abstract

We present the first scalable, geo-replicated storage sys-
tem that guarantees low latency, offers a rich data model,
and provides “stronger” semantics. Namely, all client
requests are satisfied in the local datacenter in which
they arise; the system efficiently supports useful data
model abstractions such as column families and counter
columns; and clients can access data in a causally-
consistent fashion with read-only and write-only transac-
tional support, even for keys spread across many servers.

The primary contributions of this work are enabling
scalable causal consistency for the complex column-
family data model, as well as novel, non-blocking al-
gorithms for both read-only and write-only transactions.
Our evaluation shows that our system, Eiger, achieves
low latency (single-ms), has throughput competitive with
eventually-consistent and non-transactional Cassandra
(less than 7% overhead for one of Facebook’s real-world
workloads), and scales out to large clusters almost lin-
early (averaging 96% increases up to 128 server clusters).

1 Introduction

Large-scale data stores are a critical infrastructure com-
ponent of many Internet services. In this paper, we
address the problem of building a geo-replicated data
store targeted at applications that demand fast response
times. Such applications are now common: Amazon,
EBay, and Google all claim that a slight increase in
user-perceived latency translates into concrete revenue
loss [25, 26, 41, 50].

Providing low latency to the end-user requires two
properties from the underlying storage system. First, stor-
age nodes must be near the user to avoid long-distance
round trip times; thus, data must be replicated geographi-
cally to handle users from diverse locations. Second, the
storage layer itself must be fast: client reads and writes
must be local to that nearby datacenter and not traverse
the wide area. Geo-replicated storage also provides the
important benefits of availability and fault tolerance.

Beyond low latency, many services benefit from a
rich data model. Key-value storage—perhaps the sim-

plest data model provided by data stores—is used by a
number of services today [4, 29]. The simplicity of this
data model, however, makes building a number of in-
teresting services overly arduous, particularly compared
to the column-family data models offered by systems
like BigTable [19] and Cassandra [37]. These rich data
models provide hierarchical sorted column-families and
numerical counters. Column-families are well-matched
to services such as Facebook, while counter columns are
particularly useful for numerical statistics, as used by
collaborative filtering (Digg, Reddit), likes (Facebook),
or re-tweets (Twitter).

Unfortunately, to our knowledge, no existing geo-
replicated data store provides guaranteed low latency,
a rich column-family data model, and stronger consis-
tency semantics: consistency guarantees stronger than
the weakest choice—eventual consistency—and support
for atomic updates and transactions. This paper presents
Eiger, a system that achieves all three properties.

The consistency model Eiger provides is tempered by
impossibility results: the strongest forms of consistency—
such as linearizability, sequential, and serializability—
are impossible to achieve with low latency [8, 42] (that is,
latency less than the network delay between datacenters).
Yet, some forms of stronger-than-eventual consistency
are still possible and useful, e.g., causal consistency [2],
and they can benefit system developers and users. In addi-
tion, read-only and write-only transactions that execute a
batch of read or write operations at the same logical time
can strengthen the semantics provided to a programmer.

Many previous systems satisfy two of our three design
goals. Traditional databases, as well as the more re-
cent Walter [52], MDCC [35], Megastore [9], and some
Cassandra configurations, provide stronger semantics
and a rich data model, but cannot guarantee low latency.
Redis [48], CouchDB [23], and other Cassandra config-
urations provide low latency and a rich data model, but
not stronger semantics. Our prior work on COPS [43]
supports low latency, some stronger semantics—causal
consistency and read-only transactions—but not a richer
data model or write-only transactions (see §7.8 and §8
for a detailed comparison).

A key challenge of this work is to meet these three
goals while scaling to a large numbers of nodes in a

1

single datacenter, which acts as a single logical replica.
Traditional solutions in this space [10, 12, 36], such as
Bayou [44], assume a single node per replica and rely on
techniques such as log exchange to provide consistency.
Log exchange, however, requires serialization through a
single node, which does not scale to multi-node replicas.

This paper presents Eiger, a scalable geo-replicated
data store that achieves our three goals. Like COPS,
Eiger tracks dependencies to ensure consistency; instead
of COPS’ dependencies on versions of keys, however,
Eiger tracks dependencies on operations. Yet, its mecha-
nisms do not simply harken back to the transaction logs
common to databases. Unlike those logs, Eiger’s oper-
ations may depend on those executed on other nodes,
and an operation may correspond to a transaction that
involves keys stored on different nodes.

Eiger’s read-only and write-only transaction algo-
rithms each represent an advance in the state-of-the-art.
COPS introduced a read-only transaction algorithm that
normally completes in one round of local reads, and two
rounds in the worst case. Eiger’s read-only transaction
algorithm has the same properties, but achieves them
using logical time instead of explicit dependencies. Not
storing explicit dependencies not only improves Eiger’s
efficiency, it allows Eiger to tolerate long partitions be-
tween datacenters, while COPS may suffer a metadata
explosion that can degrade availability.

Eiger’s write-only transaction algorithm can atomi-
cally update multiple columns of multiple keys spread
across multiple servers in a datacenter (i.e., they are
atomic within a datacenter, but not globally). It was de-
signed to coexist with Eiger’s read-only transactions, so
that both can guarantee low-latency by (1) remaining in
the local datacenter, (2) taking a small and bounded num-
ber of local messages to complete, and (3) never blocking
on any other operation. In addition, both transaction algo-
rithms are general in that they can be applied to systems
with stronger consistency, e.g., linearizability [33].

The contributions of this paper are as follows:

• The design of a low-latency, causally-consistent data
store based on a column-family data model, including
all the intricacies necessary to offer abstractions such
as column families and counter columns.

• A novel non-blocking read-only transaction algo-
rithm that is both performant and partition tolerant.

• A novel write-only transaction algorithm that atomi-
cally writes a set of keys, is lock-free (low latency),
and does not block concurrent read transactions.

• An evaluation that shows Eiger has performance com-
petitive to eventually-consistent Cassandra.

2 Background
This section reviews background information related to
Eiger: web service architectures, the column-family data
model, and causal consistency.

2.1 Web Service Architecture
Eiger targets large geo-replicated web services. These
services run in multiple datacenters world-wide, where
each datacenter stores a full replica of the data. For
example, Facebook stores all user profiles, comments,
friends lists, and likes at each of its datacenters [27].
Users connect to a nearby datacenter, and applications
strive to handle requests entirely within that datacenter.

Inside the datacenter, client requests are served by
a front-end web server. Front-ends serve requests by
reading and writing data to and from storage tier nodes.
Writes are asynchronously replicated to storage tiers in
other datacenters to keep the replicas loosely up-to-date.

In order to scale, the storage cluster in each datacen-
ter is typically partitioned across 10s to 1000s of ma-
chines. As a primitive example, Machine 1 might store
and serve user profiles for people whose names start with
‘A’, Server 2 for ‘B’, and so on.

As a storage system, Eiger’s clients are the front-end
web servers that issue read and write operations on behalf
of the human users. When we say, “a client writes a
value,” we mean that an application running on a web or
application server writes into the storage system.

2.2 Column-Family Data Model
Eiger uses the column-family data model, which provides
a rich structure that allows programmers to naturally ex-
press complex data and then efficiently query it. This
data model was pioneered by Google’s BigTable [19].
It is now available in the open-source Cassandra sys-
tem [37], which is used by many large web services
including EBay, Netflix, and Reddit.

Our implementation of Eiger is built upon Cassandra
and so our description adheres to its specific data model
where it and BigTable differ. Our description of the data
model and API are simplified, when possible, for clarity.

Basic Data Model. The column-family data model is
a “map of maps of maps” of named columns. The first-
level map associates a key with a set of named column
families. The second level of maps associates the column
family with a set composed exclusively of either columns
or super columns. If present, the third and final level of
maps associates each super column with a set of columns.
This model is illustrated in Figure 1: “Associations” are a
column family, “Likes” are a super column, and “NSDI”
is a column.

2

bool ←− batch_mutate ({key→mutation})
bool ←− atomic_mutate ({key→mutation})

{key→columns} ←− multiget_slice ({key, column_parent, slice_predicate})

Table 1: Core API functions in Eiger’s column family data model. Eiger introduces atomic_mutate and con-
verts multiget_slice into a read-only transaction. All calls also have an actor_id.

Alice

Bob

1337

2664

ID

NYC

LA

Town

-

3/2/11

Alice

3/2/11

-

Bob

9/2/12

-

Carol

9/1/12

-

NSDI

-

-

SOSP

Friends Likes

User Data Associations

Figure 1: An example use of the column-family data
model for a social network setting.

Within a column family, each location is repre-
sented as a compound key and a single value, i.e., “Al-
ice:Assocs:Friends:Bob” with value “3/2/11”. These
pairs are stored in a simple ordered key-value store. All
data for a single row must reside on the same server.

Clients use the API shown in Table 1. Clients can
insert, update, or delete columns for multiple keys with a
batch_mutate or an atomic_mutate operation; each
mutation is either an insert or a delete. If a column
exists, an insert updates the value. Mutations in a
batch_mutate appear independently, while mutations
in an atomic_mutate appear as a single atomic group.

Similarly, clients can read many columns for mul-
tiple keys with the multiget_slice operation. The
client provides a list of tuples, each involving a key,
a column family name and optionally a super column
name, and a slice predicate. The slice predicate can
be a (start,stop,count) three-tuple, which matches
the first count columns with names between start and
stop. Names may be any comparable type, e.g., strings
or integers. Alternatively, the predicate can also be a list
of column names. In either case, a slice is a subset of the
stored columns for a given key.

Given the example data model in Figure 1 for a social
network, the following function calls show three typical
API calls: updating Alice’s hometown when she moves,
ending Alice and Bob’s friendship, and retrieving up to
10 of Alice’s friends with names starting with B to Z.

batch_mutate (Alice→insert(UserData:Town=Rome))

atomic_mutate (Alice→delete(Assocs:Friends:Bob),
Bob→delete(Assocs:Friends:Alice))

multiget_slice ({Alice, Assocs:Friends, (B, Z, 10)})

Counter Columns. Standard columns are updated by
insert operations that overwrite the old value. Counter

User Op ID Operation

Alice w1 insert(Alice, “-,Town”, NYC)
Bob r2 get(Alice, “-,Town”)
Bob w3 insert(Bob, “-,Town”, LA)
Alice r4 get(Bob, “-,Town”))
Carol w5 insert(Carol, “Likes, NSDI”, 8/31/12)
Alice w6 insert(Alice, “Likes, NSDI”, 9/1/12)
Alice r7 get(Carol, “Likes, NSDI”)
Alice w8 insert(Alice, “Friends, Carol”, 9/2/12)

(a)

w3

w6
w5

w8

w1

Logical Tim
e

r4

r7

r2

A
lice

B
ob

C
arol

(b)

w3

w6
w5

w8

w1

Logical Tim
e

A
lice

B
ob

C
arol

(c)

Op Dependencies

w1 -
w3 w1
w5 -
w6 w3 w1
w8 w6 w5 w3 w1

(d)

Figure 2: (a) A set of example operations; (b) the
graph of causality between them; (c) the correspond-
ing dependency graph; and (d) a table listing nearest
(bold), one-hop (underlined), and all dependencies.

columns, in contrast, can be commutatively updated us-
ing an add operation. They are useful for maintaining
numerical statistics, e.g., a “liked_by_count” for NSDI
(not shown in figure), without the need to carefully read-
modify-write the object.

2.3 Causal Consistency

A rich data model alone does not provide an intuitive and
useful storage system. The storage system’s consistency
guarantees can restrict the possible ordering and timing
of operations throughout the system, helping to simplify
the possible behaviors that a programmer must reason
about and the anomalies that clients may see.

The strongest forms of consistency (linearizability, se-
rializability, and sequential consistency) are provably in-
compatible with our low-latency requirement [8, 42], and
the weakest (eventual consistency) allows many possible
orderings and anomalies. For example, under eventual
consistency, after Alice updates her profile, she might not
see that update after a refresh. Or, if Alice and Bob are
commenting back-and-forth on a blog post, Carol might
see a random non-contiguous subset of that conversation.

3

Fortunately, causal consistency can avoid many such
inconvenient orderings, including the above examples,
while guaranteeing low latency. Interestingly, the moti-
vating example Google used in the presentation of their
transactional, linearizable, and non-low-latency system
Spanner [22]—where a dissident removes an untrustwor-
thy person from his friends list and then posts politically
sensitive speech—only requires causal consistency.

Causal consistency provides a partial order over oper-
ations in the system according to the notion of potential
causality [2, 38], which is defined by three rules:

• Thread-of-Execution. An operation performed by a
thread is causally after all of its previous ones.

• Reads-From. An operation that reads a value is
causally after the operation that wrote the value.

• Transitive-Closure. If operation a is causally after
b, and b is causally after c, then a is causally after c.

Figure 2 shows several example operations and illustrates
their causal relationships. Arrows indicate the sink is
causally after the source.

Write operations have dependencies on all other write
operations that they are causally after. Eiger uses these
dependencies to enforce causal consistency: It does not
apply (commit) a write in a cluster until verifying that
the operation’s dependencies are satisfied, meaning those
writes have already been applied in the cluster.

While the number of dependencies for a write grows
with a client’s lifetime, the system does not need to track
every dependency. Rather, only a small subset of these,
the nearest dependencies, are necessary for ensuring
causal consistency. These dependencies, which have a
longest path of one hop to the current operation, tran-
sitively capture all of the ordering constraints on this
operation. In particular, because all non-nearest depen-
dencies are depended upon by at least one of the nearest,
if this current operation occurs after the nearest depen-
dencies, then it will occur after all non-nearest as well (by
transitivity). Eiger actually tracks one-hop dependencies,
a slightly larger superset of nearest dependencies, which
have a shortest path of one hop to the current operation.
The motivation behind tracking one-hop dependencies is
discussed in Section 3.2. Figure 2(d) illustrates the types
of dependencies, e.g., w6’s dependency on w1 is one-hop
but not nearest.

3 Eiger System Design
The design of Eiger assumes an underlying partitioned,
reliable, and linearizable data store inside of each data-
center. Specifically, we assume:

1. The keyspace is partitioned across logical servers.
2. Linearizability is provided inside a datacenter.

3. Keys are stored on logical servers, implemented
with replicated state machines. We assume that a
failure does not make a logical server unavailable,
unless it makes the entire datacenter unavaible.

Each assumption represents an orthogonal direction of
research to Eiger. By assuming these properties instead
of specifying their exact design, we focus our explanation
on the novel facets of Eiger.

Keyspace partitioning may be accomplished with con-
sistent hashing [34] or directory-based approaches [6,
30]. Linearizability within a datacenter is achieved by
partitioning the keyspace and then providing lineariz-
ability for each partition [33]. Reliable, linearizable
servers can be implemented with Paxos [39] or primary-
backup [3] approaches, e.g., chain replication [57]. Many
existing systems [5, 13, 16, 54], in fact, provide all as-
sumed properties when used inside a single datacenter.

3.1 Achieving Causal Consistency
Eiger provides causal consistency by explicitly check-
ing that an operation’s nearest dependencies have been
applied before applying the operation. This approach is
similar to the mechanism used by COPS [43], although
COPS places dependencies on values, while Eiger uses
dependencies on operations.

Tracking dependencies on operations significantly im-
proves Eiger’s efficiency. In the column family data
model, it is not uncommon to simultaneously read or
write many columns for a single key. With dependencies
on values, a separate dependency must be used for each
column’s value and thus |column| dependency checks
would be required; Eiger could check as few as one. In
the worst case, when all columns were written by dif-
ferent operations, the number of required dependency
checks degrades to one per value.

Dependencies in Eiger consist of a locator and a
unique id. The locator is used to ensure that any other
operation that depends on this operation knows which
node to check with to determine if the operation has been
committed. For mutations of individual keys, the locator
is simply the key itself. Within a write transaction the
locator can be any key in the set; all that matters is that
each “sub-operation” within an atomic write be labeled
with the same locator.

The unique id allows dependencies to precisely map
to operations and is identical to the operation’s times-
tamp. A node in Eiger checks dependencies by sending a
dep_check operation to the node in its local datacenter
that owns the locator. The node that owns the locator
checks local data structures to see if has applied the op-
eration identified by its unique id. If it has, it responds
immediately. If not, it blocks the dep_check until it ap-
plies the operation. Thus, once all dep_checks return, a

4

server knows all causally previous operations have been
applied and it can safely apply this operation.

3.2 Client Library

Clients access their local Eiger datacenter using a client
library that: (1) mediates access to nodes in the local
datacenter; (2) executes the read and write transaction
algorithms; and, most importantly (3) tracks causality
and attaches dependencies to write operations.1

The client library mediates access to the local data-
center by maintaining a view of its live servers and the
partitioning of its keyspace. The library uses this infor-
mation to send operations to the appropriate servers and
sometimes to split operations that span multiple servers.

The client library tracks causality by observing a
client’s operations.2 The API exposed by the client li-
brary matches that shown earlier in Table 1 with the addi-
tion of a actor_id field. As an optimization, dependen-
cies are tracked on a per-user basis with the actor_id
field to avoid unnecessarily adding thread-of-execution
dependencies between operations done on behalf of dif-
ferent real-world users (e.g., operations issued on behalf
of Alice are not entangled with operations issued on
behalf of Bob).

When a client issues a write, the library attaches de-
pendencies on its previous write and on all the writes
that wrote a value this client has observed through reads
since then. This one-hop set of dependencies is the set of
operations that have a path of length one to the current
operation in the causality graph. The one-hop dependen-
cies are a superset of the nearest dependencies (which
have a longest path of length one) and thus attaching and
checking them suffices for providing causal consistency.

We elect to track one-hop dependencies because we
can do so without storing any dependency information
at the servers. Using one-hop dependencies slightly in-
creases both the amount of memory needed at the client
nodes and the data sent to servers on writes.3

3.3 Basic Operations

Eiger’s basic operations closely resemble Cassandra,
upon which it is built. The main differences involve
the use of server-supplied logical timestamps instead of
client-supplied real-time timestamps and, as described
above, the use of dependencies and dep_checks.

1Our implementation of Eiger, like COPS before it, places the client
library with the storage system client—typically a web server. Alterna-
tive implementations might store the dependencies on a unique node per
client, or even push dependency tracking to a rich javascript application
running in the client web browser itself, in order to successfully track
web accesses through different servers. Such a design is compatible
with Eiger, and we view it as worthwhile future work.

Logical Time. Clients and servers in Eiger maintain a
logical clock [38], and messages include a logical times-
tamp that updates these clocks. The clocks and times-
tamps provide a progressing logical time throughout the
entire system. The low-order bits in each timestamps are
set to the stamping server’s unique identifier, so each is
globally distinct. Servers use these logical timestamps to
uniquely identify and order operations.

Local Write Operations. All three write operations in
Eiger—insert, add, and delete—operate by replac-
ing the current (potentially non-existent) column in a
location. insert overwrites the current value with a
new column, e.g., update Alice’s home town from NYC
to MIA. add merges the current counter column with
the update, e.g., increment a liked-by count from 8 to 9.
delete overwrites the current column with a tombstone,
e.g., Carol is no longer friends with Alice. When each
new column is written, it is timestamped with the current
logical time at the server applying the write.

Cassandra atomically applies updates to a single row
using snap trees [14], so all updates to a single key in
a batch_mutate have the same timestamp. Updates to
different rows on the same server in a batch_mutate
will have different timestamps because they are applied
at different logical times.

Read Operations. Read operations return the current
column for each requested location. Normal columns
return binary data. Deleted columns return an empty
column with a deleted bit set. The client library
strips deleted columns out of the returned results, but
records dependencies on them as required for correct-
ness. Counter columns return a 64-bit integer.

Replication. Servers replicate write operations to their
equivalent servers in other datacenters. These are the
servers that own the same portions of the keyspace as the
local server. Because the keyspace partitioning may vary
from datacenter to datacenter, the replicating server must
sometimes split batch_mutate operations.

When a remote server receives a replicated add op-
eration, it applies it normally, merging its update with
the current value. When a server receives a replicated
insert or delete operation, it compares the times-
tamps for each included column against the current col-
umn for each location. If the replicated column is log-
ically newer, it uses the timestamp from the replicated
column and otherwise overwrites the column as it would
with a local write. That timestamp, assigned by the

2Eiger can only track causality it sees, so the traditional criticisms
of causality [20] still apply, e.g., we would not capture the causality
associated with an out-of-band phone call.

3In contrast, our alternative design for tracking the (slightly smaller
set of) nearest dependencies put the dependency storage burden on the
servers, a trade-off we did not believe generally worthwhile.

5

datacenter that originally accepted the operation that
wrote the value, uniquely identifies the operation. If
the replicated column is older, it is discarded. This sim-
ple procedure ensures causal consistency: If one column
is causally after the other, it will have a later timestamp
and thus overwrite the other.

The overwrite procedure also implicitly handles con-
flicting operations that concurrently update a location. It
applies the last-writer-wins rule [55] to deterministically
allow the later of the updates to overwrite the other. This
ensures that all datacenters converge to the same value for
each column. Eiger could detect conflicts using previous
pointers and then resolve them with application-specific
functions similar to COPS, but we did not implement
such conflict handling and omit details for brevity.

Counter Columns. The commutative nature of counter
columns complicates tracking dependencies. In normal
columns with overwrite semantics, each value was writ-
ten by exactly one operation. In counter columns, each
value was affected by many operations. Consider a
counter with value 7 from +1, +2, and +4 operations.
Each operation contributed to the final value, so a read of
the counter incurs dependencies on all three. Eiger stores
these dependencies with the counter and returns them to
the client, so they can be attached to its next write.

Naively, every update of a counter column would in-
crement the number of dependencies contained by that
column ad infinitum. To bound the number of contained
dependencies, Eiger structures the add operations occur-
ring within a datacenter. Recall that all locally originating
add operations within a datacenter are already ordered
because the datacenter is linearizable. Eiger explicitly
tracks this ordering in a new add by adding an extra
dependency on the previously accepted add operation
from the datacenter. This creates a single dependency
chain that transitively covers all previous updates from
the datacenter. As a result, each counter column contains
at most one dependency per datacenter.

Eiger further reduces the number of dependencies con-
tained in counter columns to the nearest dependencies
within that counter column. When a server applies an
add, it examines the operation’s attached dependencies.
It first identifies all dependencies that are on updates
from other datacenters to this counter column. Then, if
any of those dependencies match the currently stored de-
pendency for another datacenter, Eiger drops the stored
dependency. The new operation is causally after any
local matches, and thus a dependency on it transitively
covers those matches as well. For example, if Alice reads
a counter with the value 7 and then increments it, her +1
is causally after all operations that commuted to create
the 7. Thus, any reads of the resulting 8 would only bring
a dependency on Alice’s update.

Logical Time

Location 1

Location 2

Location 3

A B C

J K L

X Y

1

2

3

11

12

15

21

19

Figure 3: Validity periods for values written to differ-
ent locations. Crossbars (and the specified numeric
times) correspond to the earliest and latest valid time
for values, which are represented by letters.

4 Read-Only Transactions

Read-only transactions—the only read operations in
Eiger—enable clients to see a consistent view of multiple
keys that may be spread across many servers in the local
datacenter. Eiger’s algorithm guarantees low latency be-
cause it takes at most two rounds of parallel non-blocking
reads in the local datacenter, plus at most one additional
round of local non-blocking checks during concurrent
write transactions, detailed in §5.4. We make the same
assumptions about reliability in the local datacenter as
before, including “logical” servers that do not fail due to
linearizable state machine replication.

Why read-only transactions? Even though Eiger
tracks dependencies to update each datacenter consis-
tently, non-transactional reads can still return an incon-
sistent set of values. For example, consider a scenario
where two items were written in a causal order, but read
via two separate, parallel reads. The two reads could
bridge the write operations (one occurring before either
write, the other occurring after both), and thus return
values that never actually occurred together, e.g., a “new”
object and its “old” access control metadata.

4.1 Read-only Transaction Algorithm
The key insight in the algorithm is that there exists a
consistent result for every query at every logical time.
Figure 3 illustrates this: As operations are applied in
a consistent causal order, every data location (key and
column) has a consistent value at each logical time.

At a high level, our new read transaction algorithm
marks each data location with validity metadata, and uses
that metadata to determine if a first round of optimistic
reads is consistent. If the first round results are not con-
sistent, the algorithm issues a second round of reads that
are guaranteed to return consistent results.

More specifically, each data location is marked with
an earliest valid time (EVT). The EVT is set to the
server’s logical time when it locally applies an opera-
tion that writes a value. Thus, in an operation’s accepting

6

Logical Time

A

J

X

1

2

3

7

9

8

Loc 1

Loc 2

Loc 3

(a) One Round Sufficient

Logical Time

A B

K

1 10

12

15

16

X
3

(b) Two Rounds Needed

Figure 4: Examples of read-only transactions. The
effective time of each transaction is shown with a
gray line; this is the time requested for location 1 in
the second round in (b).

datacenter—the one at which the operation originated—
the EVT is the same as its timestamp. In other datacen-
ters, the EVT is later than its timestamp. In both cases,
the EVT is the exact logical time when the value became
visible in the local datacenter.

A server responds to a read with its currently visible
value, the corresponding EVT, and its current logical
time, which we call the latest valid time (LVT). Because
this value is still visible, we know it is valid for at least
the interval between the EVT and LVT. Once all first-
round reads return, the client library compares their times
to check for consistency. In particular, it knows all values
were valid at the same logical time (i.e., correspond to a
consistent snapshot) iff the maximum EVT ≤ the mini-
mum LVT. If so, the client library returns these results;
otherwise, it proceeds to a second round. Figure 4(a)
shows a scenario that completes in one round.

The effective time of the transaction is the minimum
LVT ≥ the maximum EVT. It corresponds both to a logi-
cal time in which all retrieved values are consistent, as
well as the current logical time (as of its response) at
a server. As such, it ensures freshness—necessary in
causal consistency so that clients always see a progress-
ing datacenter that reflects their own updates.

For brevity, we only sketch a proof that read transac-
tions return the set of results that were visible in their
local datacenter at the transaction’s effective time, EffT.
By construction, assume a value is visible at logical time
t iff val.EVT ≤ t ≤ val.LVT. For each returned value,
if it is returned from the first round, then val.EVT ≤
maxEVT≤ EffT by definition of maxEVT and EffT, and
val.LVT ≥ EffT because it is not being requested in the
second round. Thus, val.EVT ≤ EffT ≤ val.LVT, and
by our assumption, the value was visible at EffT. If a
result is from the second round, then it was obtained by
a second-round read that explicitly returns the visible
value at time EffT, described next.

4.2 Two-Round Read Protocol
A read transaction requires a second round if there does
not exist a single logical time for which all values read

function read_only_trans(requests):
Send first round requests in parallel
for r in requests
val[r] = multiget_slice(r)

Calculate the maximum EVT
maxEVT = 0
for r in requests
maxEVT = max(maxEVT, val[r].EVT)

Calculate effective time
EffT = ∞

for r in requests
if val[r].LVT ≥ maxEVT
EffT = min(EffT, val[r].LVT)

Send second round requests in parallel
for r in requests
if val[r].LVT < EffT
val[r] = multiget_slice_by_time(r, EffT)

Return only the requested data
return extract_keys_to_columns(res)

Figure 5: Pseudocode for read-only transactions.

in the first round are valid. This can only occur when
there are concurrent updates being applied locally to the
requested locations. The example in Figure 4(b) requires
a second round because location 2 is updated to value K
at time 12, which is not before time 10 when location 1’s
server returns value A.

During the second round, the client library issues
multiget_slice_by_time requests, specifying a read
at the transaction’s effective time. These reads are sent
only to those locations for which it does not have a valid
result, i.e., their LVT is earlier than the effective time. For
example, in Figure 4(b) a multiget_slice_by_time
request is sent for location 1 at time 15 and returns a new
value B.

Servers respond to multiget_slice_by_time reads
with the value that was valid at the requested logical time.
Because that result may be different than the currently
visible one, servers sometimes must store old values for
each location. Fortunately, the extent of such additional
storage can be limited significantly.

4.3 Limiting Old Value Storage
Eiger limits the need to store old values in two ways.
First, read transactions have a timeout that specifies
their maximum real-time duration. If this timeout fires—
which happens only when server queues grow pathologi-
cally long due to prolonged overload—the client library
restarts a fresh read transaction. Thus, servers only need
to store old values that have been overwritten within this
timeout’s duration.

Second, Eiger retains only old values that could be
requested in the second round. Thus, servers store only

7

values that are newer than those returned in a first round
within the timeout duration. For this optimization, Eiger
stores the last access time of each value.

4.4 Read Transactions for Linearizability
Linearizability (strong consistency) is attractive to pro-
grammers when low latency and availability are not strict
requirements. Simply being linearizable, however, does
not mean that a system is transactional: There may be no
way to extract a mutually consistent set of values from
the system, much as in our earlier example for read trans-
actions. Linearizability is only defined on, and used with,
operations that read or write a single location (originally,
shared memory systems) [33].

Interestingly, our algorithm for read-only transactions
works for fully linearizable systems, without modifica-
tion. In Eiger, in fact, if all writes that are concurrent with
a read-only transaction originated from the local datacen-
ter, the read-only transaction provides a consistent view
of that linearizable system (the local datacenter).

5 Write-Only Transactions
Eiger’s write-only transactions allow a client to atomi-
cally write many columns spread across many keys in the
local datacenter. These values also appear atomically in
remote datacenters upon replication. As we will see, the
algorithm guarantees low latency because it takes at most
2.5 message RTTs in the local datacenter to complete,
no operations acquire locks, and all phases wait on only
the previous round of messages before continuing.

Write-only transactions have many uses. When a user
presses a save button, the system can ensure that all of
her five profile updates appear simultaneously. Similarly,
they help maintain symmetric relationships in social net-
works: When Alice accepts Bob’s friendship request,
both friend associations appear at the same time.

5.1 Write-Only Transaction Algorithm
To execute an atomic_mutate request—which has iden-
tical arguments to batch_mutate—the client library
splits the operation into one sub-request per local server
across which the transaction is spread. The library ran-
domly chooses one key in the transaction as the coor-
dinator key. It then transmits each sub-request to its
corresponding server, annotated with the coordinator key.

Our write transaction is a variant of two-phase com-
mit [51], which we call two-phase commit with positive
cohorts and indirection (2PC-PCI). 2PC-PCI operates
differently depending on whether it is executing in the
original (or “accepting”) datacenter, or being applied in
the remote datacenter after replication.

There are three differences between traditional 2PC
and 2PC-PCI, as shown in Figure 6. First, 2PC-PCI has
only positive cohorts; the coordinator always commits
the transaction once it receives a vote from all cohorts.4

Second, 2PC-PCI has a different pre-vote phase that
varies depending on the origin of the write transaction. In
the accepting datacenter (we discuss the remote below),
the client library sends each participant its sub-request
directly, and this transmission serves as an implicit PRE-
PARE message for each cohort. Third, 2PC-PCI cohorts
that cannot answer a query—because they have voted but
have not yet received the commit—ask the coordinator if
the transaction is committed, effectively indirecting the
request through the coordinator.

5.2 Local Write-Only Transactions
When a participant server, which is either the coordina-
tor or a cohort, receives its transaction sub-request from
the client, it prepares for the transaction by writing each
included location with a special “pending” value (retain-
ing old versions for second-round reads). It then sends a
YESVOTE to the coordinator.

When the coordinator receives a YESVOTE, it updates
its count of prepared keys. Once all keys are prepared, the
coordinator commits the transaction. The coordinator’s
current logical time serves as the (global) timestamp and
(local) EVT of the transaction and is included in the
COMMIT message.

When a cohort receives a COMMIT, it replaces the
“pending” columns with the update’s real values, and
ACKs the committed keys. Upon receiving all ACKs, the
coordinator safely cleans up its transaction state.

5.3 Replicated Write-Only Transactions
Each transaction sub-request is replicated to its “equiv-
alent” participant(s) in the remote datacenter, possibly
splitting the sub-requests to match the remote key parti-
tioning. When a cohort in a remote datacenter receives a
sub-request, it sends a NOTIFY with the key count to the
transaction coordinator in its datacenter. This coordinator
issues any necessary dep_checks upon receiving its own
sub-request (which contains the coordinator key). The co-
ordinator’s checks cover the entire transaction, so cohorts
send no checks. Once the coordinator has received all
NOTIFY messages and dep_checks responses, it sends
each cohort a PREPARE, and then proceeds normally.

For reads received during the indirection window in
which participants are uncertain about the status of a

4Eiger only has positive cohorts because it avoids all the normal
reasons to abort (vote no): It does not have general transactions that
can force each other to abort, it does not have users that can cancel
operations, and it assumes that its logical servers do not fail.

8

Prepare

Commit/Abort

Yes/No

Ack

Trans.

Ack

Client Coordinator Cohorts

(a) Traditional 2PC

Commit

Yes

Ack

Trans.

Ack

Client Coordinator Cohorts
Local/Accepting Datacenter

(b) Local Write-Only Txn

Commit

Yes

Ack

Trans.

Ack

Accepting
Datacenter Coordinator Cohorts

Notify

Prepare

Check	
Deps	

Remote Datacenter

(c) Replicated Write-Only Txn

Figure 6: Message flow diagrams for traditional 2PC and write-only transaction. Solid boxes denote when
cohorts block reads. Striped boxes denote when cohorts will indirect a commitment check to the coordinator.

transaction, cohorts must query the coordinator for its
state. To minimize the duration of this window, before
preparing, the coordinator waits for (1) all participants
to NOTIFY and (2) all dep_checks to return. This helps
prevent a slow replica from causing needless indirection.

Finally, replicated write-only transactions differ in that
participants do not always write pending columns. If a lo-
cation’s current value has a newer timestamp than that of
the transaction, the validity interval for the transaction’s
value is empty. Thus, no read will ever return it, and it
can be safely discarded. The participant continues in the
transaction for simplicity, but does not need to indirect
reads for this location.

5.4 Reads when Transactions are Pending

If a first-round read accesses a location that could be
modified by a pending transaction, the server sends a
special empty response that only includes a LVT (i.e., its
current time). This alerts the client that it must choose
an effective time for the transaction and send the server a
second-round multiget_slice_by_time request.

When a server with pending transactions receives a
multiget_slice_by_time request, it first traverses its
old versions for each included column. If there exists a
version valid at the requested time, the server returns it.

Otherwise, there are pending transactions whose po-
tential commit window intersects the requested time and
the server must resolve their ordering. It does so by
sending a commit_check with this requested time to the
transactions’ coordinator(s). Each coordinator responds
whether the transaction had been committed at that (past)
time and, if so, its commit time.

Once a server has collected all commit_check re-
sponses, it updates the validity intervals of all ver-

sions of all relevant locations, up to at least the re-
quested (effective) time. Then, it can respond to the
multiget_slice_by_time message as normal.

The complementary nature of Eiger’s transactional al-
gorithms enables the atomicity of its writes. In particular,
the single commit time for a write transaction (EVT) and
the single effective time for a read transaction lead each
to appear at a single logical time, while its two-phase
commit ensures all-or-nothing semantics.

6 Failure
In this section, we examine how Eiger behaves under
failures, including single server failure, meta-client redi-
rection, and entire datacenter failure.

Single server failures are common and unavoidable
in practice. Eiger guards against their failure with the
construction of logical servers from multiple physical
servers. For instance, a logical server implemented with
a three-server Paxos group can withstand the failure of
one of its constituent servers. Like any system built on
underlying components, Eiger inherits the failure modes
of its underlying building blocks. In particular, if a log-
ical server assumes no more than f physical machines
fail, Eiger must assume that within a single logical server
no more than f physical machines fail.

Meta-clients that are the clients of Eiger’s clients (i.e.,
web browsers that have connections to front-end web tier
machines) will sometimes be directed to a different data-
center. For instance, a redirection may occur when there
is a change in the DNS resolution policy of a service.
When a redirection occurs during the middle of an active
connection, we expect service providers to detect it using
cookies and then redirect clients to their original data-
center (e.g., using HTTP redirects or triangle routing).

9

When a client is not actively using the service, however,
policy changes that reassign it to a new datacenter can
proceed without complication.

Datacenter failure can either be transient (e.g., network
or power cables are cut) or permanent (e.g., datacenter
is physically destroyed by an earthquake). Permanent
failures will result in data loss for data that was accepted
and acknowledged but not yet replicated to any other
datacenter. The colocation of clients inside the datacenter,
however, will reduce the amount of externally visible
data loss. Only data that is not yet replicated to another
datacenter, but has been acknowledged to both Eiger’s
clients and meta-clients (e.g., when the browser receives
an Ajax response indicating a status update was posted)
will be visibly lost. Transient datacenter failure will not
result in data loss.

Both transient and permanent datacenter failures will
cause meta-clients to reconnect to different datacen-
ters. After some configured timeout, we expect service
providers to stop trying to redirect those meta-clients to
their original datacenters and to connect them to a new
datacenter with an empty context. This could result in
those meta-clients effectively moving backwards in time.
It would also result in the loss of causal links between the
data they observed in their original datacenter and their
new writes issued to their new datacenter. We expect that
transient datacenter failure will be rare (no ill effects),
transient failure that lasts long enough for redirection to
be abandoned even rarer (causality loss), and permanent
failure even rarer still (data loss).

7 Evaluation

This evaluation explores the overhead of Eiger’s stronger
semantics compared to eventually-consistent Cassandra,
analytically compares the performance of COPS and
Eiger, and shows that Eiger scales to large clusters.

7.1 Implementation
Our Eiger prototype implements everything described in
the paper as 5000 lines of Java added to and modifying
the existing 75000 LoC in Cassandra 1.1 [17, 37]. All of
Eiger’s reads are transactional. We use Cassandra con-
figured for wide-area eventual consistency as a baseline
for comparison. In each local cluster, both Eiger and
Cassandra use consistent hashing to map each key to a
single server, and thus trivially provide linearizability.

In unmodified Cassandra, for a single logical request,
the client sends all of its sub-requests to a single server.
This server splits batch_mutate and multiget_slice
operations from the client that span multiple servers,
sends them to the appropriate server, and re-assembles

the responses for the client. In Eiger, the client library
handles this splitting, routing, and re-assembly directly,
allowing Eiger to save a local RTT in latency and poten-
tially many messages between servers. With this change,
Eiger outperforms unmodified Cassandra in most set-
tings. Therefore, to make our comparison to Cassandra
fair, we implemented an analogous client library that han-
dles the splitting, routing, and re-assembly for Cassandra.
The results below use this optimization.

7.2 Eiger Overheads

We first examine the overhead of Eiger’s causal consis-
tency, read-only transactions, and write-only transactions.
This section explains why each potential source of over-
head does not significantly impair throughput, latency, or
storage; the next sections confirm empirically.

Causal Consistency Overheads. Write operations
carry dependency metadata. Its impact on throughput
and latency is low because each dependency is 16B; the
number of dependencies attached to a write is limited
to its small set of one-hop dependencies; and writes are
typically less frequent. Dependencies have no storage
cost because they are not stored at the server.

Dependency check operations are issued in remote
datacenters upon receiving a replicated write. Limiting
these checks to the write’s one-hop dependencies mini-
mizes throughput degradation. They do not affect client-
perceived latency, occuring only during asynchronous
replication, nor do they add storage overhead.

Read-only Transaction Overheads. Validity-interval
metadata is stored on servers and returned to clients
with read operations. Its effect is similarly small: Only
the 8B EVT is stored, and the 16B of metadata returned
to the client is tiny compared to typical key/column/value
sets.

If second-round reads were always needed, they would
roughly double latency and halve throughput. Fortu-
nately, they occur only when there are concurrent writes
to the requested columns in the local datacenter, which
is rare given the short duration of reads and writes.

Extra-version storage is needed at servers to handle
second-round reads. It has no impact on throughput or
latency, and its storage footprint is small because we
aggressively limit the number of old versions (see §4.3).

Write-only Transaction Overheads. Write transac-
tions write columns twice: once to mark them pending
and once to write the true value. This accounts for about
half of the moderate overhead of write transactions, eval-
uated in §7.5. When only some writes are transactional
and when the writes are a minority of system operations
(as found in prior studies [7, 28]), this overhead has a

10

Latency (ms)
50% 90% 95% 99%

Reads
Cassandra-Eventual 0.38 0.56 0.61 1.13
Eiger 1 Round 0.47 0.67 0.70 1.27
Eiger 2 Round 0.68 0.94 1.04 1.85
Eiger Indirected 0.78 1.11 1.18 2.28
Cassandra-Strong-A 85.21 85.72 85.96 86.77
Cassandra-Strong-B 21.89 22.28 22.39 22.92

Writes
Cassandra-Eventual 0.42 0.63 0.91 1.67Cassandra-Strong-A
Eiger Normal 0.45 0.67 0.75 1.92
Eiger Normal (2) 0.51 0.79 1.38 4.05
Eiger Transaction (2) 0.73 2.28 2.94 4.39
Cassandra-Strong-B 21.65 21.85 21.93 22.29

Table 2: Latency micro-benchmarks.

small effect on overall throughput. The second write
overwrites the first, consuming no space.

Many 2PC-PCI messages are needed for the write-
only algorithm. These messages add 1.5 local RTTs to
latency, but have little effect on throughput: the messages
are small and can be handled in parallel with other steps
in different write transactions.

Indirected second-round reads add an extra local RTT
to latency and reduce read throughput vs. normal second-
round reads. They affect throughput minimally, however,
because they occur rarely: only when the second-round
read arrives when there is a not-yet-committed write-only
transaction on an overlapping set of columns that pre-
pared before the read-only transaction’s effective time.

7.3 Experimental Setup
The first experiments use the shared VICCI testbed [45,
58], which provides users with Linux VServer instances.
Each physical machine has 2x6 core Intel Xeon X5650
CPUs, 48GB RAM, and 2x1GigE network ports.

All experiments are between multiple VICCI sites.
The latency micro-benchmark uses a minimal wide-area
setup with a cluster of 2 machines at the Princeton, Stan-
ford, and University of Washington (UW) VICCI sites.
All other experiments use 8-machine clusters in Stanford
and UW and an additional 8 machines in Stanford as
clients. These clients fully load their local cluster, which
replicates its data to the other cluster.

The inter-site latencies were 88ms between Princeton
and Stanford, 84ms between Princeton and UW, and
20ms between Stanford and UW. Inter-site bandwidth
was not a limiting factor.

Every datapoint in the evaluation represents the me-
dian of 5+ trials. Latency micro-benchmark trials are
30s, while all other trials are 60s. We elide the first and
last quarter of each trial to avoid experimental artifacts.

��

����

����

����

����

����

����

�� �� �� �� �� �� �� ��

�
�
��
�
�
�
�
�
��
��
��
�
��
�
�
�
��
�
�
�

�����������������������

����������� � � ��

Figure 7: Throughput of an 8-server cluster for write
transactions spread across 1 to 8 servers, with 1, 5,
or 10 keys written per server. The dot above each
bar shows the throughput of a similarly-structured
eventually-consistent Cassandra write.

7.4 Latency Micro-benchmark
Eiger always satisfies client operations within a local
datacenter and thus, fundamentally, is low-latency. To
demonstrate this, verify our implementation, and com-
pare with strongly-consistent systems, we ran an experi-
ment to compare the latency of read and write operations
in Eiger vs. three Cassandra configurations: eventual
(R=1, W=1), strong-A (R=3, W=1), and strong-B (R=2,
W=2), where R and W indicate the number of datacenters
involved in reads and writes.5

The experiments were run from UW with a single
client thread to isolate latency differences. Table 2 re-
ports the median, 90%, 95%, and 99% latencies from op-
erations on a single 1B column. For comparison, two 1B
columns, stored on different servers, were also updated
together as part of transactional and non-transactional
“Eiger (2)” write operations.

All reads in Eiger—one-round, two-round, and worst-
case two-round-and-indirected reads—have median la-
tencies under 1ms and 99% latencies under 2.5ms.
atomic_mutate operations are slightly slower than
batch_mutate operations, but still have median latency
under 1ms and 99% under 5ms. Cassandra’s strongly
consistent operations fared much worse. Configuration
“A” achieved fast writes, but reads had to access all dat-
acenters (including the ~84ms RTT between UW and
Princeton); “B” suffered wide-area latency for both reads
and writes (as the second datacenter needed for a quorum
involved a ~20ms RTT between UW and Stanford).

7.5 Write Transaction Cost
Figure 7 shows the throughput of write-only transactions,
and Cassandra’s non-atomic batch mutates, when the

5Cassandra single-key writes are not atomic across different nodes,
so its strong consistency requires read repair (write-back) and R>N/2.

11

Parameter Range Default Facebook
50% 90% 99%

Value Size (B) 1-4K 128 16 32 4K
Cols/Key for Reads 1-32 5 1 2 128
Cols/Key for Writes 1-32 5 1 2 128
Keys/Read 1-32 5 1 16 128
Keys/Write 1-32 5 1
Write Fraction 0-1.0 .1 .002
Write Txn Fraction 0-1.0 .5 0 or 1.0
Read Txn Fraction 1.0 1.0 1.0

Table 3: Dynamic workload generator parameters.
Range is the space covered in the experiments; Face-
book describes the distribution for that workload.

keys they touch are spread across 1 to 8 servers. The ex-
periment used the default parameter settings from Table 3
with 100% writes and 100% write transactions.

Eiger’s throughput remains competitive with batch
mutates as the transaction is spread across more servers.
Additional servers only increase 2PC-PCI costs, which
account for less than 10% of Eiger’s overhead. About
half of the overhead of write-only transactions comes
from double-writing columns; most of the remainder is
due to extra metadata. Both absolute and Cassandra-
relative throughput increase with the number of keys
written per server, as the coordination overhead remains
independent of the number of columns.

7.6 Dynamic Workloads
We created a dynamic workload generator to explore the
space of possible workloads. Table 3 shows the range and
default value of the generator’s parameters. The results
from varying each parameter while the others remain at
their defaults are shown in Figure 8.

Space constraints permit only a brief review of these
results. Overhead decreases with increasing value size,
because metadata represents a smaller portion of message
size. Overhead is relatively constant with increases in the
columns/read, columns/write, keys/read, and keys/write
ratios because while the amount of metadata increases,
it remains in proportion to message size. Higher frac-
tions of write transactions (within an overall 10% write
workload) do not increase overhead.

Eiger’s throughput is overall competitive with the
eventually-consistent Cassandra baseline. With the de-
fault parameters, its overhead is 15%. When they are
varied, its overhead ranges from 0.5% to 25%.

7.7 Facebook Workload
For one realistic view of Eiger’s overhead, we param-
eterized a synthetic workload based upon Facebook’s
production TAO system [53]. Parameters for value sizes,

���
���
���
���
���
���

�� �� ��� ���� �����
��������������

��������� �����

���
���
���
���
���
���

�� �� �� �� ��� ���
������������

���
���
���
���
���
���

�� �� �� �� ��� ���

�
�
��
�
�
�
�
�
�

�������������

���
���
���
���
���
���

�� �� �� �� ��� ���
���������

���
���
���
���
���
���

�� �� �� �� ��� ���

�
�
��

�
���
�
�

����������

���
���
���
���
���
���

�� ���� ���� ���� ���� ��
��������������

���
���
���
���
���
���

�� ���� ���� ���� ���� ��
��������������������������

Figure 8: Results from exploring our dynamic-
workload generator’s parameter space. Each exper-
iment varies one parameter while keeping all others
at their default value (indicated by the vertical line).
Eiger’s throughput is normalized against eventually-
consistent Cassandra.

columns/key, and keys/operation are chosen from dis-
crete distributions measured by the TAO team. We show
results with a 0% write transaction fraction (the actual
workload, because TAO lacks transactions), and with
100% write transactions. Table 3 shows the heavy-tailed
distributions’ 50th, 90th, and 99th percentiles.

Table 4 shows that the throughput for Eiger is within
7% of eventually-consistent Cassandra. The results for
0% and 100% write transactions are effectively identical
because writes are such a small part of the workload. For
this real-world workload, Eiger’s causal consistency and
stronger semantics do not impose significant overhead.

12

Ops/sec Keys/sec Columns/sec

Cassandra 23,657 94,502 498,239
Eiger 22,088 88,238 466,844
Eiger All Txns 22,891 91,439 480,904
Max Overhead 6.6% 6.6% 6.3%

Table 4: Throughput for the Facebook workload.

7.8 Performance vs. COPS
COPS and Eiger provide different data models and are
implemented in different languages, so a direct empirical
comparison is not meaningful. We can, however, intuit
how Eiger’s algorithms perform in the COPS setting.

Both COPS and Eiger achieve low latency around
1ms. Second-round reads would occur in COPS and
Eiger equally often, because both are triggered by the
same scenario: concurrent writes in the local datacenter
to the same keys. Eiger experiences some additional
latency when second-round reads are indirected, but this
is rare (and the total latency remains low). Write-only
transactions in Eiger would have higher latency than
their non-atomic counterparts in COPS, but we have also
shown their latency to be very low.

Beyond having write transactions, which COPS did
not, the most significant difference between Eiger and
COPS is the efficiency of read transactions. COPS’s read
transactions ("COPS-GT") add significant dependency-
tracking overhead vs. the COPS baseline under certain
conditions. In contrast, by tracking only one-hop de-
pendencies, Eiger avoids the metadata explosion that
COPS’ read-only transactions can suffer. We expect
that Eiger’s read transactions would operate roughly as
quickly as COPS’ non-transactional reads, and the sys-
tem as a whole would outperform COPS-GT despite
offering both read- and write-only transactions and sup-
porting a much more rich data model.

7.9 Scaling
To demonstrate the scalability of Eiger we ran the Face-
book TAO workload on N client machines that are fully
loading an N-server cluster that is replicating writes to
another N-server cluster, i.e., the N=128 experiment
involves 384 machines. This experiment was run on
PRObE’s Kodiak testbed [47], which provides an Emu-
lab [59] with exclusive access to hundreds of machines.
Each machine has 2 AMD Opteron 252 CPUS, 8GM
RAM, and an InfiniBand high-speed interface. The bot-
tleneck in this experiment is server CPU.

Figure 9 shows the throughput for Eiger as we scale N
from 1 to 128 servers/cluster. The bars show throughput
normalized against the throughput of the 1-server clus-
ter. Eiger scales out as the number of servers increases,
though this scaling is not linear from 1 to 8 servers/cluster.

Figure 9: Normalized throughput of N-server clus-
ters for the Facebook TAO workload. Bars are nor-
malized against the 1-server cluster.

The 1-server cluster benefits from batching; all opera-
tions that involve multiple keys are executed on a single
machine. Larger clusters distribute these multi-key oper-
ations over multiple servers and thus lose batching. This
mainly affects scaling from 1 to 8 servers/cluster (72%
average increase) and we see almost perfect linear scaling
from 8 to 128 servers/cluster (96% average increase).

8 Related Work

A large body of research exists about stronger consis-
tency in the wide area. This includes classical research
about two-phase commit protocols [51] and distributed
consensus (e.g., Paxos [39]). As noted earlier, protocols
and systems that provide the strongest forms of consis-
tency are provably incompatible with low latency [8, 42].
Recent examples includes Megastore [9], Spanner [22],
and Scatter [31], which use Paxos in the wide-area;
PNUTS [21], which provides sequential consistency on
a per-key basis and must execute in a key’s specified
primary datacenter; and Gemini [40], which provides
RedBlue consistency with low latency for its blue op-
erations, but high latency for its globally-serialized red
operations. In contrast, Eiger guarantees low latency.

Many previous system designs have recognized the
utility of causal consistency, including Bayou [44], lazy
replication [36], ISIS [12], causal memory [2], and
PRACTI [10]. All of these systems require single-
machine replicas (datacenters) and thus are not scalable.

Our previous work, COPS [43], bears the closest sim-
ilarity to Eiger, as it also uses dependencies to provide
causal consistency, and targets low-latency and scalable
settings. As we show by comparing these systems in
Table 5, however, Eiger represents a large step forward
from COPS. In particular, Eiger supports a richer data
model, has more powerful transaction support (whose al-
gorithms also work with other consistency models), trans-
mits and stores fewer dependencies, eliminates the need

13

COPS COPS-GT Eiger

Data Model Key Value Key Value Column Fam
Consistency Causal Causal Causal

Read-Only Txn No Yes Yes
Write-Only Txn No No Yes

Txn Algos Use - Deps Logic. Time
Deps On Values Values Operations

Transmitted Deps One-Hop All-GarbageC One-Hop
Checked Deps One-Hop Nearest One-Hop

Stored Deps None All-GarbageC None
GarbageC Deps Unneeded Yes Unneeded
Versions Stored One Few Fewer

Table 5: Comparing COPS and Eiger.

for garbage collection, stores fewer old versions, and is
not susceptible to availability problems from metadata
explosion when datacenters either fail, are partitioned, or
suffer meaningful slow-down for long periods of time.

The database community has long supported consis-
tency across multiple keys through general transactions.
In many commercial database systems, a single primary
executes transactions across keys, then lazily sends its
transaction log to other replicas, potentially over the
wide-area. In scale-out designs involving data partition-
ing (or “sharding”), these transactions are typically lim-
ited to keys residing on the same server. Eiger does not
have this restriction. More fundamentally, the single pri-
mary approach inhibits low-latency, as write operations
must be executed in the primary’s datacenter.

Several recent systems reduce the inter-datacenter
communication needed to provide general transactions.
These include Calvin [56], Granola [24], MDCC [35],
Orleans [15], and Walter [52]. In their pursuit of general
transactions, however, these systems all choose consis-
tency models that cannot guarantee low-latency opera-
tions. MDCC and Orleans acknowledge this with options
to receive fast-but-potentially-incorrect responses.

The implementers of Sinfonia [1], TxCache [46],
HBase [32], and Spanner [22], also recognized the im-
portance of limited transactions. Sinfonia provides “mini”
transactions to distributed shared memory and TXCache
provides a consistent but potentially stale cache for a rela-
tional database, but both only considers operations within
a single datacenter. HBase includes read- and write-only
transactions within a single “region,” which is a subset of
the capacity of a single node. Spanner’s read-only trans-
actions are similar to the original distributed read-only
transactions [18], in that they always take at least two
rounds and block until all involved servers can guarantee
they have applied all transactions that committed before
the read-only transaction started. In comparison, Eiger is
designed for geo-replicated storage, and its transactions
can execute across large cluster of nodes, normally only
take one round, and never block.

The widely used MVCC algorithm [11, 49] and Eiger
maintain multiple versions of objects so they can provide
clients with a consistent view of a system. MVCC pro-
vides full snapshot isolation, sometimes rejects writes,
has state linear in the number of recent reads and writes,
and has a sweeping process that removes old versions.
Eiger, in contrast, provides only read-only transactions,
never rejects writes, has at worst state linear in the num-
ber of recent writes, and avoids storing most old versions
while using fast timeouts for cleaning the rest.

9 Conclusion
Impossibility results divide geo-replicated storage sys-
tems into those that can provide the strongest forms of
consistency and those that can guarantee low latency.
Eiger represents a new step forward on the low latency
side of that divide by providing a richer data model and
stronger semantics. Our experimental results demon-
strate that the overhead of these properties compared to
a non-transactional eventually-consistent baseline is low,
and we expect that further engineering and innovations
will reduce it almost entirely.

This leaves applications with two choices for geo-
replicated storage. Strongly-consistent storage is re-
quired for applications with global invariants, e.g., bank-
ing, where accounts cannot drop below zero. And Eiger-
like systems can serve all other applications, e.g., social
networking (Facebook), encyclopedias (Wikipedia), and
collaborative filtering (Reddit). These applications no
longer need to settle for eventual consistency and can
instead make sense of their data with causal consistency,
read-only transactions, and write-only transactions.

Acknowledgments. The authors would like to thank
the NSDI program committee and especially our shep-
herd, Ethan Katz-Bassett, for their helpful comments.
Sid Sen, Ariel Rabkin, David Shue, and Xiaozhou Li
provided useful comments on this work; Sanjeev Ku-
mar, Harry Li, Kaushik Veeraraghavan, Jack Ferris, and
Nathan Bronson helped us obtain the workload charac-
teristics of Facebook’s TAO system; Sapan Bhatia and
Andy Bavier helped us run experiments on the VICCI
testbed; and Gary Sandine and Andree Jacobson helped
with the PRObE Kodiak testbed.

This work was supported by funding from National
Science Foundation Awards CSR-0953197 (CAREER),
CCF-0964474, MRI-1040123 (VICCI), CNS-1042537
and 1042543 (PRObE), and the Intel Science and Tech-
nology Center for Cloud Computing.

14

References

[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch,
and C. Karamanolis. Sinfonia: A new paradigm for
building scalable distributed systems. ACM TOCS,
27(3), 2009.

[2] M. Ahamad, G. Neiger, P. Kohli, J. Burns, and
P. Hutto. Causal memory: Definitions, implementa-
tion, and programming. Distributed Computing, 9
(1), 1995.

[3] P. Alsberg and J. Day. A principle for resilient
sharing of distributed resources. In Conf. Software
Engineering, Oct. 1976.

[4] Amazon. Simple storage service. http://aws.
amazon.com/s3/, 2012.

[5] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phan-
ishayee, L. Tan, and V. Vasudevan. FAWN: A fast
array of wimpy nodes. In SOSP, Oct. 2009.

[6] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A.
Patterson, D. S. Roselli, and R. Y. Wang. Serverless
network file systems. ACM TOCS, 14(1), 1996.

[7] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In SIGMETRICS, 2012.

[8] H. Attiya and J. L. Welch. Sequential consistency
versus linearizability. ACM TOCS, 12(2), 1994.

[9] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khor-
lin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and
V. Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services. In
CIDR, Jan. 2011.

[10] N. Belaramani, M. Dahlin, L. Gao, A. Nayate,
A. Venkataramani, P. Yalagandula, and J. Zheng.
PRACTI replication. In NSDI, May 2006.

[11] P. A. Bernstein and N. Goodman. Concurrency
control in distributed database systems. ACM Com-
puter Surveys, 13(2), June 1981.

[12] K. P. Birman and R. V. Renesse. Reliable Dis-
tributed Computing with the ISIS Toolkit. IEEE
Comp. Soc. Press, 1994.

[13] W. Bolosky, D. Bradshaw, R. Haagens, N. Kusters,
and P. Li. Paxos replicated state machines as the
basis of a high-performance data store. In NSDI,
2011.

[14] N. G. Bronson, J. Casper, H. Chafi, and K. Oluko-
tun. A practical concurrent binary search tree. In
PPoPP, Jan. 2010.

[15] S. Bykov, A. Geller, G. Kliot, J. R. Larus,
R. Pandya, and J. Thelin. Orleans: cloud com-
puting for everyone. In SOCC, 2011.

[16] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, et al. Windows Azure Storage: a
highly available cloud storage service with strong
consistency. In SOSP, 2011.

[17] Cassandra. http://cassandra.apache.org/,
2012.

[18] A. Chan and R. Gray. Implementing distributed
read-only transactions. IEEE Trans. Info. Theory,
11(2), 1985.

[19] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage sys-
tem for structured data. ACM TOCS, 26(2), 2008.

[20] D. R. Cheriton and D. Skeen. Understanding the
limitations of causally and totally ordered commu-
nication. In SOSP, Dec. 1993.

[21] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen,
N. Puz, D. Weaver, and R. Yerneni. PNUTS: Ya-
hoo!’s hosted data serving platform. In VLDB, Aug.
2008.

[22] J. C. Corbett, J. Dean, M. Epstein, A. Fikes,
C. Frost, J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,
E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Wood-
ford. Spanner: Google’s globally-distributed
database. In OSDI, Oct 2012.

[23] CouchDB. http://couchdb.apache.org/,
2012.

[24] J. Cowling and B. Liskov. Granola: low-overhead
distributed transaction coordination. In USENIX
ATC, Jun 2012.

[25] P. Dixon. Shopzilla site redesign: We get what we
measure. Velocity Conference Talk, 2009.

[26] eBay. Personal communication, 2012.

[27] Facebook. Personal communication, 2011.

[28] J. Ferris. The TAO graph database. CMU PDL
Talk, April 2012.

[29] B. Fitzpatrick. Memcached: a distributed mem-
ory object caching system. http://memcached.
org/, 2011.

[30] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In SOSP, Oct. 2003.

15

http://aws.amazon.com/s3/

http://aws.amazon.com/s3/

http://cassandra.apache.org/

http://couchdb.apache.org/

http://memcached.org/

http://memcached.org/

[31] L. Glendenning, I. Beschastnikh, A. Krishnamurthy,
and T. Anderson. Scalable consistency in Scatter.
In SOSP, Oct. 2011.

[32] HBase. http://hbase.apache.org/, 2012.

[33] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
TOPLAS, 12(3), 1990.

[34] D. Karger, E. Lehman, F. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing
and random trees: Distributed caching protocols
for relieving hot spots on the World Wide Web. In
STOC, May 1997.

[35] T. Kraska, G. Pang, M. J. Franklin, and S. Mad-
den. MDCC: Multi-data center consistency. CoRR,
abs/1203.6049, 2012.

[36] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat.
Providing high availability using lazy replication.
ACM TOCS, 10(4), 1992.

[37] A. Lakshman and P. Malik. Cassandra – a decen-
tralized structured storage system. In LADIS, Oct.
2009.

[38] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Comm. ACM, 21(7),
1978.

[39] L. Lamport. The part-time parliament. ACM TOCS,
16(2), 1998.

[40] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça,
and R. Rodrigues. Making geo-replicated systems
fast as possible, consistent when necessary. In
OSDI, Oct 2012.

[41] G. Linden. Make data useful. Stanford CS345 Talk,
2006.

[42] R. J. Lipton and J. S. Sandberg. PRAM: A scal-
able shared memory. Technical Report TR-180-88,
Princeton Univ., Dept. Comp. Sci., 1988.

[43] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with COPS. In
SOSP, Oct. 2011.

[44] K. Petersen, M. Spreitzer, D. Terry, M. Theimer,
and A. Demers. Flexible update propagation for
weakly consistent replication. In SOSP, Oct. 1997.

[45] L. Peterson, A. Bavier, and S. Bhatia. VICCI: A
programmable cloud-computing research testbed.
Technical Report TR-912-11, Princeton Univ., Dept.
Comp. Sci., 2011.

[46] D. R. Ports, A. T. Clements, I. Zhang, S. Madden,
and B. Liskov. Transactional consistency and auto-

matic management in an application data cache. In
OSDI, Oct. 2010.

[47] PRObE. http://www.nmc-probe.org/, 2013.

[48] Redis. http://redis.io/, 2012.

[49] D. P. Reed. Naming and Synchronization in a De-
centralized Computer Systems. PhD thesis, Mass.
Inst. of Tech., 1978.

[50] E. Schurman and J. Brutlag. The user and business
impact of server delays, additional bytes, and http
chunking in web search. Velocity Conference Talk,
2009.

[51] D. Skeen. A formal model of crash recovery in a
distributed system. IEEE Trans. Info. Theory, 9(3),
May 1983.

[52] Y. Sovran, R. Power, M. K. Aguilera, and J. Li.
Transactional storage for geo-replicated systems.
In SOSP, Oct. 2011.

[53] TAO. A read-optimized globally distributed store
for social graph data. Under Submission, 2012.

[54] J. Terrace and M. J. Freedman. Object storage on
CRAQ: High-throughput chain replication for read-
mostly workloads. In USENIX ATC, June 2009.

[55] R. H. Thomas. A majority consensus approach to
concurrency control for multiple copy databases.
ACM Trans. Database Sys., 4(2), 1979.

[56] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi. Calvin: fast distributed
transactions for partitioned database systems. In
SIGMOD, May 2012.

[57] R. van Renesse and F. B. Schneider. Chain replica-
tion for supporting high throughput and availability.
In OSDI, Dec. 2004.

[58] VICCI. http://vicci.org/, 2012.

[59] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environ-
ment for distributed systems and networks. In
OSDI, Dec. 2002.

16

http://hbase.apache.org/

http://www.nmc-probe.org/

http://redis.io/

http://vicci.org/

			Introduction

			Background

			Web Service Architecture

			Column-Family Data Model

			Causal Consistency

			Eiger System Design

			Achieving Causal Consistency

			Client Library

			Basic Operations

			Read-Only Transactions

			Read-only Transaction Algorithm

			Two-Round Read Protocol

			Limiting Old Value Storage

			Read Transactions for Linearizability

			Write-Only Transactions

			Write-Only Transaction Algorithm

			Local Write-Only Transactions

			Replicated Write-Only Transactions

			Reads when Transactions are Pending

			Failure

			Evaluation

			Implementation

			Eiger Overheads

			Experimental Setup

			Latency Micro-benchmark

			Write Transaction Cost

			Dynamic Workloads

			Facebook Workload

			Performance vs. COPS

			Scaling

			Related Work

			Conclusion

frenetic-ieeecomm13.pdf

1

Languages for Software-Defined Networks
Nate Foster∗, Michael J. Freedman†, Arjun Guha∗, Rob Harrison‡,

Naga Praveen Katta†, Christopher Monsanto†, Joshua Reich†, Mark Reitblatt∗,
Jennifer Rexford†, Cole Schlesinger†, Alec Story∗, and David Walker†
∗Cornell University †Princeton University ‡U.S. Military Academy

Abstract—Modern computer networks perform a bewildering
array of tasks, from routing and traffic monitoring, to access
control and server load balancing. Yet, managing these networks
is unnecessarily complicated and error-prone, due to a hetero-
geneous mix of devices (e.g., routers, switches, firewalls, and
middleboxes) with closed and proprietary configuration inter-
faces. Software-Defined Networks (SDN) are poised to change
this by offering a clean and open interface between networking
devices and the software that controls them. In particular, many
commercial switches support the OpenFlow protocol, and a
number of campus, data-center, and backbone networks have
deployed the new technology. Yet, while SDN makes it possible to
program the network, it does not make it easy. Today’s OpenFlow
controllers offer low-level APIs that mimic the underlying switch
hardware. To reach SDN’s full potential, we need to identify
the right higher-level abstractions for creating (and composing)
applications. In the Frenetic project, we are designing simple and
intuitive abstractions for programming the three main stages
of network management: (i) monitoring network traffic, (ii)
specifying and composing packet-forwarding policies, and (iii)
updating policies in a consistent way. Overall, these abstractions
make it dramatically easier for programmers to write and reason
about SDN applications.

I. INTRODUCTION

Traditional networks are built out of special-purpose devices
running distributed protocols that provide functionality such
as topology discovery, routing, traffic monitoring, and access
control. These devices have a tightly-integrated control and
data plane, and network operators must separately configure
every protocol on each individual device. Recent years, how-
ever, have seen growing interest in software-defined networks
(SDNs), in which a logically-centralized controller manages
the packet-processing functionality of a distributed collection
of switches. SDNs make it possible for programmers to
control the behavior of the network directly, by configuring
the packet-forwarding rules installed on each switch [1]. Note
that although the programmer has the illusion of centralized
control, the controller is often replicated and distributed for
scalability and fault tolerance [2].

SDNs can both simplify existing applications and also serve
as a platform for developing new ones. For example, to
implement shortest-path routing, the controller can calculate
the forwarding rules for each switch by running Dijkstra’s
algorithm on the graph of the network topology instead of
using a more complicated distributed protocol [3]. To conserve
energy, the controller can selectively shut down links or even
whole switches after directing traffic along other paths [4]. To
enforce fine-grained access control policies, the controller can
consult an external authentication server and install custom

forwarding paths for each user [5]. To balance the load
between back-end servers in a data center, the controller can
split flows over several server replicas and migrate flows to
new paths in response to congestion [6], [7].

But although SDNs makes it possible to program the net-
work, it does not make it easy. Protocols such as OpenFlow [1]
expose an interface that closely matches the features of the
underlying switch hardware. Controllers such as NOX [8],
Beacon [9], and Floodlight [10] support the same low-level
interface, which forces applications to be implemented using
programs that manipulate the state of individual devices. Sup-
porting multiple tasks at the same time—such as routing and
access control—is extremely difficult, since the application
must ultimately install a single set of rules on the underlying
switches. In addition, a network is a distributed system, and all
of the usual complications arise—in particular, control mes-
sages sent to switches are processed asynchronously. Overall,
writing applications for today’s SDN controller platforms is a
tedious exercise in low-level distributed programming.

The goal of the Frenetic project is to raise the level of
abstraction for programming SDNs. To replace the low-level
imperative interfaces available today, Frenetic offers a suite of
declarative abstractions for querying network state, defining
forwarding policies, and updating policies in a consistent way.
These constructs are designed to be modular so that individ-
ual policies can be written in isolation and later composed
with other components to create sophisticated policies. This
is made possible in part by the design of the constructs
themselves, and in part by the underlying run-time system,
which implements them by compiling them down to low-
level OpenFlow forwarding rules. Our emphasis on modularity
and composition—the key principles behind effective design
of complicated software systems—is the key feature that
distinguishes Frenetic from other SDN controllers.

Our initial work on Frenetic rethinks how to support the
three main pieces of the “control loop” for running a network:

• Querying network state: Frenetic offers a high-level query
language for subscribing to streams of information about
network state, including traffic statistics and topology
changes. The run-time system handles the details of
polling switch counters, aggregating statistics, and re-
sponding to events.

• Expressing policies: Frenetic offers a high-level policy
language that makes it easy for programs to specify
the packet-forwarding behavior of the network. Different
modules may be responsible for (say) topology discovery,
routing, load balancing, and access control. Individual

2

modules register these policies with the run-time system,
which automatically composes, compiles, and optimizes
them with programmer-specified queries.

• Reconfiguring the network: Frenetic offers abstractions
for updating the global configuration of the network.
These abstractions allow a programmer to reconfigure
the network without having to manually install and unin-
stall packet-forwarding rules on individual switches—a
tedious and error-prone process. The run-time system
ensures that during an update, all packets (or flows) are
processed with the old policy or the new policy, and
never a mixture of the two. This guarantee ensures that
important invariants such as loop freedom, connectivity,
and access control are never violated during periods of
transition between policies.

Together, these abstractions enable programmers to focus
on high-level network management goals, instead of details
related to handling low-level rules and events. The following
sections describe each of these components in more detail.
Readers interested in using the system may download our
compiler, which is available online [11]. The Frenetic web site
also contains technical papers and reports which discuss the
language design, compiler infrastructure, update mechanisms,
and other technology in further detail [12].

II. QUERYING NETWORK STATE

Many SDN programs react to changes in network state,
such as topology changes, link failures, traffic load, or the
arrival of particular packets at specific switches. To monitor
traffic, the controller can poll the counters associated with the
rules installed on switches, which maintain a counter for every
forwarding rule that keeps track of the number of packets and
bytes processed using that rule. However, programmers must
ensure that the rules installed on switches are fine-grained
enough to collect the desired traffic statistics. For example, to
monitor the total amount of web traffic, the programmer must
install rules that process (and count) traffic involving TCP port
80 separately from all other traffic. Managing these rules is
tedious and anti-modular—rules installed by one module may
be too coarse to be executed side-by-side with rules installed
by a different module.

Frenetic’s query language allows programmers to express
what they want to monitor, leaving the details of how to
actually collect the necessary traffic statistics to the run-time
system. This not only makes it easy for programmers to
specify a single query, if that is all they need, but also allows
them to write many different queries without worrying about
their interactions—the run-time system selects rules at the
appropriate granularity to satisfy all of the queries registered
with the system.

A. Query Language Design Considerations

Frenetic’s query language allows programmers to control
the information they receive using a collection of high-level
operators for classifying, filtering, transforming, and aggregat-
ing the stream of packets traversing the network.

High-level predicates: Many monitor applications classify
traffic using packet headers. For example, suppose the pro-
grammer wants to tally all web server traffic excluding the host
with IP source address 1.2.3.4. To represent the negation
in a switch flow table, we would need to use two rules—
a high-priority rule matching packets from 1.2.3.4 with
TCP source port 80, and a lower-priority rule matching all
remaining traffic with TCP source port 80. Frenetic allows
programmers to specify predicates like “srcip!=1.2.3.4
& srcport=80,” leaving the details of how to construct
and optimize switch-level rules to the run-time system. In
general, Frenetic programmers can specify sets of packets from
primitive predicates over standard OpenFlow headers (like
srcip, dstip, vlan, etc.), their location in the network
(switch and ingress port), and ordinary set-theoretic operators
(union, intersection, difference, complement, etc.).

Dynamic unfolding: Switches have limited space for rules,
which can make it difficult to install all the necessary rules
in advance. For example, suppose a programmer wants to
collect a histogram of traffic by source IP address. Rather
than installing rules for each of the 232 possible IP addresses, a
typical SDN application would install rules reactively as traffic
arrives from different sources. In Frenetic, the programmer can
register a query that uses operators such as “Select(bytes)”
and “GroupBy([srcip]),” and the run-time system dynamically
generates the appropriate rules. To do this, it initially sends all
traffic to the controller. Upon receiving the first packet from
a specific source IP address, the run-time system generates
and installs a rule matching future traffic from that host. After
receiving a packet from another source IP address, the run-
time system generates and installs a second rule. These rules
process future traffic from those hosts using efficient hardware,
and the counters maintain the necessary information needed to
implement the query.

Limiting traffic: A common idiom in SDN programming
is to send the first packet of a traffic aggregate to the
controller, and reactively install rules for handling future
such packets. However, since the controller and the switch
do not communicate instantaneously, multiple packets may
arrive at the controller before the rules are installed. Rather
than force programmers to handle these unexpected packets,
Frenetic allows a query to specify the number of packets it
wants to see using operators such as “Limit(1)”. The run-time
system automatically handles any extra packets by applying
the forwarding policy registered by the application.

Polling and combining statistics: Many programs need
to receive periodic information about traffic statistics. Rather
than requiring the programs to manually poll switch-level
counters, and register callbacks to query those counters again
in the future, Frenetic queries can specify a query interval
using operators such as “Every(60).” The run-time system
automatically queries the traffic counters periodically and
aggregates the resulting values, returning a stream of results
to the application.

B. Example Frenetic Queries
To illustrate how Frenetic supports querying of network

state, we present two simple examples. These example use

3

a syntax that closely resembles SQL, including constructs for
selecting, filtering, splitting, and aggregating the streams of
packets flowing through the network.

MAC learning: An Ethernet switch performs MAC learning
to identify what interface to use to reach a host. MAC learning
can be expressed in Frenetic as follows:

Select(packets) *
GroupBy([srcmac]) *
SplitWhen([inport]) *
Limit(1)

The Select(packets) clause states that the program
needs to receive actual packets (as opposed to traffic statistics).
The GroupBy([srcmac]) subdivides the set of queried
packets into subsets based on the srcmac header field,
resulting in one subset for all packets with the same source
MAC address. The SplitWhen([inport]) clause, like
a GroupBy, subdivides the set of selected packets into
subsets; however, whereas GroupBy produces one subset
of all packets with particular values for the given header
fields, SplitWhen([inport]) does not—it generates a
new subset each time the header values change (e.g., when
the inport changes). Together, the GroupBy([srcmac])
and SplitWhen([inport]) clauses state that the program
wants to receive a packet only when a source MAC address
appears at a new ingress port on the switch. The Limit(1)
clause says that the program only wants to receive the first such
packet, rather than all packets from that source MAC address
at the new input port. The result is a stream of packets that
the program can use to update a table mapping each MAC
address to the appropriate ingress port.

Traffic histogram: As another example, consider the fol-
lowing query, which measures the traffic volume by destination
IP address on a particular link:

Select(bytes) *
Where(inport=2 & srcport=80) *
GroupBy([srcip]) *
Every(60)

The Select(bytes) clause states that the program wants
to receive the total number of bytes of traffic, rather
than the packets themselves. The Where(inport=2 &
srcport=80) clause restricts the query to Web traf-
fic arriving on ingress port 2 on the switch. The
GroupBy([srcip]) states that the program wants to aggre-
gate traffic based on the source IP address. The Every(60)
says that the traffic counts should be collected every 60
seconds. The result is a stream of traffic statistics that the
program can use as input to any other control logic.

Frenetic’s query language is expressive, but also gives the
programmer a reasonable sense of the cost of evaluating a
query. For example, the MAC-learning query sends a packet
to the controller whenever a host appears at a new input port,
whereas the traffic-measurement query sends a packet to the
controller to generate a forwarding rule, and subsequently
polls the counter associated with that rule once per minute.
The run-time system takes care of the details of installing
rules in the switches. For the MAC-learning query, the run-

time system initially directs all packets to the controller, but
gradually installs packet-forwarding rules (as specified by the
controller program) after the first packet of a new MAC
address has been seen. If additional packets arrive at the
controller—say, because of delays in installing these rules—
the run-time system handles these packets automatically, rather
than exposing them to the controller program. Similarly, for
the traffic-monitoring query, the run-time system installs rules
that match on destination IP addresses, to ensure the switches
maintain separate counters for different IP addresses.

III. COMPOSING NETWORK POLICIES

Most networks perform multiple tasks, such as routing,
monitoring, and access control. Ideally, programmers would
be able to implement these tasks independently, using separate
modules. But the programming interfaces available today make
this difficult, since packet-handling rules installed by one
module often interfere with overlapping rules installed by
another module. Frenetic’s policy language has a number of
features that are designed to make it easy to construct and
combine policies in a modular way.

A. Creating Modular Programs

As an example, consider a simple program that combines
repeater functionality (i.e., code for forwarding packets that
arrive in one interface out the other) with web-traffic mon-
itoring functionality. Abstractly, these tasks are completely
orthogonal, so we should be able to implement them as
independent modules and combine them into a program that
provides both pieces of functionality.

Suppose that the repeater is implemented by a module that
generates rules that match all traffic coming in on ingress
port 1 and that forward it to output 2, and vice versa. The
monitoring component is implemented by a rule that matches
all traffic with TCP source port 80 arriving on ingress port
2. The monitoring component does not care how packets
matching the rule are forwarded—it only needs to access the
counters associated with the rule.

Now, consider a Python program, roughly following the
NOX controller API, that combines these two components.

def switch_join(s):
pat1 = {inport:1}
pat2web = {inport:2, srcport:80}
pat2 = {inport:2}
install(s, pat1, DEFAULT, [fwd(2)])
install(s, pat2web, HIGH, [fwd(1)])
install(s, pat2, DEFAULT, [fwd(1)])
query_stats(s, pat2web)

def stats_in(s, xid, pat, pkts, bytes):
print bytes
sleep(30)
query_stats(s, pat)

When a switch joins the network, the controller invokes the
switch join event handler, which installs three rules to
handle (i) traffic arriving on ingress port 1, (ii) web traffic

4

arriving on ingress port 2, and (iii) non-web traffic arriving
on ingress port 2. The second rule has HIGH priority, so the
web traffic matches this rule rather than the lower-priority third
rule; this ensures the switch correctly collects traffic statistics
for web traffic. Note that, in isolation, the pat2 pattern would
match all incoming traffic, including the web traffic. But the
presence of the higher-priority pat2web rule ensures that
only non-web traffic matches the pat2 pattern. Having non-
web traffic “fall through” to this lower-priority rule is a much
more concise way to represent the forwarding policy than (say)
having separate rules for every possible TCP source port.

The call to query stats generates a request for the
counters associated with the pat2web rule. When the con-
troller receives the reply, it invokes the stats in handler.
This function prints the statistics polled on the previous
iteration of the loop, waits 30 seconds, and then issues a
request to the switch for statistics matching the same rule.

The interesting aspect of this program is that it is a “mash-
up” of the logic for the repeater and the monitor. The first
and third rules come from the repeater program, and the
second rule and the stats in handler from the monitoring
program. The second rule needs HIGH priority (to ensure
the correct functioning of the monitoring logic) and actions
[fwd(1)] (to ensure the correct functioning of the repeater
logic). Ideally we would be able to tease apart the code for
the monitor and repeater and place each in a separate module.
This would allow the monitor to be reused with many dif-
ferent forwarding policies, and the repeater to be reused with
many different monitoring queries. Unfortunately, doing this
separation is impossible in NOX and other similar controller
platforms—both the monitoring specification and forwarding
specification are too tightly-coupled to the OpenFlow interface
for manipulating low-level rules to be separated or abstracted
out. Consequently, even for this simple example, the logic
becomes quite complicated, as the programmer must think
about multiple tasks (and their interactions) at the same time.
In more sophisticated examples, the programmer would need
to use multiple levels of priorities, and perform even more
complex combinations of policies.

By contrast, Frenetic’s policy language makes it easy for
programmers to write and compose independent modules.
Here is the same program implemented in Frenetic:

def repeater():
rules=[Rule(inport:1, [fwd(2)]),

Rule(inport:2, [fwd(1)])]
register(rules)

def web monitor():
q = (Select(bytes) *

Where(inport=2 & srcport=80) *
Every(30))

q >> Print()

def main():
repeater()
monitor()

In the code above, the repeater function implements the

repeater and only the repeater. The command to register
the forwarding policy generated by this code passes it to the
run-time system for processing. Likewise, the web monitor
function implements the monitor and only the monitor. It
defines a query q and then pipes the results of that query
into a print function (the >> operator pipes a stream gener-
ated from one component into another). The main function
assembles these components into a single program. It could
easily swap out the given network monitor for another one,
without touching repeater code, or change the forwarding
logic in the repeater without touching the monitor. Importantly,
the responsibility for installing specific OpenFlow rules that
realize both components simultaneously is delegated to the
run-time system. For this example, the run-time system would
generate the same rules as the manually-constructed rules in
the switch join function listed above.

Combining the repeater and the monitor is an example of
parallel composition, where conceptually both modules act
on the same stream of packets. The repeater module applies
a forwarding policy (i.e., “writes” network state) and the
monitoring module queries the traffic (i.e., “reads” network
state). If multiple modules apply a forwarding policy, parallel
composition essentially performs a “union” of the actions
in the two policies. If one module forwards a packet out
port 1, and the other forwards the same packet out port
2, parallel composition would result in an application that
forwards the packet out both ports. While desirable in some
settings, parallel composition is not the only way to combine
modules together. In particular, for policies that express nega-
tive constraints, such as a firewall, we definitely do not want to
take the “union” of all policies—the whole point of a firewall
is to drop packets, no matter what other policies are installed
in the system! To handle such negative constraints, Frenetic’s
policy language also includes a restriction operator that allows
a programmer to filter policies using packet predicates. Re-
cently we have also added support for sequential composition
where, conceptually, one module acts on the packets output by
the other module. For example, if the first module modifies
the packet (e.g., a load-balancing module that modifies the
destination IP address to identify a specific back-end server),
the second module matches on the modified header fields (e.g.,
a routing module that forwards packets toward that server
based on the new destination IP address).

B. Efficient Run-Time System

The run-time system ensures that each module runs cor-
rectly, independent of the other modules. To understand how
the run-time system performs composition, consider our ini-
tial Frenetic run-time system [13], which had a reactive,
microflow-based1 strategy for installing rules on switches. At

1A microflow rule is a rule in which all header fields of a packet are
specified exactly. Microflow rules are the easiest to compile because every
pair of microflow rules are either identical or disjoint. In contrast, wildcard
rules match large groups of packets, such as all packets with source IP address
matching the prefix 1.*. When one uses wildcards over multiple packet
headers, rules may partially overlap, meaning one must manage rule priorities
and rule shadowing carefully, and the compilation problem becomes more
challenging.

5

the start of execution, the flow table of each switch is empty,
so every packet is sent to the controller and passed to the
packet in handler. Upon receiving a packet, the run-time
system iterates through all of the queries, and then traverses
all of the registered forwarding policies to collect a list of
actions for that switch. It then processes the packet in one of
two ways: (i) if no queries depend on receiving future packets
of this sort, it installs a forwarding rule that applies the actions
to packets with the same header fields or (ii) if some queries do
depend on receiving future packets of this sort, it applies the
actions to the current packet, but does not install a rule, since
that would prevent those packets from reaching the controller.

In effect, this strategy dynamically unfolds the policy ex-
pressed in the high-level rules into switch-level rules, moving
processing off the controller and onto the switches, without
interfering with any queries. While this reactive, microflow
strategy is relatively simple to understand, sending packets to
the controller is expensive—e.g., the developers of DevoFlow
measured a total round-trip latency of 2.5ms on a HP ProCurve
5406zl switch [14]. Consequently, the current Frenetic run-
time system is proactive (generating rules before packets
arrive at the switches) and uses wildcard rules (matching on
larger traffic aggregates) [15]. It uses an intermediate language,
called NetCore, for expressing packet-forwarding policies and
a compiler that proactively generates as many OpenFlow-level
rules for as many switches as possible, but where impossible
(or intractable), uses an algorithm called reactive specializa-
tion to dynamically unfold switch-level rules on demand.

There are three main situations where the NetCore compiler
cannot proactively generate all the rules it needs to implement
a policy: (i) the policy involves a query that groups by IP
address (or other header field)—such a query would require
one rule for each of the 232 IP addresses if generated ahead
of time, but only one rule for each IP address that actually
appears in the network if unfolded dynamically; (ii) the policy
involves a function that cannot be implemented natively or
efficiently on the switch hardware, and (iii) the switch does
not have space for additional wildcard rules. In these cases, the
compiler can fall back to the microflow-based strategy, and use
the plentiful exact-match rules available on switches. In other
cases, the NetCore compiler generates policies completely
proactivity and no packets are diverted to the controller.

As an example of the second situation, consider a predicate
that matches all destination IP addresses with a first octet of
90, a third octet of 70, and a fourth octet of 60. Most of
today’s OpenFlow switches do not support arbitrary wildcards
in IP addresses, and instead match only on an address prefix
like 90.80.*.*. To handle arbitrary predicates, the run-
time system generates an overapproximation that matches a
superset of the traffic specified by the original predicate (e.g.,
90.*.*.*), and installs rules that direct such traffic to the
controller for further processing. For example, a packet with
destination address 90.80.70.60 would go to the controller,
causing the run-time system to reactively specialize the list of
rules in the switch by installing a high-priority rule matching
destination address 90.80.70.60. This ensures that the
switch handles all future packets with this destination address,
while still directing packets with other destination IP addresses

in 90.*.*.* to the controller.
The run-time system’s ability to generate overapproxima-

tions, and reactively refine the rules based on the actual
traffic in the network, allows Frenetic to support policies with
arbitrary functions that the switches cannot implement. The
run-time system can also customize rules to the capabilities
of the switch (e.g., whether the switch supports prefix pat-
terns vs. arbitrary wildcards). This makes NetCore programs
more portable. For the predicate above, the run-time system
would generate a single rule when the underlying switch can
support arbitrary wildcard patterns, or the overapproximation
90.*.*.* with reactive specialization if the switch can only
support prefix patterns, or the overapproximation *.*.*.* if
the switch could not even support prefixes.

Currently, the Frenetic run-time system supports OpenFlow
1.0 (i.e., a single table in each switch). Composing multiple
modules can easily lead to a multiplicative “blow-up” in the
number of rules, particularly if the modules act on different
packet-header fields (e.g., a monitoring module that matches
on TCP port numbers combined with a forwarding module that
matches on destination IP addresses). This scalability problem
is inherent to more sophisticated programs that combine
multiple network-management tasks, whether the composition
is performed “manually” by the programmer or automatically
by a run-time system like ours. If anything, a smart run-time
system should do a better job in applying optimizations that
minimize the number of rules required to represent a policy.
Ultimately, the “rule blow-up” problem is best addressed by
having more sophisticated data-plane architectures, such as
a pipeline of tables. The newer versions of the OpenFlow
standard provide an interface to the tables available in modern
switch hardware. In our future work, we plan to extend our
run-time system to capitalize on these tables to represent
sophisticated policies in a more compact fashion.

IV. CONSISTENT UPDATES

Programs often need to transition from one policy to
another—e.g., due to topology changes, changes in network
load or application behavior, planned maintenance, or unex-
pected failures. From the perspective of the programmer, it
would be ideal if such transitions could be initiated via a
single command that simply declares the new, global network
configuration desired. Moreover, to avoid anomalies such as
transient outages, forwarding loops, and security breaches, ev-
ery transition must be implemented gracefully: all application-
specific connectivity invariants should be preserved during
migration from old to new policy.

We have designed high-level network update operations
that implement configuration changes while guaranteeing that
traffic will be processed consistently during the transition [16],
[17]. The semantics of these update operations provides useful
guarantees about network behavior during transitions, and yet
are relaxed enough to admit practical implementations.

A. Per-Packet Consistent Updates

The primary update abstraction supported in Frenetic is a
per-packet consistent update. A per-packet consistent update

6

guarantees that every packet flowing through the network is
processed with exactly one forwarding policy. For example,
if a per-packet consistent update transitions the network from
policy A to policy B, it guarantees that every packet traversing
the network is processed using the rules from A on all switches
or the rules from B on all switches, but never a mixture
of the two. A crucial consequence of this design is that if
both A and B satisfy a trace property—i.e., a property of
the paths that packets take through the network—then all
packets traversing the network either before, during, or after
the transition will be guaranteed to obey that property. For
example, if both A and B have no loops then no packet will
encounter a loop. If both A and B filter packets from source
IP address 1.2.3.4 then all such packets will be dropped.
Generally speaking, trace properties encompass access control
and connectivity properties, but do not encompass properties
that concern the relationship between multiple packets, such
as in-order delivery or congestion.

The semantics of per-packet consistent update helps de-
velopers write reliable dynamic network applications because
such developers can ensure trace properties persist as network
policy evolves—before any change in policy the developer
need merely check the trace property holds of that next policy
to be installed. This insight also makes it possible to build
verification tools that automatically check trace properties as
configurations evolve. For example, we have developed a tool
that allows programmers to specify properties of networks
such as loop freedom or access control using logical formulas.
Using an off-the-shelf verification tool, we can check these
properties against static NetCore policies. To verify dynamic
policies, defined as a stream of static NetCore policies, we
simply verify each individual policy in the stream and use per-
packet consistent updates to manage the transition from one
policy to the next. The per-packet consistent update ensures
there are no unusual transient states that violate the properties
of interest.

To implement per-packet consistency, we use a mechanism
called two-phase update that stamps packets with a version at
the ingress to the network and tests for the version number
at all internal ports in the network. This mechanism can be
implemented in OpenFlow using a header field to encode
version numbers (e.g., VLAN tags or MPLS labels). To update
to a new configuration, the controller first pre-processes the
rules in the new configuration, adding an action to stamp
packets at the ingress and test for the next version number
elsewhere. Next, it installs the rules for internal ports, leav-
ing the rules for the old configuration (whose rules match
the previous version number) in place. At this point, every
(internal) switch can process packets with either the old or
new policy, depending on the version number on the packet.
The controller then starts updating the rules for ports at
network ingresses, replacing their old rules with new rules
that stamp incoming packets with the new version number.
Because the ingress switches cannot all be updated atomically,
some packets entering the network are processed with the old
policy and some packets are processed with the new policy for
a time, but any individual packet is handled by a single policy.
Finally, once all packets following the “old” policy have left

the network, the controller deletes the old configuration rules
from all switches, completing the update.

This two-phase update mechanism works in any situation,
but it is not always necessary. In practice, many optimiza-
tions are possible when the new policy and old policy are
similar [17]. If the policy changes affect only a portion of
the network topology, or a portion of the traffic, the run-time
system can perform the update on a subset of the switches
and rules. If the new policy is a simple extension (e.g., adding
policy for handling some portion of traffic) or retraction (e.g.,
removing policy for handling some portion of traffic), the
updates become even simpler. Our prototype implementation
applies these optimizations, often resulting in much more
efficient mechanisms.

B. Per-Flow Consistency

Per-packet consistency, while simple and powerful, is not
always enough. Some applications require that streams of
related packets be handled consistently. For example, a server
load-balancer needs all packets from the same TCP session to
reach the same server replica, to avoid breaking connections.
A per-flow consistent update ensures that streams of related
packets are processed with the same policy—i.e., all packets in
the same flow are handled by the same configuration. Formally,
a per-flow update preserves all trace properties, just like per-
packet consistency. In addition, it preserves properties that can
be expressed in terms of the paths traversed by sets of packets
belonging to the same flow.

Implementing per-flow consistent updates is more compli-
cated than per-packet consistency because the system must
identify packets that belong to active flows. A simple mech-
anism can be obtained by combining versioning with rule
timeouts [7]. The run-time system can pre-install the new
configuration on internal switches, leaving the old version in
place, as in per-packet consistency. Then, on ingress switches,
the controller sets soft timeouts on the rules for the old con-
figuration and installs the new configuration at lower priority.
When all flows matching a rule complete, the rule expires and
the rules for the new configuration take effect.

Note that if several flows match a rule, the rule may be artifi-
cially kept alive even though the “old” flows have completed—
if the rules are too coarse, then they may never die! To ensure
rules expire in a timely fashion, the controller can refine the old
rules to cover a progressively smaller portion of the flow space.
However, “finer” rules require more rules, a potentially scarce
commodity. Managing the rules and dynamically refining them
over time can be a complex bookkeeping task, especially
if the network undergoes a subsequent configuration change
before the previous one completes. However, this task can be
implemented and optimized once in a run-time system, and
leveraged over and over again in different applications.

V. CONCLUSION

The Frenetic language offers programmers a collection
of powerful abstractions for writing controller programs for
software-defined networks. A compiler and run-time system

7

implements these abstractions and ensures that programs writ-
ten against them execute efficiently. Our work focuses on
the three stages of managing a network—monitoring network
state, computing new policies, and reconfiguring the network.
Yet, these abstractions are just the beginning. We are currently
exploring further ways to raise the level of abstraction for pro-
gramming the network, including techniques for “slicing” the
network [18] to provide isolation between multiple programs
controlling different portions of the traffic, for monitoring and
managing end hosts, for handling failures, and for virtualizing
topologies. On the latter topic, we plan to support program
modules that operate on different “views” of the network (e.g.,
a load balancer that sees the network as a single switch,
combined with routing that considers the full details of the
underlying switches and links). We believe that these and other
abstractions will continue to lower the barrier for creating new
and exciting applications on software defined networks.

Acknowledgments: Our work is supported in part by
ONR grants N00014-09-1-0770 and N00014-09-1-0652, NSF
grants CNS-1111698 and CNS-1111520, TRUST, and gifts
from Dell, Intel, and Google. Any opinions, findings, and rec-
ommendations are those of the authors and do not necessarily
reflect the views of the ONR or NSF.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, 2008.

[2] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks,” in
USENIX Symposium on Operating Systems Design and Implementation,
pp. 351–364, Oct. 2010.

[3] S. Shenker, M. Casado, T. Koponen, and N. McKeown, “The future of
networking and the past of protocols,” Oct. 2011. Invited talk at Open
Networking Summit.

[4] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “ElasticTree: Saving energy in data
center networks,” in USENIX Symposium on Networked Systems Design
and Implementation (NSDI), Apr. 2010.

[5] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown,
and S. Shenker, “Rethinking enterprise network control,” IEEE/ACM
Transactions on Networking, vol. 17, Aug. 2009.

[6] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari,
“Plug-n-Serve: Load-balancing web traffic using OpenFlow,” Aug. 2009.
Demo at ACM SIGCOMM.

[7] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based server load
balancing gone wild,” in Workshop on Hot Topics in Management
of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE),
Boston, MA, Mar. 2011.

[8] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: Towards an operating system for networks,”
SIGCOMM CCR, vol. 38, no. 3, 2008.

[9] “Beacon: A java-based OpenFlow control platform.” See http://
www.beaconcontroller.net, Dec. 2012.

[10] “Floodlight OpenFlow Controller.” http://
floodlight.openflowhub.org/.

[11] “Frenetic and NetCore compilers.” https://github.com/
frenetic-lang/netcore, Aug. 2012.

[12] “The Frenetic project.” http://www.frenetic-lang.org/,
Sept. 2012.

[13] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
in ACM SIGPLAN International Conference on Functional Program-
ming (ICFP), Sept. 2011.

[14] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” in ACM SIGCOMM, pp. 254–265, Aug. 2011.

[15] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler
and run-time system for network programming languages,” in ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Lan-
guages (POPL), Jan. 2012.

[16] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent updates
for software-defined networks: Change you can believe in!,” in ACM
SIGCOMM HotNets Workshop, Nov. 2011.

[17] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in ACM SIGCOMM, pp. 323–334,
Aug. 2012.

[18] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation:
A slice abstraction for software-defined networks,” in ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, Aug. 2012.

			Introduction

			Querying Network State

			Query Language Design Considerations

			Example Frenetic Queries

			Composing Network Policies

			Creating Modular Programs

			Efficient Run-Time System

			Consistent Updates

			Per-Packet Consistent Updates

			Per-Flow Consistency

			Conclusion

			References

localflow-conext13.pdf

Scalable, Optimal Flow Routing in Datacenters
via Local Link Balancing

Siddhartha Sen∗, David Shue, Sunghwan Ihm†, and Michael J. Freedman
Princeton University

ABSTRACT
Datacenter networks should support high network utilization. Yet
today’s routing is typically load agnostic, so large flows can starve
other flows if routed through overutilized links. Even recent pro-
posals like centralized scheduling or end-host multi-pathing give
suboptimal throughput, and they suffer from poor scalability and
other limitations.

We present a simple, switch-local algorithm called LocalFlow
that is optimal (under standard assumptions), scalable, and practi-
cal. Although LocalFlow may split an individual flow (this is nec-
essary for optimality), it does so infrequently by considering the
aggregate flow per destination and allowing slack in distributing
this flow. We use an optimization decomposition to prove Local-
Flow’s optimality when combined with unmodified end hosts’ TCP.
Splitting flows presents several new technical challenges that must
be overcome in order to interact efficiently with TCP and work on
emerging standards for programmable, commodity switches.

Since LocalFlow acts independently on each switch, it is highly
scalable, adapts quickly to dynamic workloads, and admits flexible
deployment strategies. We present detailed packet-level simula-
tions comparing LocalFlow to a variety of alternative schemes, on
real datacenter workloads.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols—Routing protocols

Keywords
Flow routing; Datacenter networks; Local algorithms; Optimiza-
tion decomposition

1. INTRODUCTION
The growth of popular Internet services and cloud-based plat-

forms has spurred the construction of large-scale datacenters con-
taining (hundreds of) thousands of servers, leading to a rash of re-
search proposals for new datacenter networking architectures. Many

Current affiliations: ∗Microsoft Research, †Google, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CoNEXT’13, December 9-12, 2013, Santa Barbara, California, USA.
ACM 978-1-4503-2101-3/13/12.
http://dx.doi.org/10.1145/2535372.2535397.

such architectures (e.g., [1, 20]) are based on Clos topologies [13];
they primarily focus on increasing bisection bandwidth, or the com-
munication capacity between any bisection of the end hosts. Unfor-
tunately, even with full bisection bandwidth, the utilization of the
core network suffers when large flows are routed poorly, as colli-
sions with other flows can limit their throughput even while other,
less utilized paths are available (see Figure 2).

The problem of simultaneously routing flows through a capac-
itated network is the multi-commodity flow (MCF) problem. This
problem has been studied extensively by both the theoretical and
networking systems communities. Solutions deployed in datacen-
ters today are typically load agnostic, however, such as Equal-Cost
Multi-Path (ECMP) [23] and Valiant Load Balancing (VLB) [42].
More recently, the networking community has proposed a series of
load-aware solutions including both centralized solutions (e.g., [2,
7]), where routing decisions are made by a global scheduler, and
distributed solutions, where routing decisions are made by end hosts
(e.g., [26, 43]) or switches (e.g., [27]).

As we discuss in §2, these approaches have limitations. Central-
ized solutions like Hedera [2] face serious scalability challenges
with today’s datacenter workloads [6, 28]. End-host solutions like
MPTCP [43] offer greater parallelism but cannot predict down-
stream collisions, forcing them to continuously react to congestion.
Switch-local solutions like FLARE [27] scale well but are ill-suited
to datacenters.

Most of the existing solutions do not split flows across multiple
paths, making them necessarily (and significantly) suboptimal [18],
as our evaluation confirms. But splitting flows is problematic in
practice because it causes packet reordering, which in the case of
TCP may lead to throughput collapse [30]. Solutions that do split
flows are either load agnostic [11, 15], suboptimal and compli-
cated [19, 43], or rely on specific traffic patterns [27].

We argue that switch-local solutions hold the best promise for
handling today’s high-scale and dynamic datacenter traffic patterns
optimally. We present LocalFlow, the first practical switch-local al-
gorithm that routes flows optimally in symmetric networks, a prop-
erty we define later. Most proposed datacenter architectures (e.g.,
fat-trees [1, 20, 31]) and real deployments satisfy the symmetry
property. Our optimality proof decomposes the MCF problem into
two components, one of which is essentially solved by end hosts’
TCP, while the other component is solved locally at each switch by
LocalFlow. In fact, a naïve scheme called PacketScatter [11, 15],
which essentially round-robins packets over a switch’s outgoing
links, also solves the latter component. However, PacketScatter
is load agnostic: it splits every flow, which causes packet reorder-
ing and increases flow completion times, and it does not handle
network failures well.

S

flow 1
flow 2
flow 3

S

Figure 1: A set of flows to the same destination arrives at
switch S. PacketScatter (left) splits every flow, whereas Local-
Flow (right) distributes the aggregate flow, and only splits an
individual flow if the load imbalance exceeds δ .

LocalFlow overcomes these limitations with the following in-
sights. By considering the aggregate flow to each destination, rather
than individual transport-level flows, we split at most |L|−1 flows,
where |L| is the number of candidate outgoing links (typically <12).
By further allowing splitting to be approximate, using a slack pa-
rameter δ ∈ [0,1], we split even fewer flows (or possibly none!).
Figure 1 illustrates these ideas. In the limit, setting δ = 1 yields
a variant of LocalFlow that schedules flows as indivisible units;
we call this variant LocalFlow-NS (“no split”). Like PacketScatter,
LocalFlow proactively avoids congestion, allowing it to automati-
cally cope with traffic unpredictability. However, by using flexible,
load-aware splitting, LocalFlow splits much fewer flows and can
even tolerate failures and asymmetry in the network.

The benefits of a switch-local algorithm are deep. Because it
requires no coordination between switches, LocalFlow can operate
at very small scheduling intervals at an unprecedented scale. This
allows it to adapt to highly dynamic traffic patterns. At the same
time, LocalFlow admits a wide variety of deployment options of its
control-plane logic, from running locally on each switch’s CPU, to
running on a single server for the entire network. In all cases, the
scheduling performed for each switch is independent of the others.

Splitting flows introduces several technical challenges in order
to achieve high accuracy, use modest forwarding table state, and
interact properly with TCP. (Although we focus on TCP, we also
discuss how to use LocalFlow with UDP traffic.) Besides split-
ting infrequently, LocalFlow employs two novel techniques to split
flows efficiently. First, it splits individual flows spatially for higher
accuracy, by installing carefully crafted rules into switches’ for-
warding tables that partition a monotonically increasing sequence
number. Second, it supports splitting at multiple resolutions to con-
trol forwarding table expansion, so rules can represent groups of
flows, single flows, or subflows. Our mechanisms for implementing
multi-resolution splitting use existing (for LocalFlow-NS) or forth-
coming (for LocalFlow) features of OpenFlow-enabled switches [34,
37]. Given the forthcoming nature of one of these features, and our
desire to evaluate LocalFlow at large scale, our evaluation focuses
on simulations. We use a full packet-level network simulator [43]
as well as real datacenter traces [6, 20].

Our evaluation shows that LocalFlow achieves near-optimal
throughput, outperforming ECMP by up to 171%, MPTCP by up
to 19%, and Hedera by up to 23%. Compared to PacketScatter
which splits all flows, it split less than 4.3% of flows on a real
switch packet trace and achieved 11% lower flow completion times.
By modestly increasing the duplicate-ACK threshold of end hosts’
TCP, LocalFlow avoids the adverse effects of packet reordering.
Interestingly, the high accuracy of its spatial splitting is crucial, as

even slight load imbalances significantly degrade throughput (e.g.,
by 17%). Our evaluation also uncovered several other interesting
findings, such as the high throughput of LocalFlow-NS on VL2
topologies [20].

We next compare LocalFlow to the landscape of existing solu-
tions. We define our network architecture as well as the symmetry
property in §3. We present the LocalFlow algorithm in §4 and our
multi-resolution splitting technique in §5. We conduct a theoretical
analysis of LocalFlow in §6 and evaluate it in §7. We address some
deployment concerns in §8 and then conclude.

2. EXISTING APPROACHES
We discuss a broad sample of existing flow routing solutions

along two important axes, scalability and optimality, while compar-
ing them to LocalFlow. Scalability encompasses a variety of met-
rics, including forwarding table state at switches, network commu-
nication, and scheduling frequency. Optimality refers to the maxi-
mum flow rates achieved relative to optimal routing.

Centralized solutions typically run a sequential algorithm at a
single server [2, 7, 9]. These solutions lack scalability, because
the cost of collecting flow information, computing flow paths, and
deploying these paths makes it impractical to respond to dynamic
workloads. Indeed, coordinating decisions in the face of traffic
burstiness and unpredictability is a serious problem [7, 20]. The
rise of switches with externally-managed forwarding tables, such
as OpenFlow [34, 37], has enabled solutions that operate at faster
timescales. For example, Hedera’s scheduler runs every 5 seconds,
with the potential to run at subsecond intervals [2], and MicroTE’s
scheduler runs each second [7]. But recent studies [6, 28] have con-
cluded that the size and workloads of today’s datacenters require
parallel route setup on the order of milliseconds, making a central-
ized OpenFlow solution infeasible even in small datacenters [14].
This infeasibility motivated our pursuit of a parallel solution.

End-host solutions employ more parallelism, and most give prov-
able guarantees. TeXCP [26] and TRUMP [22] dynamically load-
balance traffic over multiple paths between pairs of ingress-egress
routers (e.g., MPLS tunnels) established by an underlying routing
architecture. DARD [44] is a similar solution for datacenter net-
works that controls paths from end hosts. (We discuss MPTCP fur-
ther below.) These solutions explicitly model paths in their formu-
lation, though they limit the number of paths per source-destination
pair to avoid exponential representation and convergence issues.
Since end-host solutions lack information about other flows in the
network, they must continuously react to congestion on paths and
rebalance load.

Switch-local solutions have more visibility of active flows, espe-
cially at aggregation and core switches, but still lack a global view
of the network. They achieve high scalability and do not need to
model or rely on per-path statistics. For example, REPLEX [16]
gathers (aggregate) path information using measurements on adja-
cent links and by exchanging messages between neighbors.

None of the above solutions split individual flows, however, and
hence cannot produce optimal results, since the unsplittable MCF
problem is NP-hard and admits no constant-factor approximation [18].
MPTCP [39, 43] is an end-host solution that splits a flow into sub-
flows and balances load across the subflows via linked congestion
control. It uses two levels of sequence numbers and buffering to
handle reordering across subflows. DeTail [45] modifies switches
to do per-packet adaptive load balancing based on queue occu-
pancy, in order to reduce the tail of flow completion times. It relies
on layer-2 backpressure and modifications to end hosts’ TCP to
avoid congestion and handle reordering. Geoffray and Hoefler [19]
propose an adaptive source-routing scheme that uses layer-2 back-

A E IG

Y

X

Core

Aggregation

Edge

F H

Con

output
queues

Control

Data

forwarding
tables

switch
backplane

Z

W

Figure 2: A FatTree network with 4-port switches. VL2 is a variation on this topology. End hosts A, G, I simultaneously transmit to
E, F, H and collide at switches Y and X, but there is sufficient capacity to route all flows at full rate.

pressure and probes to evaluate alternative paths. Like DeTail,
their scheme requires modifications to both end hosts and switches.
FLARE [27] is a technique for splitting flows in wide-area net-
works that can be combined with systems like TeXCP. It exploits
delays between packet bursts to route each burst along a different
path while avoiding reordering.

It is instructive to compare our solution, LocalFlow, to the above
schemes. Like all of them, LocalFlow splits individual flows, but
whereas the above schemes tend to split every flow, LocalFlow
splits very few flows. This is largely due to the fact that LocalFlow
balances load proactively, giving it full control over how flows are
scheduled and split, instead of reacting to congestion after-the-fact.
Unlike most of the above schemes, LocalFlow is purely switch-
local and does not modify end hosts. In this respect it is sim-
ilar to FLARE, but unlike FLARE it splits flows spatially (e.g.,
based on TCP sequence numbers) and does not make timing as-
sumptions. Our simulations show that spatial splitting significantly
outperforms temporal splitting. Finally, LocalFlow achieves near-
optimal routing in practice, which the other solutions have not demon-
strated, despite being considerably simpler than them.

The only flow-splitting scheme that is simpler than LocalFlow is
PacketScatter [11, 15], which we discussed earlier. LocalFlow can
be viewed as a load-aware, efficient version of PacketScatter. We
compare the schemes in detail while deriving LocalFlow’s design.

There is a long history of theoretical algorithms for the MCF
problem in each of the settings above: from centralized (e.g., [33]),
to end-host (e.g., [4]), to switch-local (e.g., [3]). Although these
algorithms give provably exact or approximate solutions, they are
disconnected from practice for reasons we have previously out-
lined [40]. For example, they assume flows can be split arbitrarily
(and instantaneously) at any node in the network, whereas this is
difficult to do in practice. LocalFlow, in contrast, achieves near-
optimal performance in both theory and practice.

3. ARCHITECTURE
LocalFlow is a flow routing algorithm designed for datacenter

networks. In this section, we describe the components of this net-
work (§3.1), outline the main scheduling loop for each switch (§3.2),
and define the networks on which LocalFlow is efficient (§3.3).

3.1 Components and deployment
Figure 2 shows a typical datacenter network of end hosts and

switches on which LocalFlow might be deployed. The techniques
we use are compatible with existing or forthcoming features of ex-
tensible switches, such as OpenFlow [34, 37], Juniper NOS [25],
or Cisco AXP [12].

The architecture and capabilities of hardware switches differ sig-
nificantly from that of end hosts, making even simple tasks chal-

lenging to implement efficiently. The detail in Figure 2 shows a typ-
ical switch architecture, which consists of a control plane and a data
plane. The data plane hardware has multiple physical (e.g., Ether-
net) ports, each with its own line card, which (when simplified)
consists of an incoming lookup/forwarding table in fast memory
(SRAM or TCAM) and an outgoing queue. The control plane per-
forms general-purpose processing and can install or modify rules in
the data plane’s forwarding tables, as well as obtain statistics such
as the number of bytes that matched a rule. To handle high data
rates, the vast majority of traffic must be processed by the data-
plane hardware, bypassing the control plane entirely.

The hardware capabilities, resources, and programmability of
switches are continually increasing [35, 38]. Being a local algo-
rithm, LocalFlow’s demands on these resources are limited to its
local view of network traffic, which is orders of magnitude smaller
than that of a centralized scheduler [6, 28]. Since LocalFlow runs
independently for each switch, it supports a wide variety of de-
ployment options of its control plane logic. For example, it can run
locally on each switch, using a rack-local scheduler with Open-
Flow switches or a separate blade in the switch chassis of Juniper
NOS or Cisco AXP switches. Alternatively, the number of these
schedulers can be reduced and their locations changed to suit the
network’s scalability requirements. In the limit, a single central-
ized scheduler may be used. Regardless of the deployment strategy,
LocalFlow’s independence allows each switch to be scheduled by
separate threads, processes, cores, or devices.

3.2 Main LocalFlow scheduling loop
LocalFlow runs a continuous scheduling loop for each switch.

At the beginning of every interval, it:

1) Measures the rate of each active flow. This is done by querying
the byte counter of each forwarding rule from the previous
interval and dividing by the interval length.

2) Runs the scheduling algorithm using the flow rates from step
1 as input.

3) Updates the rules in the forwarding table based on the outcome
of step 2, and reset all byte counters.

Steps 2 and 3 are described in §4 and §5, respectively. Note that
Step 1 relies on measurements from the previous interval to inform
scheduling decisions in the current interval. Although traffic pat-
terns may change between intervals, LocalFlow’s design copes well
with this unpredictability, as we shall see.

3.3 Symmetric networks
Although LocalFlow can be run on any network, it only achieves

optimal throughput on networks that satisfy a certain symmetry
property. This property is defined as follows:

DEFINITION 1. A network is symmetric if for all source-
destination pairs (s,d), all switches on the shortest paths between
s and d that are the same distance from s have identical outgoing
capacity to d.

In other words, any of these switches are equally good interme-
diate candidates for routing a flow between s and d. Using the
example of Figure 2, switches Y and Z are both on a shortest path
between (A,E), and both have one link of outgoing capacity to E.

Real deployments and most proposed datacenter architectures
satisfy the symmetry property. For example, it is satisfied by fat-
tree-like networks (e.g., [1, 20, 31]), which are Clos topologies [13]
arranged as multi-rooted trees. FatTree [1] is a three-stage fat-tree
network built using identical k-port switches arranged into three
levels—edge, aggregation, and core—that supports full bisection
bandwidth between k3/4 end hosts. Figure 2 shows a 16-host Fat-
Tree network (k = 4). F10 [31] is a recent variant of FatTree that
skews the connections between switch levels to achieve better fault
tolerance, but is still symmetric by our definition. VL2 [20] mod-
ifies FatTree by using higher-capacity links between Top-of-Rack
(ToR, i.e., edge), aggregation, and intermediate (i.e., core) switches.
Unlike FatTree, the aggregation and intermediate switches form
a complete bipartite graph in VL2. All of these networks can be
oversubscribed by connecting more hosts to each edge/ToR switch,
which preserves their symmetry property.

4. ALGORITHM LOCALFLOW
This section presents LocalFlow, our switch-local algorithm for

routing flows in symmetric datacenter networks. It is invoked in
Step 2 of the main scheduling loop (§3.2). At a high-level, Local-
Flow attempts to find the optimal flow routing for the following
maximum MCF problem:

maximize: ∑
i

Ui(xi) (1)

subject to: ∑
u:(u,v)∈E

f s,d
u,v = ∑

w:(v,w)∈E
f s,d
v,w : ∀v,s,d,

∑
u:(s,u)∈E

f s,d
s,u = ∑

i:s→d
xi : ∀s,d

∑
s,d

f s,d
u,v ≤ cu,v : ∀(u,v) ∈ E, link capacity cu,v

This formulation reflects the complementary roles LocalFlow
and TCP play. LocalFlow balances the flow rates f s,d

u,v across links
(u,v) between adjacent switches, for a fixed set of commodity send
rates xi. This technique is similar to, but more aggressive than, the
original link-balancing technique of Awerbuch and Leighton [5].
The intuition is that if we split a flow evenly over equal-cost links
along its path to a destination, then even if it collides with other
flows midway, the colliding subflows will be small enough to still
route using the available capacity. In a symmetric network with a
fixed set of send rates, this is equivalent to minimizing the maxi-

mum link utilization: minmax(u,v)∈E
∑s,d f s,d

u,v
cu,v

.
Link balancing on its own does not guarantee an optimal solu-

tion to the maximum MCF objective (1), which depends on the per-
commodity (concave) utility functions Ui. Fortunately, LocalFlow
can rely on the end hosts’ TCP congestion control for this purpose.
Using an idealized fluid model, it can be shown [32] that assuming
backlogged senders (i.e., senders have more data to send) and given
a fixed routing matrix, TCP, in its various forms, maximizes the to-
tal network utility. By balancing the per-link flow rates, LocalFlow
adjusts the flow routing in response to TCP’s optimized send rates,

while TCP in turn adapts to the new routing. We show how this
interaction achieves the MCF optimum in §6.

We first describe a basic load-agnostic solution for link balanc-
ing called PacketScatter (§4.1). We then improve this solution to
yield LocalFlow (§4.2). Finally, we discuss a simple extension to
LocalFlow that copes with network failures and asymmetry (§4.3).

4.1 Basic solution: PacketScatter
The simplest solution for link balancing is to split every flow

over every equal-cost outgoing link of a switch (f s,d
u,v = f s,d

u,w). We
call this scheme PacketScatter. PacketScatter round-robins packets
to a given destination over the switch’s outgoing links; it has been
supported by Cisco switches for over a decade now [11]. Recent
work by Dixit et al. [15] studies variants of the scheme that select a
random outgoing link for each packet to reduce state. However, this
approach is problematic because even slight load imbalances due to
randomness can significantly degrade throughput, as our evaluation
confirms (§7.6).

Although PacketScatter routes flows optimally, because it un-
conditionally splits every flow at individual-packet boundaries, it
can cause excessive reordering at end hosts. These out-of-order
packets can inadvertently trigger TCP fast-retransmit, disrupting
throughput, or delay the completion of short-lived flows, increas-
ing latency. On the upside, because the splitting is load agnos-
tic, it is highly accurate and oblivious to traffic bursts and unpre-
dictability. However, by the same token, it cannot adapt to partial
network failures, since it will continue sending the same flow to
under-capacitated subtrees.

4.2 LocalFlow
We obtain LocalFlow by applying three ideas to PacketScatter

that remove its weaknesses while retaining its strengths. The pseu-
docode is given in Algorithm 1.

First, instead of unconditionally splitting every flow, we group
the flows by destination d and distribute their aggregate flow rate
evenly over |Ld | outgoing links (lines 2-6 of Algorithm 1). This
corresponds to a simple variable substitution f d

u,v = ∑s f s,d
u,v in (1).

This means that LocalFlow splits at most |Ld |−1 times per des-
tination. Function BINPACK does the actual splitting. It sorts the
flows according to some policy (e.g., increasing rate) and succes-
sively places them into |Ld | equal-sized bins (lines 17-25). If a
flow does not fit into the current least loaded bin, BINPACK splits
the flow (possibly unevenly) into two subflows, one which fills the
bin and the other which rejoins the sorted list of flows (lines 20-21).
When the function returns, the total flow to the destination has been
evenly distributed.

Our second idea is to allow some slack in the splitting. Namely,
we allow the |Ld | bins to differ by at most a fraction δ ∈ (0,1] of the
link bandwidth (line 19). (For simplicity, we overload δ to mean
either this fraction or the actual flow rate it corresponds to, depend-
ing on context.) This not only reduces the number of flows that are
split, but it also ensures that small flows of rate ≤ δ are never split.
Note that small flows are still bin-packed (and hence scheduled) by
the algorithm, and only the last such flow entering a bin may give
rise to an imbalance. After BINPACK returns, LOCALFLOW en-
sures that larger bins are placed into less loaded links (lines 7-10).
This ensures that the links stay balanced to within δ even after all
destinations have been processed, as proved in Lemma 6.2. Fig-
ure 1 illustrates the above two ideas. In the example shown, no
flows are actually split by LocalFlow because they are accommo-
dated by the δ slack, whereas PacketScatter splits every flow.

Since LocalFlow may split a flow over a subset of the outgoing
links, possibly unevenly, we cannot use the (load-agnostic) round-

1 function LOCALFLOW(flows F, links L)
2 dests D = { f .dest | f ∈ F}
3 foreach d ∈ D do
4 flows Fd = { f ∈ F | f .dest = d}
5 links Ld = {l ∈ L | l is on a path to d}
6 bins Bd = BINPACK(Fd , |Ld |)
7 Sort Bd by increasing total rate
8 Sort Ld by decreasing total rate
9 foreach b ∈ Bd , l ∈ Ld do

10 Insert all flows in b into l
11 end

12 bins function BINPACK(flows Fd , |links Ld |)
13 δ = . . .; policy = . . .
14 binCap = (∑ f∈Fd

f .rate)/|Ld |
15 bins Bd = {|Ld | bins of capacity binCap}
16 Sort Fd by policy
17 foreach f ∈ Fd do
18 b = argmaxb∈Bd

b.residual
19 if f .rate > b.residual +δ then
20 { f1, f2}= SPLIT(f ,b.residual, f .rate−b.residual)
21 Insert f1 into b; Add f2 to Fd by policy
22 else
23 Insert f into b
24 end
25 end
26 return Bd

Algorithm 1: Our switch-local algorithm for routing flows on fat-
tree-like networks.

robin scheme of PacketScatter to implement SPLIT. Instead, we in-
troduce a new, load-aware scheme called multi-resolution splitting
that splits traffic in a flexible manner, by installing carefully crafted
rules into the forwarding tables of switches. These rules, along with
their current rates (as measured in Step 1 of the main scheduling
loop), comprise the input set F to function LOCALFLOW. Multi-
resolution splitting is discussed in §5.

Even though LocalFlow’s splitting strategy is load aware, it still
uses local measurements to balance load proactively, which allows
it to cope with traffic burstiness and unpredictability.

4.3 Handling failures and asymmetry
Perhaps surprisingly, many failures in a symmetric network can

be handled seamlessly, because they do not violate the symme-
try property. In particular, complete node failures—that is, failed
end hosts or switches—remove all shortest paths between a source-
destination pair that pass through the failed node. For example,
if switch X in Figure 2 fails, all edge switches in the pod now
have only one option for outgoing traffic: switch W. The network is
still symmetric, so LocalFlow’s optimality still holds. Indeed, even
PacketScatter can cope with such failures.

Partial failures—that is, individual link or port failures, includ-
ing slow (down-rated) links—are more difficult to handle, because
they violate the symmetry property. For example, consider when
switch X in Figure 2 loses one of its uplinks. PacketScatter at the
edge switches would continue to distribute traffic equally between
switches W and X, even though X has half the outgoing capacity
as W. Also, since PacketScatter splits every flow, more flows are
likely to be affected by a single link failure. This results in subopti-
mal throughput. However, with a simple modification, LocalFlow
is able to cope with this type of failure. When switch X experiences
the partial failure, other LocalFlow schedulers can learn about it
from the underlying link-state protocol (which automatically dis-
seminates this connectivity information). The upstream schedulers

determine the fraction of capacity lost and use this information to
rebalance traffic sent to W and X, by simply modifying the bin sizes
used in lines 14-15 of Algorithm 1. In this case, LocalFlow sends
twice as much traffic to W than X.

Note that this rebalancing may not be optimal. In general, deter-
mining the optimal rebalancing strategy requires non-local knowl-
edge because the network is now asymetric. A scheme similar to
the above can be used to run LocalFlow in an asymmetric network.

5. MULTI-RESOLUTION SPLITTING
Multi-resolution splitting is our spatial splitting technique for im-

plementing the SPLIT function in Algorithm 1. It splits traffic at
different granularities by installing carefully crafted rules into the
forwarding tables of emerging programmable switches [37]. Fig-
ure 3 illustrates each type of rule. These rules represent single flows
and subflows (§5.1), but they can also represent “metaflows” (§5.2),
i.e., groups of flows to the same destination.

Since metaflow and subflow rules use partial wildcard matching,
they must appear in the TCAM of a switch, which is scarcer and
less power-efficient than SRAM. However, our simulations show
that LocalFlow splits very few flows in practice, so only a few
TCAM rules are needed; single-flow rules can be placed in SRAM.

5.1 Flows and subflows
To represent a single flow, we install a forwarding rule that ex-

actly specifies all fields of the flow’s 5-tuple. This uniquely identi-
fies the flow and thus matches all of its packets.

To split a single flow into two or more subflows, we use one of
two techniques. Although these techniques may not be supported
by current OpenFlow switches, the latest specifications [37] sug-
gest that the functionality will appear soon. The first technique
extends a single-flow rule to additionally match bits in the packet
header that change during the flow’s lifetime, e.g., the TCP se-
quence number. To facilitate finer splitting at later switches, we
group packets into contiguous blocks of at least t bytes, called
flowlets, and split only along flowlet boundaries. Our notion of
flowlets is spatial and thus different from that of FLARE [27],
which crucially relies on timing properties.

By carefully choosing which bits to match and the number of
rules to insert, we can split flows with different ratios and flowlet
sizes. For example, to split a flow evenly over L links with flowlet
size t, we add L forwarding rules for each possible lgL-bit string
whose least significant bit starts after bit dlg te in the TCP sequence
number.1 Since TCP sequence numbers increase consistently and
monotonically, this causes the flow to match a different rule ev-
ery t bytes. Also, since initial sequence numbers are randomized,
the flowlets of different flows are also desynchronized. Uneven
splitting can be achieved in a similar way. For example, the sub-
flow rules in Figure 3 split a single flow over three links with ratios
(1/4,1/4,1/2) and t = 1024 bytes. By using more rules, we can
support uneven splits of increasing precision.

Since later switches along a path may need to further split sub-
flows from earlier switches, they should use a smaller flowlet size
than the earlier switches. For example, edge switches in Figure 2
may use t = 2 maximum segment sizes (MSS) while aggregation
switches use t = 1 MSS. In general, smaller flowlet sizes lead to
more accurate load balancing.

An alternative technique that avoids the need for flowlets is to as-
sociate a counter of bytes with each flow that is split, and increment
it whenever a packet from that flow is sent. Such counters are com-

1Since TCP sequence numbers represent a byte offset, the bit string should actually
start after bit dlg(t×MSS)e, where MSS is the maximum size of a TCP segment.

Type Src IP Src Port Dst IP Dst Port TCP seq/counter Link

* *11 E * * 1
M * *10 E * * 2

* * E * * 3

F A u F v * 1

A x G y *0*********** 1
S A x G y *10********** 2

A x G y *11********** 3

Figure 3: Multi-resolution splitting rules (M = metaflow, F =
flow, S = subflow).

mon in OpenFlow switches [37]. The value of the counter is used
in place of the TCP sequence number in the subflow rules of Fig-
ure 3. Since each switch uses its own counter to measure each flow,
we no longer rely on contiguous bytes (flowlets) for downstream
switches to make accurate splitting decisions. The counter method
is also appropriate for UDP flows, which do not have a sequence
number in their packet headers.

Compared to the above techniques, temporal splitting techniques
like FLARE are inherently less precise, because they rely on unpre-
dictable timing characteristics such as delays between packet bursts
inside a flow. For example, during a bulk data shuffle between
MapReduce stages, there may be few if any intra-flow delays. This
lack of precision leads to load imbalances that significantly degrade
throughput, as shown in §7.6.

5.2 Metaflows
To represent a metaflow, we install a rule that specifies the des-

tination IP field but uses wildcards to match all other fields. This
matches all flows to the same target, saving forwarding table space,
as illustrated by the third metaflow rule in Figure 3. To split a
metaflow, we additionally specify some least significant bits (LSBs)
in the source port field. In the example, the metaflow rules dis-
tributes all flows to target E over three links with ratios (1/4,1/4,1/2).
The “all” rule is placed on the bottom to illustrate its lower prior-
ity (it captures the remaining 1/2), although in OpenFlow priorities
are explicit.

If there is a diversity of flows and source ports, this scheme splits
the total flow rate by the desired ratios (approximately). But it may
not do so if the distribution of source ports or flow sizes is unfa-
vorable: for example, if there is a single large flow and many small
flows. In such situations, metaflow rules can be combined with
subflow rules for better accuracy. For example, a metaflow rule
can be split using the subflow splitting technique. Note that this
simultaneously splits all flows that match the rule.

We did not use metaflow rules in our evaluation since we found
LocalFlow’s space utilization to be modest in practice (§7.4).

6. ANALYSIS
We begin by analyzing the local (per-switch) complexity of Local-

Flow, and then prove its optimality.
During each round, LocalFlow executes O(|F | log |F | +

∑d |Fd | log |Fd |) = O(|F | log |F |) sequential steps if δ = 0, since it
need not sort the bins and links in lines 7-8, where |Fd | is the num-
ber of flows to destination d. If δ > 0, O(|F | log |F |+ |F ||L| log |L|)
steps are executed, where |L| is the number of outgoing links. Rel-
ative to the number of active flows, |L| can be viewed as a constant.
In terms of space complexity, LocalFlow maintains at least one rule
per flow; this can be reduced to one rule per destination by using
metaflows. Both of these numbers increase when flow rules are

split. We measure LocalFlow’s space overhead on a real datacenter
workload in §7.4.

We now show that, in conjunction with TCP, LocalFlow maxi-
mizes the total network utility (1) in an idealized fluid model [10].
In the remainder of this section, we refer to this idealized Network
Utility Maximization (NUM) model when discussing the proper-
ties of TCP with respect to the MCF problem. Since LocalFlow
and TCP alternately optimize their respective variables, we first
show that the “master” LocalFlow optimization adapts link flow

rates f d
u,v to minimize the maximum link cost ∑d f d

u,v
cu,v

, for the com-
modity send rates x∗i determined by the “slave” TCP sub-problem.
Then we examine the optimality conditions for TCP and show how
the “link-balanced” flow rates determined by LocalFlow lead to an
optimal solution to our original MCF objective.

LEMMA 6.1. If δ = 0, algorithm LocalFlow routes the mini-
mum cost MCF with fixed commodity send rates.

PROOF. The symmetry property from §3.3 implies that all out-
going links to a destination lead to equally-capacitated paths. Thus,
the maximum load on any link is minimized by splitting a flow
equally over all outgoing links; this is achieved by lines 6-10 of
LocalFlow. No paths longer than the shortest paths are used, as
they would intersect with a shortest path and thus add to its load.

Since we can view multiple flows with the same destination as
a single flow originating at the current switch, grouping does not
affect the distribution of flow. Repeating this argument for each
destination independently yields the minimum-cost flow.

When δ > 0, LocalFlow splits the total rate to a destination d
over |L| outgoing links, such that no link receives more than δ flow
rate than another. This process is repeated for all d ∈ D using the
same set of links L. Then,

LEMMA 6.2. At the end of LocalFlow, the total rate per link is
within an additive δ of each other.

PROOF. The lemma trivially holds when |L| = 1 because no
splitting occurs. Otherwise, the proof is an induction over the des-
tinations in D. Initially there are no flows assigned to links, so
the lemma holds. Suppose it holds prior to processing a new des-
tination. Let the total rate on the bins returned by BINPACK be
y1,y2, . . . ,yL in increasing order; let the total rate on the links be
x1,x2, . . . ,xL in decreasing order. After line 10, the total rate on
the links is x1 + y1,x2 + y2, . . . ,xL + yL. If 1 ≤ i < j ≤ L are the
links with maximum and minimum rate, respectively, then we have
(xi + yi)− (x j + y j) = (xi− x j)+ (yi− y j) ≤ δ , since yi ≤ y j and
xi− x j ≤ δ by the inductive hypothesis. The case when j < i is
similar.

THEOREM 6.3. LocalFlow, in conjunction with end-host TCP,
achieves the maximum MCF optimum.

PROOF. To show that LocalFlow’s “link-balanced” flow rates
enable TCP to maximize the maximum MCF objective (1), we turn
to the node-centric NUM formulation [10] of the TCP sub-problem,
adapted for the multi-path setting to allow flow splitting.

maximize: ∑
i

Ui(xi)

∑
i

xi ∑
p:(u,v)∈p

π
p
i ≤ cu,v: ∀(u,v) ∈ E

∑
p

π
p
i = 1: ∀i

Here, LocalFlow has already computed the set of flow variables
f d
u,v, which have been absorbed into the path probabilities π

p
i . Each

π
p
i determines the proportion of commodity xi’s traffic that tra-

verses path p, where p is a set of links connecting source s to
destination d. Since these variables are derived from the link flow
rates, they implicitly satisfy the original MCF flow and send rate
constraints (1).

To examine the effect of LocalFlow on the MCF objective, we
focus on the optimality conditions for the TCP sub-problem, which
is solved using dual decomposition [10]. In this approach, we first
form the Lagrangian L(x,λ) by introducing dual variables λu,v, one
for each link constraint.

L(x,λ) = ∑
i

∫
f (xi)dxi−∑

u,v
λu,v

(
∑

i
xi ∑

p:(u,v)∈p
π

p
i − cu,v

)
For generality, we define the TCP utility to be a concave function
where Ui(xi) =

∫
f (xi)dxi, as in [32], and f is differentiable and

invertible. Most TCP utilities (e.g., log) fall in this category [32].
Next, we construct the Lagrange dual function Q(λ) maximized
with respect to xi:

x∗i = f−1(β) when
∂L
∂xi

= 0 ∀xi, β = ∑
p

π
p
i ∑
(u,v)∈p

λu,v (2)

Q(λ) = ∑
i

(∫
f (x∗i)dx∗i − f−1(β)β

)
+∑

u,v
λu,v · cu,v

Minimizing Q with respect to λ gives both the optimal dual and
primal variables, since the original objective is concave.

∑
i

f−1(β) ∑
p:(u,v)∈p

π
p
i = cu,v when

∂Q
λu,v

= 0, ∀(u,v) ∈ E (3)

When (3) is satisfied, the system has reached the maximum net-
work utility (1). TCP computes this solution in a distributed fashion
using gradient ascent. End-hosts adjust their local send rates xi ac-
cording to implicit measurements of path congestion ∑(u,v)∈p λu,v
and switches update their per-link congestion prices λu,v (queuing
delay) according to the degree of backlog.

According to the symmetry property, all nodes at the same dis-
tance from source s along the shortest paths must have links of
equal capacity to nodes in the next level of the path tree. Thus, for
all links from a node u to nodes (v, w, etc.) in the next level of a
path tree, for any source-destination pair, we have:

∑
i

f−1(β) ∑
p:(u,v)∈p

π
p
i = ∑

i
f−1(β) ∑

p:(u,w)∈p
π

p
i (4)

We know that the set of commodities i that traverse these links are
the same, since they are at the same level in the path tree. Thus,
we can satisfy (3) by ensuring that the per-commodity values of
(4) are equal ∀i. PacketScatter satisfies this trivially by splitting
every commodity evenly across the equal-cost links (f s,d

u,v = f s,d
u,w),

resulting in equal link probabilities.
LocalFlow, on the other hand, groups commodities by destina-

tion when balancing the flow rate across links and only splits indi-
vidual commodities when necessary. However, by the same argu-
ment for commodities, we know that the set of destinations reach-
able via the links are the same as well. Thus, if we group the com-
modities in (3) by destination d then the condition is satisfied when:

∑
i:s→d

f−1(β) ∑
p:(u,v)∈p

π
p
i = ∑

i:s′→d
f−1(β) ∑

p:(u,w)∈p
π

p
i , ∀t

Since LocalFlow distributes the per-destination flow (x∗i) evenly
across equal-cost links, i.e., f d

u,v = f d
u,w∀d, we have:

∑
i:s→d

x∗i ∑
p:(u,v)∈p

π
p
i = ∑

i:s′→d
x∗i ∑

p:(u,w)∈p
π

p
i (5)

By substituting in (2), we arrive at the per-destination optimality
condition for (3). Note that LocalFlow will continue to adjust flow
rates to achieve (5) in response to TCP’s optimized send rates (and
vice-versa). On each iteration, LocalFlow minimizes the maximum
link utilization by balancing per-destination link flow rates, open-
ing up additional head room on each link for the current commod-
ity send-rates x∗i to grow. Between LocalFlow iterations, the TCP
sub-problem maximizes its send rate objective to consume the ad-
ditional capacity. Given a proper timescale separation between the
“master” and “slave” problems, the distributed convex optimization
process converges [10] to an optimal network utility.

In practice, a proper timescale separation is on the order of a few
RTTs, which in total is still <1ms for a typical datacenter. Thus,
LocalFlow can safely use a scheduling interval of 10ms or greater.
In general, the speed of convergence to the optimum depends on
the variant of TCP being used.

Note that the individual send rate utility functions Ui can differ
by source. This corresponds to end-hosts using different TCP vari-
ants (e.g., Cubic, NewReno) or even their own application-level
congestion control over UDP. As long as the utility functions are
concave and the send rates are elastic and not unbounded or static,
i.e., they can adjust to link congestion back pressure, then the opti-
mal MCF conditions under LocalFlow hold. If “fairness” between
send rates is an issue, then the provider must ensure that the end-
hosts employ some form of fairness-inducing congestion control
(e.g., Ui = log ∀i) [29].

7. EVALUATION
In this section, we evaluate LocalFlow to demonstrate its practi-

cality and to justify our theoretical claims. Specifically, we answer
the following questions:

• Does LocalFlow achieve optimal throughput? How does it
compare to Hedera, MPTCP, and other schemes? (§7.2)

• Does LocalFlow tolerate network failures? (§7.3)
• Given the potential for larger rule sets, how much forwarding

table space does LocalFlow use? (§7.4)
• Do smaller scheduling intervals give LocalFlow an advantage

over centralized solutions (e.g., Hedera)? (§7.5)
• Is spatial flow splitting better than temporal splitting (e.g., as

used by FLARE)? (§7.6)
• How well does LocalFlow manage packet reordering com-

pared to PacketScatter, and what is its effect on flow com-
pletion time? (§7.7)

We use different techniques to evaluate LocalFlow’s performance,
including analysis (§6) and simulations on real datacenter traffic
(§7.4), but the bulk of our evaluation (§7.2-§7.7) uses a packet-
level network simulator. Packet-level simulations allow us to iso-
late the causes of potentially complex behavior between LocalFlow
and TCP (e.g., due to flow splitting), to test scenarios at a scale
larger than any testbed we could construct, and to facilitate compar-
ison with prior work. In fact, we used the same simulator codebase
as MPTCP [39, 43], allowing direct comparisons.

7.1 Experimental setup
Simulations. We developed two simulators for LocalFlow. The
first is a stand-alone simulator that runs LocalFlow on pcap packet
traces. We used the packet traces collected by Benson et al. [6]
from a university datacenter switch. To stress the algorithm, we
simulated the effect of larger flows by constraining the link band-
width of the switch.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

T
h

ro
u

g
h

p
u

t
(%

)

Rank of flow

PacketScatter
LocalFlow (50ms)

MPTCP (8)
Hedera (50ms)

ECMP
LocalFlow-NS (50ms)

Figure 4: Individual flow throughputs for
a random permutation on a 1024-host Fat-
Tree network.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

T
h

ro
u

g
h

p
u

t
(%

)

Rank of flow

LocalFlow-NS (50ms)
PacketScatter

LocalFlow (50ms)
Hedera (50ms)

MPTCP (8)
ECMP

Figure 5: Individual flow throughputs for
a stride permutation on a 1024-host Fat-
Tree network.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

T
h

ro
u

g
h

p
u

t
(%

)

Rank of flow

LocalFlow-NS (50ms)
PacketScatter

LocalFlow (50ms)
MPTCP (8)

Hedera (50ms)
VLB

Figure 6: Individual flow throughputs for
a random permutation on a 1000-host VL2
network.

Our second simulator is based on htsim, a full packet-level net-
work simulator written by Raiciu et al. [39, 43]. The simulator
models TCP and MPTCP in similar detail to ns2, but is optimized
for larger scale and high speed. It includes an implementation of
Hedera’s First Fit heuristic [2]. We modified and extended htsim to
implement the LocalFlow algorithm. Notably, we added a switch
abstraction that groups queues together and maintains a forwarding
table based on the multi-resolution splitting rules defined in §5.

We allowed the duplicate-ACK (dup-ACK) threshold of end-host
TCP to be modified (the default is 3), but otherwise left end hosts
unchanged. Changing the threshold is easy in practice (e.g., by
writing to /proc/sys/ on Linux).
Topologies. We ran our experiments on the different fat-tree-like
topologies described in §3, including:

• FatTree topology built from k-port switches [1]. We used 1024
hosts (k = 16) when larger simulations were feasible, and 128
hosts (k = 8) hosts for finer analyses.

• VL2 topology [20]. We used 1000 hosts with 50 ToR, 20
aggregation, and 5 intermediate switches. Inter-switch links
have 10 times the bandwidth of host-to-ToR links.

• Oversubscribed topologies, created by adding more hosts to
edge/ToR switches in the above topologies. We used a 512-
host, 4:1 oversubscribed FatTree network (k = 8).

All our networks were as large or larger than those used by
Raiciu et al. [39] for their packet-level simulations. Unless oth-
erwise specified, we used 1000-byte packets, 1Gbps links (10Gbps
inter-switch links for VL2), queues of 100 packets, and 100µs de-
lays between queues.
TCP NewReno variants. We noticed in our simulation experiments
that flows between nearby hosts of a topology sometimes suffered
abnormally low throughput, even though they did not noticeably
affect the average. We traced this problem to the NewReno variant
used by htsim, called Slow-but-Steady [17], which causes flows to
remain in fast recovery for a very long time when network round-
trip times are low, as in datacenters and especially between nearby
hosts. RFC 2582 [17] suggests an alternative variant of NewReno
for such scenarios called Impatient. After switching to this variant,
the low-throughput outliers disappeared.

7.2 LocalFlow achieves optimal throughput

7.2.1 MapReduce-style workloads
We ran LocalFlow on a 1024-host FatTree network using a ran-

dom permutation traffic matrix of long flows, i.e., each host sends
a flow to one other host chosen at random without replacement.

Given its topology, a FatTree network can run this workload at full
bisection bandwidth. We used a scheduling interval of 50ms and in-
creased the dup-ACK threshold to accommodate reordering; these
parameters are discussed later. We also ran PacketScatter, ECMP,
Hedera with a 50ms scheduling interval, and MPTCP with 4 and 8
subflows per flow. Note that 50ms is an extremely optimistic inter-
val for Hedera’s centralized scheduler, being one to two orders of
magnitude smaller than what it can actually handle [2, 39].

Figure 4 shows the throughput of individual flows in increasing
order, with the legend sorted by decreasing average throughput.
As expected, LocalFlow achieves near-optimal throughput for all
flows, matching the performance of PacketScatter to within 1.4%.
LocalFlow’s main benefit over PacketScatter is that it splits fewer
flows when there are multiple flows per destination, as we show
later. Although LocalFlow-NS attempts to distribute flows locally,
it does not split flows and so cannot avoid downstream collisions.
It is also particularly unlucky in this case, performing worse than
ECMP (typically their performance is similar).

MPTCP with 8 subflows achieves an average throughput that is
8.3% less than that of LocalFlow, and its slowest flow has 45%
less throughput than that of LocalFlow. MPTCP with 4 subflows
(not shown) performs substantially worse, achieving an average
throughput that is 21% lower than LocalFlow. This is because there
are fewer total subflows in the network; effectively, it throws fewer
balls into the same number of bins. ECMP has the same problem
but much worse because it throws N balls into N bins; this induces
collisions with high probability, resulting in an average throughput
that is 44% less than the optimal. For the remainder of our analy-
sis, we use 8 subflows for MPTCP, the recommended number for
datacenter settings [39].

Hedera’s average throughput lies between MPTCP with 4 sub-
flows and 8 subflows, but exhibits much higher variance. Although
not shown, Hedera’s variance was ±28%, compared to ±14% for
MPTCP with 4 subflows. In general, Hedera does not cope well
with a random permutation workload, which sends flows along dif-
ferent path lengths (most reach the core, some only reach aggrega-
tion, and a few only reach edge switches).

If instead we guarantee that all flows travel to the core before de-
scending to their destinations, Hedera performs much better. Fig-
ure 5 shows the results of a stride(N/2) permutation workload,
where host i sends a flow to host i+N/2. All algorithms achieve
higher throughput, and Hedera comes close to LocalFlow’s perfor-
mance, though its slowest flow has 49% less throughput than that
of LocalFlow. Further, forcing all traffic to traverse the core in-
curs higher latency for potentially local communication, and yields
worse performance in more oversubscribed settings. In fact, signif-

Total throughput, average flow completion time

ECMP 0.0%, 0.0% LF-1 +6.7%, −0.2%
Hedera −7.2%, −17.0% LF-1 (δ =0.01) +10.9%, −2.2%
MPTCP +6.0%, +28.7% LF-1 (δ =0.05) +7.2%, −1.0%
PS +12.7%, +10.4% LF-NS (δ =1) +6.6%, −1.9%

Figure 7: Total throughput and average flow completion time
relative to ECMP, for a heterogeneous VL2 workload on a 512-
host, 4:1 oversubscribed FatTree.

icant rack- or cluster-local communication is common in datacenter
settings [6, 28], suggesting larger benefits for LocalFlow.

It may seem surprising that LocalFlow-NS has the highest av-
erage throughput in Figure 5, but this is due to the uniformity of
the workload. LocalFlow-NS distributes the flows from each pod
evenly over the core switches; since these flows target the same
destination pod, the distribution is perfect. A similar effect arises
when running a random permutation workload on the 1000-host
VL2 topology, per Figure 6. In a VL2 network, aggregation and in-
termediate switches form a complete bipartite graph, thus it is only
necessary to distribute the number of flows evenly over interme-
diate switches, which LocalFlow-NS does. In fact, LocalFlow-NS
achieves optimal throughput for any permutation workload.

7.2.2 Dynamic, heterogeneous workloads
Real datacenters are typically oversubscribed, with hosts sending

variable-sized flows to multiple destinations simultaneously. Using
a 512-host, 4:1 oversubscribed FatTree network, we tested a realis-
tic workload by having each host select a number of simultaneous
flows to send from the VL2 dataset [20, Fig. 2]2, with flow sizes
also selected from this dataset. The flows ran in a closed loop,
i.e., they restarted after finishing (with a new flow size). We ran
LocalFlow with a 10ms scheduling interval and also allowed ap-
proximate splitting (δ > 0). We used a 10ms scheduling interval
for Hedera as well, which again is extremely optimistic. Figure 7
shows results for the total throughput (total number of bytes trans-
ferred) and average flow completion times (which we discuss later
in §7.7).

Using the VL2 distributions, there are over 12,000 simultaneous
flows in the network. With this many flows, even ECMP’s load-
agnostic hashing should perform well due to averaging, and we ex-
pect all algorithms to deliver similar throughput; Figure 7 confirms
this. Nevertheless, there are some interesting points to note.

First, LocalFlow-NS outperforms ECMP because it intelligently
distributes flows, albeit locally. In fact, its performance is almost
as good as LocalFlow due to the large number of flows. Local-
Flow does not appear to gain much from exact splitting. We be-
lieve this is because over 86% of flows in the VL2 distribution
are smaller than 125KB; such flows are small enough to complete
within a 10ms interval, so it may be counterproductive to move
or split them midstream. On the other hand, splitting too approx-
imately (δ = 0.05) also hurts LocalFlow’s performance, because
of the slight load imbalances incurred. δ = 0.01 strikes the right
balance for this workload, achieving close to PacketScatter’s per-
formance. All LocalFlow variants outperform MPTCP.

Hedera achieves 7.17% less throughput than ECMP. This is likely
due to the small flows mentioned above, which are large enough to
be scheduled by Hedera, but better left untouched. In addition, as
Raiciu et al. [39] observed, Hedera optimistically reserves band-
width along a flow’s path assuming the flow can fill it, but this

2We obtained the VL2 distributions by extracting plot data from the paper’s PDF file.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

T
h
ro

u
g
h
p
u
t
(%

)

Rank of flow

LocalFlow (50ms)
MPTCP (8)

Hedera (50ms)
ECMP

PacketScatter

Figure 8: Individual flow throughputs for a random permuta-
tion on a 128-host FatTree network with failed links.

bandwidth may go to waste in the current scheduling interval if the
flow is unable to do so.

7.3 LocalFlow handles failures gracefully
Although PacketScatter’s throughput is competitive with Local-

Flow above, this is not the case when network failures occur. As
discussed in §4.3, if an entire switch fails, PacketScatter is com-
petitive with LocalFlow, but if failures are skewed (as one would
in practice), PacketScatter’s performance suffers drastically. Fig-
ure 8 shows the results of a random permutation on a 128-host Fat-
Tree network, when one aggregation switch (out of four) in each
pod loses 3 of its 4 uplinks to the core. Upon learning of the
failure, LocalFlow at the edge switches rebalances most outgoing
traffic to the three other aggregation switches. From Figure 8, we
see that LocalFlow and MPTCP deliver near-optimal throughput,
whereas PacketScatter performs even worse than ECMP, achieving
only 48% of the average throughput of LocalFlow.

7.4 LocalFlow uses little forwarding table space
LocalFlow distributes the aggregate flow to each destination, so

if several flows share the same destination, the number of subflows
(splits) per flow is small. With approximate splitting, even fewer
flows are split due to the added slack. This is important because
splitting flows increases the size of a switch’s forwarding tables.

To evaluate how much splitting LocalFlow does in practice, we
ran our stand-alone simulator on a 3914-second TCP packet trace
that saw 259,293 unique flows, collected from a 500-server univer-
sity datacenter switch [6]. We used a scheduling interval of 50ms
and different numbers of outgoing links, while varying δ . Figure 9
(top) shows these results as a function of δ . Although LocalFlow
splits up to 78% of flows when δ = 0 (using 8 links), this number
drops to 21% when δ = 0.01 and to 4.3% when δ = 0.05. Thus, a
slack of just 5% results in 95.7% of flows remaining unsplit! This
is a big savings, because such flows do not require wildcard match-
ing rules, and can thus be placed in an exact match table in the more
abundant and power-efficient SRAM of a switch.

The average number of subflows per flow similarly drops from
3.54 when δ = 0 to 1.09 when δ = 0.05 (note the minimum is 1
subflow per flow). This number more accurately predicts how much
forwarding table space LocalFlow will use, since it counts the total
number of rules required. Thus, using 8 links and δ = 0.05, Local-
Flow uses about 9% more forwarding table space than LocalFlow-
NS, which only needs one rule per flow. Although PacketScatter
creates almost 8 times as many subflows, it only needs to store a
small amount of state per destination, of which there are at most
500 in this dataset. Later, we will see that PacketScatter pays for
its excessive splitting in the form of longer flow completion times.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.01 0.02 0.03 0.04 0.05

F
ra

c
ti
o

n
 o

f
fl
o

w
s
 s

p
lit

δ (slack)

PacketScatter
8 links
4 links
2 links

Avg. # of subflows/flow 2 links 4 links 8 links

LocalFlow (δ =0) 1.35 2.08 3.54
LocalFlow (δ =0.01) 1.06 1.20 1.49
LocalFlow (δ =0.05) 1.01 1.04 1.09
PacketScatter 2 4 8

Figure 9: Fraction of flows split (top) and average number of
subflows per flow (bottom) by LocalFlow for different numbers
of outgoing links, compared to other protocols, using a 3914-
second trace from a real datacenter switch.

7.5 Smaller scheduling intervals improve per-
formance, up to a limit

The previous experiments suggest that real workloads contain
many short-lived flows. This is partly due to small flows, but even
larger flows can complete in under a second in high-bandwidth
datacenters. In order to adapt quickly to these workloads, small
scheduling intervals are necessary.

To measure the effect of scheduling interval size, we used a 128-
host FatTree network running a random permutation with closed-
loop flow arrivals. Flow sizes were selected from the VL2 dataset
as before. Figure 10 shows the total throughput relative to ECMP
for different scheduling intervals. Both Hedera and LocalFlow im-
prove with smaller intervals, increasing 46% and 105%, respec-
tively, as the interval is decreased from 1s to 1ms. LocalFlow’s
improvement is dramatic: it outperforms MPTCP at 10ms and, re-
markably, outperforms PacketScatter at 1ms by over 7.7%. Hedera
never outperforms MPTCP and its improvement is more gradual.
This is partly due to the problem of overscheduling small flows, as
we observed in Figure 7.3 Of course, Hedera’s centralized batch
coordination makes such small intervals infeasible; Raiciu et al.
experimentally evaluated Hedera with 5s intervals and argued ana-
lytically that, at best, 100ms intervals may be achievable.

The fact that LocalFlow outperforms PacketScatter is significant:
it shows that splitting every flow can be harmful, since it exacer-
bates reordering. In contrast, LocalFlow does not split flows that
start and finish within a scheduling interval.

7.6 Spatial splitting outperforms temporal
LocalFlow uses a precise, spatial technique to split an individual

flow—based on either flowlets or counters—that is oblivious to the
timing characteristics of the flow. Thus, it achieves accurate load
balancing despite traffic unpredictability, unlike temporal splitting
techniques like FLARE. Load imbalances may arise in other tech-
niques as well, such as Hedera’s use of bandwidth reservations, or
the random choices of stateless PacketScatter and its variants [15].

Our experiments showed that even slight load balances can sig-
nificantly degrade throughput, especially for workloads that sat-
urate the network’s core. For example, we ran LocalFlow on a

3We note that our results are slightly different from those reported by Raiciu et al. [39,
Fig. 13]. We believe this is due to their coarser approximation of the VL2 distribution.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

ECM
P

1s 500m
s

200m
s

100m
s

50m
s

10m
s

1m
s

M
PTCP (8)

PS

R
e

la
ti
v
e

 t
h

ro
u

g
h

p
u

t

Hedera
LocalFlow

Figure 10: Total throughput on a random permutation with
closed-loop flow arrivals, while varying the scheduling interval
of LocalFlow and Hedera.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
(%

)
Rank of flow

LocalFlow (S)
PacketScatter (S)

LocalFlow, t = 4 MSS (S)
PacketScatter (T)

LocalFlow (T)
LocalFlow, t = 4 MSS (T)

Figure 11: Throughputs for LocalFlow and PacketScatter flows
using spatial (S) vs. temporal (T) splitting.

128-host FatTree network using a random permutation, but chose
an outgoing link at random for each packet (according to the split-
ting ratios), instead of based on the packet’s sequence number. We
also ran a stateless variant of PacketScatter, which selects a ran-
dom outgoing link for each packet. Both of these schemes simulate
temporal splitting because they achieve the desired splitting ratios
on average in the long term, but due to randomness, exhibit load
imbalances in the short term.

Figure 11 shows the results. The average throughput of flows
using LocalFlow drops by 17% with temporal splitting; Packet-
Scatter’s performance drops by 14%. We also tested the effect of
using a larger flowlet size with LocalFlow (the results that follow
do not apply if counters are used to implement subflow splitting).
Recall from §5.1 that flowlets facilitate finer splitting downstream,
so higher switches in the FatTree should use smaller flowlets than
lower switches. If instead we use a flowlet size of t = 4 MSS at all
switches, LocalFlow’s performance drops by 31% with temporal
splitting. This is because the penalty of imprecise load balancing is
higher when the scheduling unit is larger.

It is interesting that LocalFlow’s performance itself drops slightly
when using a larger flowlet. The reason for this is fundamental:
even though splitting is spatial within a flow, the presence of other
flows in the network introduces some temporal randomness. This
causes occasional bursts of flowlets from different flows on the
same outgoing link. In fact, one of our modifications to htsim was
to fix a bug in the existing implementation of PacketScatter, where
an incorrect ordering of loops resulted in flowlets of size larger
than 1 between edge/ToR and aggregation switches (instead of true
packet spraying), causing similar performance degradations.

7.7 LocalFlow handles reordering and com-
pletion time better than PacketScatter

A major concern with splitting flows is that it may lead to in-
creased packet reordering. Fortunately, we found that by simply in-
creasing the dup-ACK threshold of end hosts’ TCP, we could elimi-
nate the adverse effects of reordering. For example, in the previous
experiments, using a dup-ACK threshold of >15 for LocalFlow and
PacketScatter (instead of the default of 3) is sufficient. One could
also vary the threshold dynamically, as in RR-TCP [46], although
we did not find this to be necessary in our experiments.

Although a higher dup-ACK threshold benefits both LocalFlow
and PacketScatter, LocalFlow gains an advantage by splitting many
fewer flows in practice. As Figure 9 shows, LocalFlow splits fewer
than 4.3% of flows on a real datacenter switch trace. Put differently,
over 95.7% of flows were not split and hence incurred no additional
reordering. Further, small flows that complete inside a scheduling
interval are not split by LocalFlow; this gave LocalFlow a through-
put advantage over PacketScatter in Figure 10, where the workload
involved flow sizes from the VL2 distribution.

We now consider flow completion time, which is sensitive to re-
ordering. Recall that Figure 7 tests a heterogeneous VL2 work-
load with thousands of simultaneous flows that are mostly smaller
than 125KB. As the figure shows, the average flow completion time
of all variants of LocalFlow is lower than ECMP, while delivering
higher throughput. In contrast, although PacketScatter also deliv-
ers higher throughput, its average completion time is 10.4% higher
than ECMP. MPTCP performs even worse at 28.7% higher than
ECMP, likely due to its overhead from splitting small flows.

8. DEPLOYMENT CONCERNS
We discuss some considerations that should be made before de-

ploying LocalFlow in a real datacenter network. These involve
the network architecture and hardware, end-host TCP, and traffic
workload. Some of these issues have been discussed in previous
sections; we include them here for completeness.
Network architecture. LocalFlow is designed for symmetric net-
works. If the target network is asymmetric, LocalFlow may not
achieve optimal routing. Asymmetry can arise by design, for ex-
ample if the network has variable-length paths (e.g., BCube [21]),
or it may arise due to hardware failures, such as a faulty link that
operates at a lower rate (e.g., 100Mbps instead of 1Gbps). Raiciu et
al. [39] analyzed these scenarios and showed that MPTCP’s linked
congestion control adapts well to asymmetry. LocalFlow can also
cope with failures and asymmetry (see §4.3), but cannot guarantee
good performance in these settings. Splitting a flow over unequal
paths poses additional concerns not addressed in [39]; for example,
it requires more buffering at the destination as packets from faster
paths arrive out-of-order. This consumes memory proportional to
the flow rate times the latency difference between the paths.
Switch implementation. The choice of switch implementation is
critical to LocalFlow’s performance. While implementing Local-
Flow in a software switch is relatively straightforward,4 limitations
in software packet processing produce suboptimal results. Unlike
hardware line-rate forwarding, software switching requires the NIC
to interrupt the processor when packets are available. Under heavy
load, the operating system uses interrupt coalescing to reduce sig-
nal handling overhead. However, this induces unpredictable for-
warding delay which can increase packet reordering for split flows.
Flow-steering in multi-queue NICs exacerbates the problem by di-

4Modifying the Open vSwitch [36] software switch to split flows using the TCP se-
quence number technique requires less than 100 LoC.

recting flows to different CPU cores, leading to further packet in-
terleaving. This is why our design assumes hardware switches.

Some recent studies [14, 24] paint a bleak picture of the per-
formance of hardware OpenFlow switches, complaining that they
handle only tens of flow setups per second and have scarce, power-
hungry TCAMs. However, both these switches and the OpenFlow
specification become faster and support more complex features ev-
ery year. For example, high-end NoviFlow switches [35] have over
1 million TCAM entries, handle 1000 flow setups per second, and
support OpenFlow 1.3 [37]. Though more expensive than commod-
ity switches, they indicate that hardware support for LocalFlow’s
splitting techniques is around the corner. Recall that LocalFlow
only requires TCAM entries for the few flows that are actually split.
End-host TCP. Since LocalFlow may cause additional packet re-
ordering in flows that are split, the dup-ACK threshold of end-host
TCP must be increased (as in our simulations) to avoid spurious
fast retransmissions and congestion window collapse. Since TCP
counts the number of reordered packets, the faster the network, the
higher this threshold needs to be. Through its decomposition of
the MCF problem, LocalFlow is compatible with other variants of
TCP, such as those that use DSACK to detect spurious congestion
signals and/or adjust the dup-ACK threshold dynamically [8, 46].
Workloads. As we have explained, LocalFlow’s design enables it to
cope with highly dynamic traffic patterns, even though it’s schedul-
ing decisions are based on measurements from the previous inter-
val. By setting the δ slack appropriately, small, latency-sensitive
flows can be efficiently scheduled without ever being split.

Since LocalFlow relies on TCP to adjust flow send rates, the
presence of unregulated traffic such as UDP flows can degrade its
optimality guarantee. UDP does not perform congestion control or
guarantee ordered delivery. LocalFlow can accommodate the latter
problem by preventing UDP flows from being split—for example,
by using a policy in function BINPACK that places (unsplit) UDP
flows before (splittable) TCP flows. However, the former prob-
lem is fundamental and means that a UDP flow can easily gain
more than its fair share of bandwidth. This affects any flow rout-
ing scheme, including MPTCP, Hedera, and ECMP. To co-exist
fairly with TCP flows, UDP flows must either be subject to user-
space congestion control, encapsulated by an aggregate end-host
TCP flow (as in Seawall [41]), or placed in per-flow or per-class
switch queues that are rate-limited along its path. The latter is a
straightforward extension of LocalFlow, but such quality-of-service
controls have limited support in commodity switches.

9. CONCLUSIONS
This paper introduces a practical, switch-local algorithm for rout-

ing traffic flows in datacenter networks in a load-aware manner.
Compared to prior solutions, LocalFlow does not require central-
ized control, synchronization, or end-host modifications, while in-
curring modest forwarding table expansion. Perhaps more impor-
tantly, LocalFlow achieves optimal throughput in theory, and near-
optimal throughput in practice, as our extensive simulation analysis
shows. Our experiments revealed several interesting facts, such as
the benefits of precise, spatial splitting over temporal splitting, and
the impact of reordering on flow completion times.

10. ACKNOWLEDGMENTS
We thank Kay Ousterhout for her work on an initial simulator

for the LocalFlow algorithm. We thank Jennifer Rexford, our shep-
herd, and the anonymous reviewers for their valuable feedback.
This work was supported by funding from the National Science
Foundation and a Google PhD Fellowship.

References
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity

data center network architecture. In SIGCOMM, 2008.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In NSDI, 2010.

[3] B. Awerbuch and R. Khandekar. Distributed network monitoring and
multicommodity flows: A primal-dual approach. In PODC, 2007.

[4] B. Awerbuch and R. Khandekar. Greedy distributed optimization of
multi-commodity flows. Distrib. Comput., 21(5), 2009.

[5] B. Awerbuch and T. Leighton. A simple local-control approximation
algorithm for multicommodity flow. In FOCS, 1993.

[6] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. In IMC, 2010.

[7] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: Fine
grained traffic engineering for data centers. In CoNEXT, 2011.

[8] S. Bhandarkar, A. L. N. Reddy, M. Allman, and E. Blanton.
Improving the robustness of TCP to non-congestion events. RFC
4653, Internet Engineering Task Force, 2006.

[9] J. E. Burns, T. J. Ott, A. E. Krzesinski, and K. E. Müller. Path
selection and bandwidth allocation in MPLS networks. Perform.
Eval, 52(2-3), 2003.

[10] M. Chiang, S. H. Low, A. Calderbank, and J. C. Doyle. Layering as
optimization decomposition: A mathematical theory of network
architectures. Proc. IEEE, 95(1):255–312, 2007.

[11] Cisco Systems. Per-packet load balancing. http://www.cisco.
com/en/US/docs/ios/12_0s/feature/guide/pplb.pdf, 2006.

[12] Cisco Systems. Application Extension Platform.
http://www.cisco.com/en/US/products/ps9701/, 2011.

[13] C. Clos. A study of non-blocking switching networks. Bell Syst.
Tech. J., 32(2):406–424, 1953.

[14] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee. Devoflow: Scaling flow management for
high-performance networks. In SIGCOMM, 2011.

[15] A. Dixit, P. Prakash, Y. Hu, and R. Kompella. On the impact of
packet spraying in data center networks. In INFOCOM, 2013.

[16] S. Fischer, N. Kammenhuber, and A. Feldmann. REPLEX: Dynamic
traffic engineering based on wardrop routing policies. In CoNEXT,
2006.

[17] S. Floyd and T. Henderson. The NewReno modification to TCP’s fast
recovery algorithm. RFC 2582, Network Working Group, 1999.

[18] N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual
approximation algorithms for integral flow and multicut in trees.
Algorithmica, 18(1), 1997.

[19] P. Geoffray and T. Hoefler. Adaptive routing strategies for modern
high performance networks. In HOT Interconnects, 2008.

[20] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: A scalable and flexible
data center network. In SIGCOMM, 2009.

[21] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu. BCube: A high performance, server-centric network
architecture for modular data centers. In SIGCOMM, 2009.

[22] J. He, M. Suchara, J. Rexford, and M. Chiang. From multiple
decompositions to TRUMP: Traffic management using multipath
protocol, 2008.

[23] C. Hopps. Analysis of an Equal-Cost Multi-Path algorithm. RFC
2992, Network Working Group, 2000.

[24] D. Y. Huang, K. Yocum, and A. C. Snoeren. High-fidelity switch
models for software-defined network emulation. In HotSDN, 2013.

[25] Juniper. Junos SDK. http://juniper.net/techpubs/en_US/
release-independent/junos-sdk/, 2011.

[26] S. Kandula, D. Katabi, B. S. Davie, and A. Charny. Walking the
Tightrope: Responsive yet stable traffic engineering. In SIGCOMM,
2005.

[27] S. Kandula, D. Katabi, S. Sinha, and A. Berger. Dynamic load
balancing without packet reordering. SIGCOMM Comp. Comm. Rev.,
37, 2007.

[28] S. Kandula, S. Sengupta, A. G. Greenberg, P. Patel, and R. Chaiken.
The nature of data center traffic: Measurements & analysis. In IMC,
2009.

[29] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for
communication networks: Shadow prices, proportional fairness and
stability. J. Oper. Res. Soc., 49:237–252, 1998.

[30] K.-C. Leung, V. O. K. Li, and D. Yang. An overview of packet
reordering in Transmission Control Protocol (TCP): Problems,
solutions, and challenges. IEEE Trans. Parallel Distrib. Syst., 18,
2007.

[31] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10: A
fault-tolerant engineered network. In NSDI, 2013.

[32] S. H. Low. A duality model of TCP and queue management
algorithms. Trans. Networking, 11:525–536, 2002.

[33] A. Madry. Faster approximation schemes for fractional
multicommodity flow problems via dynamic graph algorithms. In
STOC, 2010.

[34] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling innovation in campus networks. SIGCOMM Comp. Comm.
Rev., 38, 2008.

[35] NoviSwitch. http://noviflow.com/products/noviswitch/,
2013.

[36] Open vSwitch. http://openvswitch.org/, 2012.

[37] OpenFlow Switch Specification, Version 1.3.0.
https://www.opennetworking.org/images/stories/
downloads/specification/openflow-spec-v1.3.0.pdf,
2012.

[38] R. Ozdag. Intel ethernet switch FM6000 series – software defined
networking, 2012.

[39] C. Raiciu, S. Barré, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley. Improving datacenter performance and robustness with
multipath TCP. In SIGCOMM, 2011.

[40] S. Sen, S. Ihm, K. Ousterhout, and M. J. Freedman. Brief
announcement: Bridging the theory-practice gap in multi-commodity
flow routing. In DISC, 2011.

[41] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Seawall:
Performance isolation for cloud datacenter networks. In HotCloud,
2010.

[42] L. G. Valiant and G. J. Brebner. Universal schemes for parallel
communication. In STOC, 1981.

[43] D. Wischik, C. Raiciu, A. Greenhalgh, , and M. Handley. Design,
implementation and evaluation of congestion control for multipath
TCP. In NSDI, 2011.

[44] X. Wu and X. Yang. DARD: Distributed adaptive routing for
datacenter networks. In ICDCS, 2012.

[45] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. H. Katz. Detail:
Reducing the flow completion time tail in datacenter networks. In
SIGCOMM, 2012.

[46] M. Zhang, B. Karp, S. Floyd, and L. L. Peterson. RR-TCP: A
reordering-robust TCP with DSACK. In ICNP, 2003.

http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/pplb.pdf

http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/pplb.pdf

http://www.cisco.com/en/US/products/ps9701/

http://juniper.net/techpubs/en_US/release-independent/junos-sdk/

http://juniper.net/techpubs/en_US/release-independent/junos-sdk/

http://noviflow.com/products/noviswitch/

http://openvswitch.org/

https://www.opennetworking.org/images/stories/downloads/specification/openflow-spec-v1.3.0.pdf

https://www.opennetworking.org/images/stories/downloads/specification/openflow-spec-v1.3.0.pdf

			Introduction

			Existing Approaches

			Architecture

			Components and deployment

			Main LocalFlow scheduling loop

			Symmetric networks

			Algorithm LocalFlow

			Basic solution: PacketScatter

			LocalFlow

			Handling failures and asymmetry

			Multi-resolution splitting

			Flows and subflows

			Metaflows

			Analysis

			Evaluation

			Experimental setup

			LocalFlow achieves optimal throughput

			MapReduce-style workloads

			Dynamic, heterogeneous workloads

			LocalFlow handles failures gracefully

			LocalFlow uses little forwarding table space

			Smaller scheduling intervals improve performance, up to a limit

			Spatial splitting outperforms temporal

			LocalFlow handles reordering and completion time better than PacketScatter

			Deployment concerns

			Conclusions

			Acknowledgments

pisces-osr13.pdf

Fairness and Isolation in Multi-Tenant Storage as
Optimization Decomposition

David Shue
Princeton University

dshue@cs.princeton.edu

Michael J. Freedman
Princeton University

mfreed@cs.princeton.edu

Anees Shaikh
IBM Research

aashaikh@us.ibm.com

ABSTRACT
Shared storage services enjoy wide adoption in commercial
clouds. But most systems today provide weak performance
isolation and fairness between tenants, if at all. Most ap-
proaches to multi-tenant resource allocation are based either
on per-VM allocations or hard rate limits that assume uni-
form workloads to achieve high utilization. Instead, Pisces,
our system for shared key-value storage, achieves datacenter-
wide per-tenant performance isolation and fairness.

Pisces achieves per-tenant weighted fair sharing of sys-
tem resources across the entire shared service, even when
partitions belonging to different tenants are co-located and
when demand for different partitions is skewed or time-
varying. The focus of this paper is to highlight the opti-
mization model that motivates the decomposition of Pisces’s
fair sharing problem into four complementary mechanisms—
partition placement, weight allocation, replica selection, and
weighted fair queuing—that operate on different time-scales
to provide system-wide max-min fairness. An evaluation of
our Pisces storage prototype achieves nearly ideal (0.98 Min-
Max Ratio) fair sharing, strong performance isolation, and
robustness to skew and shifts in tenant demand.

1. INTRODUCTION
An increasing number and variety of enterprises are mov-

ing workloads to cloud platforms. Whether serving external
customers or internal business units, cloud platforms typ-
ically allow multiple users, or tenants, to share the same
physical server and network infrastructure, as well as use
common platform services which include key-value stores,
block storage volumes, and SQL databases. These services
leverage the expertise of the cloud provider in building, man-
aging, and improving common platforms, and enable the sta-
tistical multiplexing of resources between tenants for higher
utilization and cost savings.

Because they rely on shared infrastructure, however, these
services face two key, related issues:

• Multi-tenant interference and unfairness: Ten-

Permission for classroom and personal use is granted, providing this notice
appears on all copies.
LADIS Workshop ’12. Madeira, Portugal.
Copyright 2012 by the Authors. This work derives from work published at
the workshop. Appeared in ACM SIGOPS Operating System Review,
Vol. 47 Issue 1, Jan. 2013 .

ants simultaneously accessing shared service nodes con-
tend for resources and degrade performance.

• Variable and unpredictable performance: Tenants
often experience significant performance variations, e.g.,
in response time or throughput, even when they can
achieve their desired mean rate [17,19].

These issues limit the types of applications that can migrate
to multi-tenant clouds and leverage shared services. They
also prevent cloud providers from offering differentiated ser-
vice, in which some tenants can pay for performance isola-
tion and predictability, while others choose standard “best-
effort” behavior.

Shared back-end storage services face different challenges
than virtual machine (VM) provisioning of shared physical
infrastructure. These stores divide tenant workloads into
disjoint partitions, which are then distributed (and repli-
cated) across different service nodes. Rather than managing
individual storage partitions, cloud tenants want to treat
the entire storage system as a single black box, in which
aggregate storage capacity and request rates can be scaled
on demand. As with VMs, resource contention arises when
tenants’ partitions are co-located, however the degree of re-
source sharing between tenants may be significantly higher
and more fluid.

To improve predictability for shared storage systems with
a high degree of resource sharing and contention, we target
global max-min fairness. Under max-min fairness, no
tenant can gain an unfair advantage over another when the
system is loaded, i.e., each tenant will receive its (weighted)
fair share. Moreover, when some tenants use less than their
full share, unconsumed resources are divided among the rest
to ensure high utilization. In comparison, recent commer-
cial systems that offer request rate guarantees (i.e., Amazon
DynamoDB [1]) do not ensure fairness, assume uniform load
distributions across tenant partitions, and are not work con-
serving. While our approach may be applicable to a range of
services with shared-nothing architectures [14], we focus our
design and evaluation on a key-value storage service, which
we call Pisces (Predictable Shared C loud Storage).

Providing fair resource allocation and isolation at the ser-
vice level is confounded by variable demand to different ser-
vice partitions. Even if tenant objects are uniformly dis-
tributed across their partitions, per-object demand is often
skewed, both in terms of request (read or write) rate and
request size. In short, simply assuming that each tenant
requires the same proportion of resources per partition can
lead to unfairness and inefficiency. To address these issues,
Pisces decomposes the problem of global fairness into four

Tenant A Tenant B Tenant C

Node 2 Node 3

VM VM VM VM VM VM VM VM VM

3

Node 1

RR

wa1 wb1

GET 1101100

wc1

WeightA WeightB WeightC
Tenant D
VM VM VM

WeightD

PP
RS

FQ

wd1 wa2 wb2 wc2 wd2 wa3 wb3 wc3 wd3

Controller

WA

tenant partitions

de
m

an
d

wc4 : local weight

Figure 1: Pisces multi-tenant storage architecture.

mechanisms based on the NUM optimization framework [4].
Operating on different timescales and with different levels
of system-wide visibility, these mechanisms complement one
another to ensure fairness under resource contention and
variable demand.

(i) Partition Placement (re)-assigns tenant partitions to
nodes to ensure a fair allocation (long timescale).

(ii) Weight Allocation distributes overall tenant fair shares
across the system by adjusting local per-tenant weights at
each node (medium timescale).

(iii) Replica Selection load-balances requests between par-
tition replicas in a weight-sensitive manner (real-time).

(iv) Fair Queuing enforces performance isolation and fair-
ness according to local tenant weights (real-time).

In this paper, we focus on the design and decomposition
of the system mechanisms from an optimization perspec-
tive. While the global fairness problem is amenable to dif-
ferent approaches, leveraging optimization theory not only
leads to performant algorithms, but also provides a basis for
understanding and proving system properties [7]. Through
experimental evaluation, we demonstrate that Pisces signifi-
cantly improves the multi-tenant fairness and isolation prop-
erties of our key-value store, built on Membase [2], even as
workloads shift dynamically. While this paper stresses our
optimization-based approach, a more detailed treatment of
the system design, implementation, and evaluation can be
found elsewhere [13].

2. ARCHITECTURE AND SYSTEM MODEL
Figure 1 shows the high-level architecture of Pisces, a key-

value storage service that provides system-wide, per-tenant
fairness and isolation. Pisces provides the semantics of a per-
sistent map between opaque keys (bit-strings) and unstruc-
tured values (binary blobs) and supports simple key lookups
(get), modifications (set), and removals (delete). To parti-
tion the workload, the keys are first hashed into a fixed-size
key space and then subdivided into disjoint partitions.

A controller assigns these partitions (and their replicas)
to service nodes while request router(s), which can be im-
plemented in client libraries, or deployed as intermediate
proxies (as shown in Figure 1), direct tenant requests to a
node hosting the appropriate partition replica. Each ser-
vice node schedules incoming requests and serves tenant
data. Note that this architecture is not limited to key-value
storage systems. Any system that employs workload par-
titioning (sharding) i.e., partitioned databases, distributed

System Parameters

wt global weight for tenant t

zt global max-min weighted fair share for t: zt =
wt ∑

n cn∑
u w

u

f tp t’s fair share demand for partition p:
∑
p f

t
p = zt

ρt replicas per partition for tenant t
cn resource capacity for service node n

Decision Variables

rtn local resource share for t at n

wtn local weight t at n: wtn =
rtn∑
u r

u
n

Qt |N | × |P t| partition replica selection matrix

Global Fair-Sharing Optimization

maximize: Λ(rt∈Tn∈N , Q
t∈T) : throughput utility function (1)

subject to:
∑
n

rtn ≤ zt : fair share constraint (2)∑
t

rtn ≤ cn : node capacity constraint (3)∑
p

Qtn,p ≤ rtn : local share constraint (4)∑
n

Qtn,p > 0 = ρt : replication constraint (5)∑
n

Qtn,p ≤ f tp : partition demand constraint (6)

Table 1: Pisces global fair-sharing system model

block storage, scalable message queues etc, will have a sim-
ilar structure and invoke similar mechanisms.

2.1 Achieving Global Fairness
Pisces provides per-tenant fairness at the system-wide level,

which we model as the global optimization problem shown
in Table 1. At a high level, each tenant t has a single, global
weight wt that determines its fair share of aggregate system
resources (i.e., throughput): zt. These weights are generally
set according to the tenant’s service-level objective and can
be adjusted at any time.

To ensure each tenant receives its fair share, Pisces has
to make several key decisions. Since tenant partitions p are
distributed across the service nodes n and can have varying
demand f tp, Pisces needs to determine (i) where each parti-
tion’s ρt replicas should reside (partition placement (PP)),
(ii) how much demand to send to each one (replica selection
(RS)) , and (iii) what share of local resources to give each
tenant at the nodes hosting its partitions (weight allocation
(WA)). Lastly, to enforce fairness and provide performance
isolation, service nodes should schedule requests with some
form of fair queuing (FQ).

Although the global objective could explicitly target per-
tenant fairness, the real goal is to find a fair allocation that
also achieves high performance. In other words, within the
set of feasible solutions defined by the constraints where
each tenant receives its fair share (Table 1, eq. 2) across the
system, no node is over-burdened (3), all local allocations
are enforced (4), and per-partition tenant demand is satis-
fied (6), we want to find the partition mapping I(Qt) > 0,
local resource allocation rtn, and replica selection policy Qt

that maximizes overall throughput (1).
While the global formulation gives a bird’s-eye view of the

system objective and fairness constraints, it serves solely as
an orienting framework. The collection and coordination

10

Replica Selection Policies

W
e

ig
h

t
A

ll
o

ca
ti

o
n

s

fairness constraint

no
de c

apa
city

const
rai

nt

PP

RS

W
A

Figure 2: Partition Placement (PP) ensures feasibility by
fitting each tenant’s per-partition fair-share demand within
the node capacity constraints (shaded region within the con-
straint set). Weight Allocation (WA) and Replica Selection
(RS) then iteratively search for the optimal solution (star)
starting from an initial configuration (dot) via coordinate
gradient ascent, climbing through regions of progressively
higher throughput (isoclines).

costs of gathering the necessary measurements and updat-
ing the appropriate components (request routers and service
nodes) to solve the global problem in a centralized fashion at
sufficient frequency to adapt to dynamic workloads would be
prohibitive. Instead, PP, WA, and RS (FQ simply enforces
the shares determined by WA) should compute their own
policies in a dynamic and decoupled fashion which we de-
scribe in the next section.

3. MECHANISMS AS DECOMPOSITION
We use optimization decomposition [4] to break the global

problem down into the more tractable and adaptive pieces
shown in Table 2. In this section we discuss the sub-problem
each mechanism solves and how they fit together to achieve
“optimal” global fairness, illustrated visually in Figure 2.

3.1 Partition Placement
The main goal of partition placement (PP) is to find a fea-

sible configuration of Qt ı.e fixing its non-zero entries which
correspond to the assignment of partition p to node n for
tenant t. In other words, PP boils down to placing par-
titions such that each tenant’s fair-share partition demand
(Table 2, eq. 10) fits within the node capacities (8). This
ensures that the other mechanisms search within the set of
globally fair solutions, as shown in Figure 2). Since PP re-
quires global information, it runs on the controller which
gathers per-partition demand statistics from each node to
determine the fair-share demand f tp and optimizes the PP
sub-problem shown in Table 2. The optimal partition as-
signment I(Qtn,p) > 0 minimizes the max node utilization
(7) to give WA and RS greater headroom for optimizing
throughput.

Partition placement typically runs on a long timescale
(every few minutes or hours), since we assume that ten-
ant demand distributions (proportions) are relatively sta-
ble, although demand intensity (load) can fluctuate more
frequently. This minimizes the frequency of data partition

Partition Placement (long timescale: min/hrs)

minimize: Υ(Qt∈T , cn∈N) = max
n

∑
t,pQ

t
n,p

cn
(7)

subject to:
∑
t,p

Qtn,p ≤ cn : node capacity constraint (8)∑
n

Qtn,p > 0 = ρt : replication constraint (9)∑
n

Qtn,p ≥ f tp : demand constraint (10)

Weight Allocation (medium timescale: sec)

maximize: Λ(rt∈Tn∈N , Q
∗t∈T) =

∑
t,n

logQ∗tn (11)

subject to:
∑
n

rtn ≤ zt : fair share constraint (12)∑
t

rtn ≤ cn : node capacity constraint (13)

parameters: Q∗tn (fixed by RS)

Replica Selection (real-time: ms)

maximize: Λ(rt∈Tn∈N , Q
∗t∈T) =

∑
t,n

logQ∗tn

subject to: Qtn ≤ r∗tn : local share constraint (14)

parameters: r∗tn (fixed by WA), I(Qt) > 0 (fixed by PP)

Table 2: Pisces mechanism decomposition

migration which can affect on-going workloads. It also al-
lows the faster timescale mechanisms to stabilize under the
current partition mapping. That said, PP can also be ex-
ecuted in response to large demand shifts, severe fairness
violations, or the addition or removal of tenants or service
nodes. Although the bin-packing problem is NP-hard, for
the system to work PP need only ensure that the assign-
ment is feasible, not necessarily optimal. There are many
approximation techniques (e.g., [12]) that find near-optimal
solutions in polynomial time. We use a simple greedy algo-
rithm that works reasonably well.

3.2 Weight Allocation
Given a feasible partition placement, weight allocation di-

vides each tenant’s global share into local shares rtn where
the tenant needs it most, i.e., where the per-node tenant de-
mand determined by Qt is highest. Although we could op-
timize both variables together at the controller and dissem-
inate the policies to the appropriate components, the com-
putation and update overhead would limit adaptivity and
prevent the system from handling short-term demand varia-
tions. Thus, as shown in Table 2, we decompose the problem
into the “master” weight allocation (WA) and “slave” replica
selection (RS) sub-problems to minimize coordination and
achieve near real-time adaptivity. These two mechanisms
work in tandem to optimize system throughput by itera-
tively adapting rtn to match tenant demand then adjusting
Qt to leverage the larger local shares, as depicted in Figure 2.

Using the primal [10] approach, WA observes per-node
tenant request latencies, which acts as a proxy for tenant
demand, and increases local shares rtn to match tenant de-
mand. On each iteration, WA collects an estimate of the per-
node tenant demand xtn =

∑
pQ
∗t
n,p generated by RS. Using

this estimate, WA approximates the gradient of the RS La-

grangian w.r.t rtn (∂L(Q,λ)
∂rtn

= λtn), with a latency-based cost

function: ltn = 1 / (rtn − xtn). Minimizing this cost function
maximizes throughput (Table 2, eq. 11) since λtn is a“conges-
tion” price corresponding to the request queuing delay expe-
rienced by tenant t at node n. Thus, WA minimizes the max
latency by performing a reciprocal swap that shifts weight
(local share) from a lower latency tenant u on node n to the
max latency tenant t (argmaxt,nl

t
n) and reciprocates the ex-

change (from t to u) on a different node m to preserve global
fairness (12, 13). WA computes the swap as the linear bisec-

tion of the latencies, y(t, u, n) =
(run−x

u
n)−(rtn−x

t
n)

2
, and uses

the minimum of the swap steps, min(y(t, u, n), y(t, u,m)) in
the exchange. This ensures that the swap always reduces
the maximum latency. We also model multilateral swap ex-
changes as a maximum bottleneck flow (MBF) problem [13],
but omit the details for space. Since it requires global infor-
mation (max latency), WA also runs on the controller.

Since WA is an iterative optimization algorithm, we rely
on the general properties of convex optimization to ensure
convergence and stability. The latency cost function exhibits
convexity over the operating regime where rtn > xtn, and
each gradient descent step (reciprocal exchange) shrinks the
latency variation across the max latency tenant t’s nodes,
which reduces the next weight swap (step size) involving
t. The timescale separation between WA (seconds) and RS
(real-time) allows the RS sub-problem to converge to an op-
timal Q∗t within each WA iteration. Taken together, these
properties ensure that WA will converge to an optimal fair-
share weight allocation [3] (< 20 iterations in our experi-
ments). To avoid oscillations around the optimal point, only
swaps that exceed a minimal threshold ε are executed.

3.3 Replica Selection
When enabled, replica selection (RS) not only improves

performance by load-balancing read requests, but it also re-
laxes the fair-share demand constraint (Table 2, eq. 10).
RS accomplishes this by smoothing the demand distribution
across replicas and alleviating node hotspots. This expands
the set of feasible solutions since tenant partition demand is
now easier to fit within node capacities. Given local shares
r∗tn computed by WA, the RS optimization ensures that the
replica-selection policy Qt sends more demand to replicas on
nodes with greater local allocation.

Here, we apply dual decomposition [10] to minimize co-
ordination overhead by distributing the RS optimization
across request routers. Since the local rate allocation r∗tn
isolates tenant demand from each other on each node, RS
can compute Qtn =

∑
pQ

t
n,pindependently for each tenant.

This allows each request router to maintain per-node, rather
than per-node per-partition, request windows (Qtn) for each
tenant. Each RR updates its per-node windows according
to the FAST-TCP gradient ascent equation, which optimizes
the throughput objective (11) subject to per-node conges-
tion (λtn), approximated by request latency: w(m + 1)tn =

(1 − α) · w(m)tn + α ·
(
lbase
lest

)
.

Each iteration of the algorithm adjusts the window based
on the ratio of the desired average request latency lbase to
the smoothed (EWMA) latency estimate lest. The α pa-
rameter limits the window step size. Thus, the greater the
local share, the larger the node’s request window will be.
Each request router makes adjustments to its own Qtn in a

fully decentralized fashion: it only uses local request latency
measurements to compute the replica proportions. This al-
lows RS to handle short-lived fluctuations and converge to
the optimal Qtn within the WA timescale according to the
convergence and stability of FAST-TCP [18].

3.4 Fair Queuing
Although not explicitly involved in the optimization, fair

queuing (FQ) plays the crucial role of implementing and en-
forcing the fairness and performance bounds established by
the local rate allocations. Moreover, these local shares acts
as a coordination point between WA and RS, eliminating the
need for direct coordination. RS implicitly detects the local
shares r∗tn through latency estimates, while WA infers the
current replica selection policy Q∗tn by measuring the actual
per-node request rate xtn at n.

In every “round” of FQ, the server allocates tokens to each

tenant according to its local weight wtn =
rtn∑
u r

u
n

, which it

consumes when processing requests from the tenant queues.
If the request requires more than the allocated resources,
it must complete on a subsequent round after its tenant’s
tokens have been refilled. This guarantees that each tenant
will receive its local fair share rtn in a given round of work,
if multiple tenants are active. Otherwise, tenants can con-
sume excess resources left idle by the others without penalty.
We implement FQ using deficit weighted round robin; de-
tails [13] omitted for space.

4. EVALUATION
In our evaluation, we consider how the mechanisms in

Pisces work together to (i) provide fairness and performance
isolation, (ii) achieve weighted fair sharing, and (iii) handle
dynamic demand. We quantify fairness as the Min-Max Ra-
tio (MMR) of the dominant resource (typically throughput)

across all tenants, xmin

xmax . This corresponds directly to a max-
min notion of fairness.

Our testbed consists of sixteen 2.4 GHz quad-core ma-
chines (8 clients and 8 servers) connected to a single 1 Gbps
switch. Each client uses the Yahoo Cloud Storage Bench-
mark (YCSB) [5] to generate a Zipf-distributed key-value
request workload (α = 0.99) over a fully cached data set of
100,000 1kB objects. All workloads are read-only (all GET),
unless otherwise noted. We only present the most illustra-
tive examples (see [13] for the full set).

4.1 Achieving Fairness and Isolation
As a basis for comparison, we start with an unmodified

system (Membase), to establish a baseline, as shown in Fig-
ure 3. Then we add in fair queuing, followed by partition
placement and weight allocation. Lastly, we enable replica
selection. In the top row, 8 tenants with equal global weights
access the system with the same demand.

Unmodified Membase: The unmodified system provides
poor throughput fairness between tenants. This is largely
due to the infeasible (uniform) partition mapping of the
skewed tenant demand distributions. In contrast, PP packs
the partitions according to the fair-share demand and node
capacity constraints to ensure feasibility.

Multi-tenant Weighted FQ: Unsurprisingly, fair queu-
ing alone barely improves fairness due to over-contention

 0
 30
 60
 90

 120
 150
 180

Membase (no queuing)

0.57 MMR

Fair Queuing

0.59 MMR

FQ + PP with WA

0.64 MMR
0.93 MMR

WA (45s)

FQ + PP + RS with WA

0.90 MMR
0.98 MMR

fair share
109 kreq/s

 0
 30
 60
 90

 120
 150
 180

 10 20 30 40 50 60 70 80 90

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Membase (no queuing) 2x

0.36 MMR

 10 20 30 40 50 60 70 80 90

Time (s)

Fair Queuing 2x

0.58 MMR

 10 20 30 40 50 60 70 80 90

FQ + PP with WA 2x

0.74 MMR
0.96 MMR

WA (45s)

 10 20 30 40 50 60 70 80 90

FQ + RS + PP with WA 2x

0.89 MMR
0.97 MMR

2x demand
1x demand

Figure 3: System-wide throughput fairness (top) and performance isolation (bottom) with Pisces mechanisms. For experiments
involving weight allocation (columns 3 and 4), WA is activated at time 45s.

for node resources under the uniform partition placement.
FQ can only enforce (not change) the policies computed by
higher-level mechanisms, whether they are feasible or not.

FQ and Partition Placement: Despite starting with a
pre-computed feasible partition placement , fairness only im-
proves marginally. Although the tenant demand should fit
within node capacity, hotspots still remain. The mismatch
between the hotspots and the initially fixed (uniform) local
weights allows tenants with an unfairly large local share on
a given node to ”over” consume and thus exceed their global
fair share. Once weight allocation starts at 45s, the local
shares converge within 10 seconds (5 iterations) to their op-
timal fair values (0.93 MMR).

FQ, PP, and Replica Selection: When enabled, replica
selection improves fairness by alleviating hotspots in the de-
mand distribution. However, under this particular parti-
tion mapping, RS is unable to eliminate all demand skew
on its own. With weight allocation running (after 45s), RS
is able to adjust the selection policy in tandem with WA
to find the optimal fair solution and achieve near ideal fair-
ness (0.98 MMR). Using a different feasible partition map-
ping (not shown), RS is able to achieve > 0.99 MMR even
without WA, due to the more efficient placement and work-
conserving local shares.

In the bottom row of Figure 3, half of the (equal weight)
tenants issue twice the demand of the others to stress the
system’s performance isolation. Unmodified Membase al-
lows the 2x demand tenants to consume additional resources,
degrading fairness. In contrast, fair queuing denies the 2x
tenants any additional share, preserving fairness when en-
abled. Interestingly, unmodified Membase with a feasible
partition mapping and replica selection (not shown) can
achieve high fairness (> 0.95 MMR) for equal demand ten-
ants, but, again, not in the performance isolation scenario
(< 0.68 MMR).

4.2 Service Differentiation
Thus far, we have demonstrated that Pisces’s mechanisms

can enforce isolation (FQ) and achieve near ideal even fair

 0
 20
 40
 60
 80

 100
 120
 140
 160

 25 30 35 40 45 50 55 60

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Time (s)

100x weight (4)
10x weight (20)

1x weight (40)

(a) 64 tenant thruput

 0
 20
 40
 60
 80

 100
 120
 140
 160

 25 30 35 40 45 50 55 60

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Time (s)

100x weight (10)
10x weight (40)

1x weight (50)

(b) 100 tenant thruput

Figure 4: Pisces achieves global fairness for skewed tenant
weights on an 8 (a) and 20 node cluster (b).

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60 70 80 90

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Time (s)

(a) Dynamic intensity

 0

 50

 100

 150

 200

 20 40 60 80 100 120 140

G
ET

 R
eq

ue
st

s
(k

re
q/

s)

Time (s)

Distribution shift
(50s and 110s)

(b) Dynamic distribution

Figure 5: Pisces responds to demand dynamism (a) and
distribution shifts (b) to preserve fairness.

sharing (PP + WA + RS). We now examine weighted fair-
ness for service differentiation. In Figure 4a, 64 tenants
reside on 4 out of 8 servers (32 tenants per server). To
reflect the highly skewed nature of tenant shares, i.e., a
few heavy hitters and low-rate users, we assigned 4 weight-
100, 20 weight-10, and 40 weight-1 tenants. Within each
weight class, Pisces achieves > 0.91 MMR. Unfortunately,
fairness between the highest and lowest classes decreases to
0.56 MMR, due to the limits of the FQ scheduler.

Figure 4b shows a larger experiment, with 100 tenants res-
ident on 6 of 20 servers (30 tenants per server). While we see
a qualitatively similar result, fairness degrades (0.46 MMR
across all classes on average). This is mostly due to perfor-
mance variance on the (shared) scale-out testbed [11] arising
from CPU scheduling and network bottlenecks, which penal-
izes the high-weight tenants.

4.3 Dynamic Workloads
Dynamic workloads present a challenge for any system to

provide consistent, predictable performance. In Figure 5a,
two bursty tenants (weight 1), two diurnal demand tenants
(weight 2), and four constant demand tenants (weight 1)
access the system. Initially, the constant tenants are able to
exceed their fair share and consume the excess capacity. As
the diurnal tenants ramp up (0–20s), they gradually reduce
the excess share. When the bursty and diurnal tenants peak
around 20s, Pisces enforces the proper 2-to-1 weighted ratio
between all tenants. Around 50s, the diurnal and bursty
tenants tail off which allows the constant demand tenants to
once again consume the excess. Finally, at 70s, the bursty
tenants spike again, which forces the constant and bursty
tenants to receive equal shares.

Demand distributions can evolve as well. In Figure 5b,
the tenants switch from the current Zipfian demand distri-
bution to a different, equally skewed distribution at 50s, and
then switch back to the original at 110s. With WA and RS
working together, Pisces is able to preserve fairness (>0.94
MMR), despite the potential ”infeasible” mismatch of the
partition demand for the new distribution and the original
partition mapping.

5. RELATED WORK
Recent work on cloud storage resource sharing has focused

mainly on single-tenant or single-server scenarios. Parda [6]
applies FAST-TCP congestion control to provide per-VM
fairness, which Pisces uses as well, but for replicated service
nodes. Maestro [9] optimizes I/O resource and port allo-
cation for multiple applications, but on a single disk array.
Similarly, Argon [15] uses caching schemes and time-sliced
disk scheduling for performance insulation between multi-
ple clients accessing a single shared file server. FAST [8]
presents a block-storage specific design for minimizing work-
load interference, but does not address weighted resource
sharing. Cake [16] adapts resource shares in a two-tier sys-
tem to achieve latency-based SLO’s for disk-bound work-
loads. Additional related work can be found in [13].

6. CONCLUSION
In this paper we presented a set of mechanisms that to-

gether provide per-tenant weighted fair sharing of system-
wide resources for a multi-tenant, key-value storage service
which we call Pisces. Using optimization decomposition, we
showed how the mechanisms—partition placement, weight
allocation, replica selection, and fair queuing—combine to
optimize throughput while maintaining fair resource allo-
cation across the service nodes even when tenants contend
for shared resources and demand distributions vary across
partitions and over time.

Although we focus on key-value storage in this work, we
believe that the optimization model and mechanisms should
apply to a wider range of services. Any system built using
a shared-nothing architecture will have to manage partition
placement and replica selection. Enforcing fairness and iso-
lation requires some form of fair queuing or resource alloca-
tion at the point of contention. To these we introduce one
additional component, weight allocation, and link them to-
gether using optimization decomposition. Thus we see these
mechanisms as providing a fairness framework for a variety
of services, which we intend to pursue in future work.

Acknowledgments We thank Jennifer Rexford for help-
ful discussions early in this project. Funding was provided
through NSF CAREER Award #0953197.

7. REFERENCES
[1] http://aws.amazon.com/dynamodb/faqs/, 2012.

[2] http://www.couchbase.org/, Jan. 2012.

[3] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, Cambridge, UK, 2004.

[4] M. Chiang, S. H. Low, A. Calderbank, and J. C.
Doyle. Layering as optimization decomposition: A
mathematical theory of network architectures.
Proceedings of the IEEE, 95(1):255–312, January 2007.

[5] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In SOCC, June 2010.

[6] A. Gulati, I. Ahmad, and C. A. Waldspurger.
PARDA: Proportional allocation of resources for
distributed storage access. In FAST, Feb. 2009.

[7] K. Keeton, T. Kelly, A. Merchant, C. Santos,
J. Wiener, X. Zhu, and D. Beyer. Don’t settle for less
than the best: use optimization to make decisions. In
HotOS, May 2007.

[8] X. Lin, Y. Mao, F. Li, and R. Ricci. Towards fair
sharing of block storage in a multi-tenant cloud. June
2012.

[9] A. Merchant, M. Uysal, P. Padala, X. Zhu, S. Singhal,
and K. Shin. Maestro: Quality-of-service in large disk
arrays. In ICAC-11, 2011.

[10] D. Palomar and M. Chiang. A tutorial on
decomposition methods for network utility
maximization. JSAC, 24(8):1439–1451, 2006.

[11] L. Peterson, A. Bavier, and S. Bhatia. VICCI: A
programmable cloud-computing research testbed.
Technical Report TR-912-11, Princeton CS, Sept.
2011.

[12] D. B. Shmoys and E. Tardos. An approximation
algorithm for the generalized assignment problem.
Math. Prog., 62(1):461–474, 1993.

[13] D. Shue, M. J. Freedman, and A. Shaikh. Performance
isolation and fairness for multi-tenant cloud storage.
In OSDI, Oct. 2012.

[14] M. Stonebraker. The case for shared nothing. IEEE
Database Eng. Bulletin, 9(1):4–9, 1986.

[15] M. Wachs, M. Abd-el-malek, E. Thereska, and G. R.
Ganger. Argon: Performance insulation for shared
storage servers. In FAST, Feb. 2007.

[16] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz,
and I. Stoica. Cake: enabling high-level SLOs on
shared storage systems. In SOCC, Oct. 2012.

[17] J. Wang, P. Varman, and C. Xie. Optimizing storage
performance in public cloud platforms. J. Zhejiang
Univ. – Science C, 11(12):951–964, Dec. 2011.

[18] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. Fast TCP:
Motivation, architecture, algorithms, performance.
Trans. Networking, 14(6):1246–1259, Dec. 2006.

[19] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving MapReduce performance in
heterogeneous environments. In OSDI, Dec. 2008.

http://aws.amazon.com/dynamodb/faqs/

http://www.couchbase.org/

			Introduction

			Architecture and System Model

			Achieving Global Fairness

			Mechanisms as Decomposition

			Partition Placement

			Weight Allocation

			Replica Selection

			Fair Queuing

			Evaluation

			Achieving Fairness and Isolation

			Service Differentiation

			Dynamic Workloads

			Related Work

			Conclusion

			References

