Privacy
Communication Complexity
and Information Complexity

Toniann Pitassi
2-Party Communication Complexity

2-party communication: each party has an input. Goal is to compute a function \(f(x,y) \)

Communication complexity of a protocol for \(f \) is the number of bits exchanged between A and B.

Privacy: how much do Alice and Bob learn?
Two Different Notions of Privacy

• Cryptographic [deterministic protocols]
 (Perfect privacy, PRIV, PAR)
• Differential Privacy [randomized protocols]

All of our privacy applications require information complexity lower bounds (cc is not enough)
Two Different Notions of Privacy

- **Cryptographic**
 (Perfect privacy, PRIV, PAR)
- **Differential Privacy**
Cryptographic Privacy

Goal: Ideal protocol for \(f \) should reveal only \(f(x,y) \) and no other information

A deterministic protocol partitions \(M_f \) into disjoint rectangles (submatrices) until every rectangle is monochromatic (\(f \) is constant on all inputs in the submatrix)
Perfect Privacy

Perfect privacy
A protocol for 2-player function $f : X \times Y \rightarrow Z$ is perfectly private if every two inputs in the same region are partitioned into the same rectangle.

Characterizing perfect privacy (Kushilevitz '89)
The perfectly private functions of 2 inputs are fully characterized combinatorially. A private deterministic protocol for such functions is given by “decomposing” M_f.

Perfect privacy is unattainable for most functions.
Important Example: Vickrey Auction

Vickrey auction

The 2-player Vickrey auction is defined as \(f : X \times Y \rightarrow Z \) where

\[
X = Y = [2^n], \quad Z = [2^{n+1}]
\]

and

\[
f(x, y) = \begin{cases}
(x, B), & \text{if } x \leq y \\
(y, A), & \text{if } y < x
\end{cases}
\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>(2^n - 1)</th>
<th>(2^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, B)</td>
<td>(1, B)</td>
<td>(1, B)</td>
<td>(1, B)</td>
<td>...</td>
<td>(1, B)</td>
<td>(1, B)</td>
</tr>
<tr>
<td>2</td>
<td>(1, A)</td>
<td>(2, B)</td>
<td>(2, B)</td>
<td>(2, B)</td>
<td>...</td>
<td>(2, B)</td>
<td>(2, B)</td>
</tr>
<tr>
<td>3</td>
<td>(1, A)</td>
<td>(2, A)</td>
<td>(3, B)</td>
<td>(3, B)</td>
<td>...</td>
<td>(3, B)</td>
<td>(3, B)</td>
</tr>
<tr>
<td>4</td>
<td>(1, A)</td>
<td>(2, A)</td>
<td>(3, A)</td>
<td>(4, B)</td>
<td>...</td>
<td>(4, B)</td>
<td>(4, B)</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>(2^n - 1)</td>
<td>(1, A)</td>
<td>(2, A)</td>
<td>(3, A)</td>
<td>(4, A)</td>
<td>...</td>
<td>(2^{n-1}, B)</td>
<td>(2^{n-1}, B)</td>
</tr>
<tr>
<td>(2^n)</td>
<td>(1, A)</td>
<td>(2, A)</td>
<td>(3, A)</td>
<td>(4, A)</td>
<td>...</td>
<td>(2^{n-1}, A)</td>
<td>(2^n, B)</td>
</tr>
</tbody>
</table>
Vickrey auction

The 2-player Vickrey auction is defined as $f : X \times Y \rightarrow Z$ where $X = Y = [2^n]$, $Z = [2^{n+1}]$ and $f(x, y) = \begin{cases} (x, B), & \text{if } x \leq y \\ (y, A), & \text{if } y < x \end{cases}$
Vickrey (cont’d)

Vickrey auction

The 2-player Vickrey auction is defined as $f : X \times Y \to Z$ where $X = Y = [2^n]$, $Z = [2^{n+1}]$ and $f(x, y) = \begin{cases} (x, B), & \text{if } x \leq y \\ (y, A), & \text{if } y < x \end{cases}$
Ascending English bidding is the *only* perfectly private protocol. Lengthy!
Approximate Privacy (PAR)

Vickrey Auction

The 2-player Vickrey auction is defined as $f : X \times Y \rightarrow Z$ where $X = Y = [2^n]$, $Z = [2^{n+1}]$ and $f(x, y) = \begin{cases} (x, B), & \text{if } x \leq y \\ (y, A), & \text{if } y < x \end{cases}$

Regions (preimages)

Region $R_{x,y} = \{(x', y') \in X \times Y | f(x, y) = f(x', y')\}$ defined by function

Rectangles

Rectangle $P_{x,y} = \{(x', y') \in X \times Y | f(x, y) = f(x', y')$ and $\pi(x, y) = \pi(x', y')\}$ defined by protocol
Approximate Privacy (PAR)

Privacy approximation ratio (Feigenbaum Jaggard Schapira ’10)

A protocol for f has **privacy approximation ratio**:

\[
\text{worst-case PAR} = \max_{(x,y)} \frac{|R_{x,y}|}{|P_{x,y}|}
\]

\[
\text{average-case PAR} = \mathbb{E}_{(x,y) \sim \mu} \frac{|R_{x,y}|}{|P_{x,y}|}_\mu \text{ over distribution } \mu
\]

Notes:

- Above is **External** PAR. Internal PAR can also be defined. For Vickrey, they are equal.

- Equivalent characterization of average-case PAR: $\Sigma_R |R|_D \times \text{cut}_P(R)$
A protocol for \(f \) has **privacy approximation ratio**:

\[
\text{worst-case } \text{PAR} = \max_{(x,y)} \frac{|R_{x,y}|}{|P_{x,y}|} \\
\text{average-case } \text{PAR} = \mathbb{E}_{(x,y) \sim \mu} \frac{|R_{x,y}|_{\mu}}{|P_{x,y}|_{\mu}} \text{ over distribution } \mu
\]

Above matrices are 4-by-4.
\(|R_1| = 10, |R_0| = 6 \)

Avg case PAR = \(|R_1|_U \times 2 + |R_0|_U \times 2 = 10/16 \times 2 + 6/16 \times 2 = 2\)
Back to Vickrey:
The Bisection Protocol

How short can we make a protocol for Vickrey auction?

Bisection protocol.
Tradeoffs between privacy and communication [ACCFKP]

<table>
<thead>
<tr>
<th>Upper bounds for Vickrey auctions</th>
<th>English bidding</th>
<th>Bisection protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>communication cost</td>
<td>2^n</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>worst-case PAR</td>
<td>1</td>
<td>2^n</td>
</tr>
<tr>
<td>average-case PAR</td>
<td>1</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Worst-case lower bound

For all n, for all p, $2 \leq p \leq n/4$, any deterministic protocol for the n-bit two-player Vickrey auction obtaining PAR less than 2^{p-2} has length at least $2^{n/4p}$.

Average-case lower bound

For all $n < r$, any deterministic protocol of length $\leq r$ for the uniform n-bit Vickrey auction has average-case PAR greater than $\Omega\left(\frac{n}{\log(r/n)}\right)$.
Information Complexity and Avg-case PAR

Definition (Klauck)

\[\text{Priv}^{\text{ext}}_{D}(P) = I(X,Y; \pi_{P}(X,Y) | f(X,Y)) \]

Proposition:

\[\text{Priv}^{\text{ext}}_{D}(P) \leq \text{IC}^{\text{ext}}_{D}(P) \leq \text{Priv}^{\text{ext}}_{D}(P) + \log|Z| \]

Theorem:

\[\text{Priv}^{\text{ext}}_{D}(P) \leq \log(\text{avg}_{D} \text{PAR}^{\text{ext}}(P)) \] (concavity)

- Analogous relationships hold for internal case.
- Thus IC lower bounds imply avg case PAR lower bounds!
Relationships between measures
(deterministic protocols, avg case PAR, boolean functions)

Also known that PAR^{ext} is at least $\text{rank}(M_f)$. So under log-rank conjecture, D and $\log \text{PAR}^{\text{ext}}$ are polynomially related.
Consequences of IC Connection: Lower Bounds for Avg PAR

Theorem (Braverman). Let P be a randomized protocol for DISJn with error at most $1/3$. Then $\text{IC}^{\text{int}}(P) = \Omega(n)$

Theorem (ACCFKP). For all $n \geq 1$, and any protocol P for set intersection,

$$\text{avg}_U \text{PAR}(P) = \exp(\Omega(n))$$
Consequences of IC Connection

\[[\text{ACCFKP, KLX}] \]

<table>
<thead>
<tr>
<th>Problem</th>
<th>(\text{PAR}_{\mu}^{\text{ext}}) ((\text{for uniform } \mu))</th>
<th>(\text{Our contribution}) ((\text{for any } \mu))</th>
<th>(\text{PRIV}_{\mu}^{\text{ext}}) ((\text{for some } \mu))</th>
<th>(\text{PAR}_{\mu, \epsilon}^{\text{int}}) ((\text{for some } \mu))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality</td>
<td>-</td>
<td>(2^n)</td>
<td>(n - 1)</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>Disjointness</td>
<td>(\left(\frac{3}{2} \right)^n)</td>
<td>(2^n - 1)</td>
<td>(n - 1)</td>
<td>(2^{\Theta(n)})</td>
</tr>
<tr>
<td>Inner Product</td>
<td>-</td>
<td>(2^n - 1)</td>
<td>(n - 2 - o(1))</td>
<td>(2^{\Theta(n)})</td>
</tr>
<tr>
<td>Greater Than</td>
<td>(2^n + \frac{1}{2^{n+1}} - \frac{1}{2})</td>
<td>(2^n - 1)</td>
<td>(n - 1)</td>
<td>(2^{\Theta(\log n)})</td>
</tr>
</tbody>
</table>
Randomized PAR [KLX]

Suggests that PAR could be helpful to study the randomized CC versus IC question.
Two Different Notions of Privacy

• Cryptographic
 (Perfect privacy, PRIV, PAR)
• Differential Privacy
Differential Privacy [DwMcNiSm06]

Holy Grail: Get utility of statistical analysis (i.e., give reasonably accurate answers) while protecting privacy of every individual participant.

Guarantee: outcome of the analysis is nearly identical whether any user is in or out of the dataset. Thus participation does not increase risk of privacy violation.
The Basic DP Scenario
(Client-Server Setting)

• Data is owned by a curator.
• Statistical queries are made. The curator computes the query releases a sanitized version.
Differential Privacy: The Distributed Setting

Goal: compute a joint function while maintaining privacy for any individual, with respect to both the outside world and the other database owners.
2-Party Setting: Differentially Private CC

Each party has a dataset; want to compute a joint function \(f(D_A, D_B) \)

\[
\begin{align*}
 D_A & \rightarrow m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow \cdots \rightarrow m_{k-1} \rightarrow m_k \rightarrow D_B \\
 x_1 & \rightarrow m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow \cdots \rightarrow m_{k-1} \rightarrow m_k \rightarrow y_1 \\
 x_2 & \rightarrow m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow \cdots \rightarrow m_{k-1} \rightarrow m_k \rightarrow y_2 \\
 \vdots & \rightarrow m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow \cdots \rightarrow m_{k-1} \rightarrow m_k \rightarrow y_m \\
 x_n & \rightarrow m_1 \rightarrow m_2 \rightarrow m_3 \rightarrow \cdots \rightarrow m_{k-1} \rightarrow m_k \rightarrow y_m \\
\end{align*}
\]

\(Z_A \approx f(D_A, D_B) \)

\(Z_B \approx f(D_A, D_B) \)

A’s view should be a **differentially private** function of \(D_B \) (even if A deviates from protocol), and vice-versa
Two-Party Differential Privacy

Let $P(x,y)$ be a 2-party protocol. P is ϵ-DP if:

1. For all y, for every pair x, x' that are neighbors, and for every transcript π,
 \[Pr[P(x,y) = \pi] \leq \exp(\epsilon) Pr[P(x',y) = \pi] \]

2. Symmetrically, for all x, for every pair of neighbors y, y' and for every transcript π
 \[Pr[P(x,y) = \pi] \leq \exp(\epsilon) Pr[P(x,y') = \pi] \]

Question: Can anything that can be done DP-ly in client-server setting also be done DP-ly in multiparty setting?
Examples

1. \(\text{Ones}(x,y) = \) the number of ones in \(xy \)
 \(\text{Ones}(00001111, 10101010) = 8. \)

 \(CC(\text{Ones}) = \log n. \)
 There is a low error DP protocol.

2. Hamming Distance \(\text{HD}(x,y) = \) the number of positions \(i \)
 where \(x_i \neq y_i. \)
 \(\text{HD}(00001111, 10101010) = 4 \)

 \(CC(\text{HD})=n. \)
 No low error DP protocol ?

Is this a coincidence? Is there a connection between low cc and low-error DP protocols?

What is the smallest (additive) error of any protocol for computing the Hamming distance between \(x,y \) that is differentially private for both sides?
Lower Bounds for DP Protocols and Information Cost

\[I(X;Y) = H(X) - H(X \mid Y) \]

measures the average amount of info Y reveals about X.

\[IC_{ext}^{\mu}(P) = I(XY; \pi(X,Y)) \]

measures the average amount of information the transcript reveals about XY

\[IC_{ext}^{\mu}(F) = \min_{P} \ (IC_{ext}^{\mu}(P)) \]

Theorem. If P has \(\varepsilon \)-DP, then for every distribution \(\mu \) on \(X \times Y, IC_{ext}^{\mu}(P) \leq 3\varepsilon n \)

Note: over uniform distribution, bound improved to \(\varepsilon^2 n \)
Theorem. If P has ε-DP, then for every distribution μ on $X \times Y$,
$$IC_{\mu}^{ext}(P) \leq 3\varepsilon n$$

Proof. Let $z=(x,y)$. For every z, z' differential privacy implies

$$\exp(-2\varepsilon n) \leq \frac{\Pr[\Pi(z) = \pi]}{\Pr[\Pi(z') = \pi]} \leq \exp(2\varepsilon n).$$

$$\exp(-2\varepsilon n) \leq \frac{\Pr[\Pi(z) = \pi]}{\Pr[\Pi(Z') = \pi]} \leq \exp(2\varepsilon n).$$

where Z' is an independent sample. Thus by definition of IC we have:

$$I(\Pi(Z); Z) = H(\Pi(Z)) - H(\Pi(Z)|Z)$$

$$= \mathbb{E}_{(z,\pi) \leftarrow (Z,\Pi(Z))} \log \frac{\Pr[\Pi[Z] = \pi|Z = z]}{\Pr[\Pi(Z) = \pi]}$$

$$\leq 2(\log_2 e)\varepsilon n.$$
Lower Bounds for Hamming Distance

Theorem. The Gap-Hamming Problem (distinguishing inputs with distance at most $n/2-c\sqrt{n}$ from those with distance at least $n/2+c\sqrt{n}$) has information complexity $\Omega(n)$.

Corollary. There exists an ϵ such that any ϵ-DP protocol for Hamming Distance must incur an additive error $\Omega(\sqrt{n})$.

Notes:
- Our lower bound for Hamming distance is tight since there is an $O(\sqrt{n})$ error ϵ-DP protocol.
- There are other functions (with sensitivity 1) where any ϵ-DP must incur an additive error $\Omega(n)$.
Implications of DP Lower bounds:

I. Separation between computational and info-theoretic DP

[MPRV] defined computational ϵ-DP protocols.

• Loosely speaking, now the probability distribution over the transcripts for neighboring x,x' is e^{ϵ}-indistinguishable to a polytime algorithm.

• Via fully homomorphic encryption, any low sensitivity $f(x,y)$ has a $O(1)$ error computational ϵ-DP protocol, including Hamming distance.

• Thus our lower bound shows that in the context of distributed protocols, there can be a huge gain by relaxing DP to computational DP.
Implications of DP Lower Bounds:
II. Pan-Private Streaming Model [DPRNY]

- Data is a **stream** of items; each item belongs to a user. Sanitizer sees each item and updates internal state. Generates output at end of the stream (**single pass**).

Pan-Privacy: For every two adjacent streams, at any single point in time, the internal state (and final output) are differentially private.
Pan-private algorithms exist for many statistics!

- Stream density / number of distinct elements
- t-cropped mean: mean, over users, of $\min(t, \#\text{appearances})$
- Fraction of users appearing exactly k times
- Fraction of users appearing exactly 0 times modulo k
- Fraction of heavy-hitters, users appearing at least k times
DP Lower Bounds imply lower bounds for Pan Private Protocols

Lower Bounds for ε-DP communication protocols imply pan privacy lower bounds for density estimation (via Hamming distance lower bound).

Lower bounds also hold for multi-pass pan-private models.

Analogy: 2-party communication complexity lower bounds imply lower bounds in streaming model.
DP Protocols and Compression

So back to Ones(x, y) and HD(x, y)... is DP the same as compressible?

Theorem. [BBCR] (Low Icost implies compression)
For every product distribution \(\mu \), and protocol \(P \), there exists a protocol \(Q \) (\(\beta \)-approximating \(P \)) with comm. complexity \(\sim \text{Icost}_\mu(P) \times \text{polylog}(\text{CC}(P))/\beta \)

Corollary. (DP protocols can be compressed)
Let \(P \) be an \(\varepsilon \)-DP protocol \(P \). Then there exists a protocol \(Q \) of cost \(3\varepsilon n \text{polylog}(\text{CC}(P))/\beta \) and error \(\beta \).

DP almost implies low cc, except for this annoying \(\text{polylog}(\text{CC}(P)) \) factor
Moreover, the low cc protocol can often be made DP (if the number of rounds is bounded.)
Differential Privacy and Compression

- We have seen that DP protocols have low information cost.
- By BBCR this implies they can be compressed (and thus have low comm complexity).

What about the other direction? Can functions with low cc be made DP?

Yes! (with some caveats..the error is proportional not only to the cc, but also the number of rounds.)
Proof uses the exponential mechanism [MT]
Open Problems

• PAR for randomized protocols

• Better relationship between DP protocols, IC, and CC (Can small cc protocols with unbounded rounds be made DP?)

• Approximate DP
 No connection known between approx DP and IC
 Approx DP in client-server setting versus 2-party setting
 Approx DP in info-theoretic versus computational setting

• Unifying view of all of these concepts
Thanks!
Differential Privacy [DMNS 2006]

M is ε-differentially private if \forall adjacent $D_1 D_2$, $\forall C \subseteq \text{range}(M)$: $\Pr[M(D1) \in C] \leq e^\varepsilon \Pr[M(D2) \in C]$

Neutralizes all linkage attacks.
Composes automatically: $\sum_i \varepsilon_i$
Sensitivity of a Function

\[\Delta f = \max_{\text{adj } D, D'} |f(D) - f(D')| \]

Adjacent databases differ in at most one row.
Counting queries have sensitivity 1.
Sensitivity captures how much one person’s data can affect output.
Laplacian Distribution Lap(b)

\[p(x) = \exp\left(-\frac{|x|}{b}\right)/2b \]

\[\text{variance} = 2b^2 \]

\[\frac{3}{4} = \sqrt{2} \, b \]

Increasing \(b \) flattens curve
Calibrate Noise to Sensitivity

$$\Delta f = \max_{D,D'} |f(D) - f(D')|$$

Theorem: To achieve ε-differential privacy for f, use scaled symmetric noise $[\text{Lap}(b)]$ with $b = \Delta f / \varepsilon$.

Noise depends on f and ε, not on the database

Smaller sensitivity (Δf) means less distortion
Why Does it Work?

\[\Delta f = \max_{D,D'} |f(D) - f(D')| \]

Theorem: To achieve \(\varepsilon \)-differential privacy, add scaled symmetric noise \([\text{Lap}(b)]\) with \(b = \frac{\Delta f}{\varepsilon} \).

\[
\frac{\Pr[\mathcal{K}(f, D) = t]}{\Pr[\mathcal{K}(f, D') = t]} = \exp\left(-\left(\frac{|t - f(D)| + |t - f(D')|}{b}\right)/b\right) \leq \exp(\Delta f/b)
\]