
Interactive information and coding theory

Mark Braverman∗

Abstract. We give a high-level overview of recent developments in interactive informa-
tion and coding theory. These include developments involving interactive noiseless coding
and interactive error-correction.

The overview is primarily focused on developments related to complexity-theoretic
applications, although the broader context and agenda are also set out. As the present
paper is an extended abstract, the vast majority of proofs and technical details are omit-
ted, and can be found in the respective publications and preprints.

Mathematics Subject Classification (2010). Primary 94A15; Secondary 68Q99.

Keywords. Coding theory, communication complexity, information complexity, interac-

tive computation.

1. Introduction

1.1. A high-level overview of information and coding theory.
We begin with a very high-level overview of information and coding theory. This
is an enormous field of study, with subareas dealing with questions ranging from
foundations of probability and statistics to applied wireless transmission systems.
We will focus only on some of the very basic foundational aspects, which were
set forth by Shannon in the late 1940s, or shortly after. The goal will be to try
and translate those to interactive communication settings, of the type that is used
in theoretical computer science. This program is only very partially complete,
but some of the early results are promising. While our overview of information
and coding theory in this section focuses on fairly simple facts, we present those in
some detail nonetheless, as they will be used as a scaffold for the interactive coding
discussion. A thorough introduction into modern information theory is given in
[15].

Noiseless coding. Classical information theory studies the setting where one
terminal (Alice) wants to transmit information over a channel to another terminal
(Bob). Two of the most important original contributions by Shannon are the

∗Work supported in part by an NSF CAREER award (CCF-1149888), NSF CCF-0832797,
NSF CCF-1215990, a Turing Centenary Fellowship, and a Packard Fellowship in Science and
Engineering.

c©Mark Braverman 2014. This paper has appeared in the Proceedings of the International
Congress of Mathematicians (ICM 2014).

2 Mark Braverman

Noiseless Coding (or Source Coding) Theorem and the Noisy Coding (or Channel
Coding) Theorem. The Source Coding Theorem asserts that the cost of Alice
transmitting n i.i.d. copies of a discrete random variable X to Bob over a noiseless
channel scales as Shannon’s entropy H(X) as n→∞:

H(X) =
∑

x∈supp(X)

Pr[X = x] log
1

Pr[X = x]
. (1)

If we denote by Xn the concatenation of n independent samples from X, and
by C(Y) the (expected) number of bits needed for Alice to transmit a sample of
random variable Y to Bob, then the Source Coding Theorem asserts that

lim
n→∞

C(Xn)

n
= H(X). (2)

This fact can be viewed as the operational definition of entropy, i.e. one that is
grounded in reality. Whereas definition (1) may appear artificial, (2) implies that
it is the right one, since it connects to the “natural” quantity C(Xn). Another
indirect piece of evidence indicating thatH(X) is a natural quantity is its additivity
property:

H(Xn) = n ·H(X), (3)

and more generally, if XY is the concatenation of random variables X and Y , then
H(XY) = H(X) +H(Y) whenever X and Y are independent. Note that it is not
hard to see that (3) fails to hold for C(X), making H(X) a “nicer” quantity to
deal with than C(X). Huffman coding (11) below blurs the distinction between the
two, as they only differ by at most one additive bit, but we will return to it later
in the analogous distinction between communication complexity and information
complexity.

Noisy coding. So far we assumed a noiseless channel — bits sent over the chan-
nel by Alice are received by Bob unaltered. If the channel is noisy, that is, messages
sent over the channel may get corrupted, then clearly some redundancy in trans-
mission is necessary. Abstractly, the task of coding is the task of converting the
message being sent into symbols to be transmitted over the channel, in a way that
allows the original message to be recovered from what has been transmitted by
the channel. The important considerations for how good a code is are the type
(and amount) of errors it can withstand and still accomplish the transmission suc-
cessfully, and the rate by which the error-correcting encoding enlarges the message
being transmitted.

Shannon’s Noisy-Channel Coding Theorem was first to address the noisy coding
scenario theoretically. The most important insight from that theorem is that,
at least in the limit, the ability of a channel to conduct information — defined

All logs in this paper are base-2.
In fact, Shannon’s Source Coding Theorem asserts that due to concentration the worst case

communication cost scales as H(X) as well, if we allow negligible error. We ignore this stronger
statement at the present level of abstraction.

Interactive information and coding theory 3

formally as Shannon’s channel capacity — can be decoupled from the content
being transmitted over the channel. Informally, for a memoryless channel C one
can define its capacity cap(C) as “how many bits of information is one utilization
of C (i.e. one transmission over C) worth?”. For any X, if we denote by CC(X

n)
the expected number of utilizations of channel C needed to transmit n independent
samples of X (except with negligible error), then

lim
n→∞

CC(X
n)

n
=
H(X)

cap(C)
. (4)

This means, conveniently, that one can study properties of channels separately
from properties of what is being transmitted over the channels. The information-
theoretic quantities needed to express cap(C) are conditional entropy and mutual
information. While these are standard basic notions in information theory, we will
define them here, to keep the exposition accessible. For a pair of random variables
X and Y , the conditional entropy H(X|Y) can be thought of as the amount of
uncertainty remaining in X for someone who knows Y :

H(X|Y) := H(XY)−H(Y) = Ey∼YH(X|Y = y). (5)

In the extreme case where X and Y are independent, we have H(X|Y) = H(X). In
the other extreme, when X = Y , we have H(X|X) = 0. The mutual information
I(X;Y) between two variables X and Y measures the amount of information
revealing Y reveals about X, i.e. the reduction in X’s entropy as a result of
conditioning on Y . Thus

I(X;Y) = H(X)−H(X|Y) = H(X) +H(Y)−H(XY) = I(Y ;X). (6)

Conditional mutual information is defined similarly to conditional entropy:

I(X;Y |Z) := H(X|Z)−H(X|Y Z) = I(Y ;X|Z). (7)

A very important property of conditional mutual information is the chain rule:

I(XY ;Z|W) = I(X;Z|W) + I(Y ;Z|WX) = I(Y ;Z|W) + I(X;Z|WY). (8)

An informal interpretation of (8) is that XY reveal about Z what X reveals about
Z, plus what Y reveals about Z to someone who already knows X.

Abstractly, a memoryless channel (i.e. one where each utilization of the channel
is independent of other utilization) can be viewed as a set of pairs of variables
(X, C(X)) where X is the signal the sender inputs to the channel, and C(X) is
the output of the channel received on input X from the sender. If the channel is
noiseless then C(X) = X. Under this notation, the channel capacity of C is equal
to

cap(C) = sup
Y
I(Y ; C(Y)). (9)

In other words, it is the supremum over all input distributions of the amount of
information preserved by the channel. The scenario just discussed is obviously

4 Mark Braverman

a very simple one, but even in more elaborate settings issues surrounding coding
transmissions over a noisy channel (at least when the noise is random) are very well
understood. For example, for the binary symmetric channel BSCε that accepts
bits b ∈ {0, 1} and outputs b with probability 1 − ε and b̄ with probability ε, the
capacity is

cap(BSCε) = 1−H(ε) := 1− (ε log 1/ε+ (1− ε) log 1/(1− ε)). (10)

One caveat is that mathematically striking characterizations such as above only
become possible in the limit, where the size of the message we are trying to transmit
over the channel — i.e. the block-length — grows to infinity. What happens for
fixed block lengths, which we discuss next, is of course important for both practical
and theoretical reasons, and it will be even more so in the interactive regime.

For noiseless coding in the one-way regime, it turns out that while H(X) does
not exactly equal the expected number of bits C(X) needed to transmit a single
sample from X, it is very close to it. For example, the classical Huffman’s coding
[25] implies that

H(X) ≤ C(X) < H(X) + 1, (11)

where the “hard” direction of (11) is the upper bound. The upper bound showing
that C(X) < H(X) + 1 is a compression result, showing how encode a message
with low average information content (i.e. entropy) into a message with a low
communication cost (i.e. number of bits in the transmission). Note that this result
is much less “clean” than the limit result (2): in the amortized case the equality
is exact, while in the one-shot case a gap is created. This gap is inevitable, if only
for integrality reasons, but as we will see later, it becomes crucial in the interactive
case.

Adversarial noise and list-decoding. So far we only discussed channels af-
fected by randomized errors. A variant of the noisy regime where the situation
appears mathematically much less clear is one where the errors on the channel are
introduced adversarially. For example, an adversarial ε-error rate binary chan-
nel receives a string S ∈ {0, 1}n of n bits, and outputs a string S′ such that the
Hamming distance dH(S, S′) < εn, i.e. S′ differs from S in at most an ε-fraction
of positions. A coding scheme for this setting is a pair of encoding and decoding
functions E : {0, 1}m → {0, 1}n and D : {0, 1}n → {0, 1}m, respectively, such
that for each X ∈ {0, 1}m and each S′ with dH(E(X), S′) < εn, X is recovered
correctly from S′, i.e. D(S′) = X. Clearly we want m to be as large as possible
as a function of n. It turns out that such an encoding scheme is possible with
m = Ωε(n) for each ε < 1/4 (and ε < 1/2 if the binary alphabet is replaced with
an alphabet Σ of size |Σ| = Oε(1)). Unlike the random-noise case the exact op-
timal rate of the code, i.e. the largest achievable ratio of m

n is unknown for the
adversarial model. Clearly, the limit cannot exceed cap(BSCε), but it is bound to
be lower, since correcting adversarial errors is much harder than randomized ones.
A priori it is not even obvious that the adversarial channel capacity is a positive

The Oε(1) notation means a function that is bounded by a constant for each fixed ε.

Interactive information and coding theory 5

constant when ε < 1/4. Despite much work in the field [45, 38], even the basic
binary channel capacity problem remains open, with a notorious gap between the
Gilbert-Varshanov lower bound, and the Linear Programming upper bound [44].

A clear limitation of any error-correcting code, even over a large constant-
size alphabet Σ, is that no decoding is possible when ε ≥ 1/2: for two valid
codewords X1, X2 and any encoding function E, there is a string S′ such that
dH(E(X1), S′) ≤ n/2 and dH(E(X2), S′) ≤ n/2, making decoding S′ an impossible
task (note that over a large constant-size alphabet, with a high probability one
can recover from random errors of rate exceeding 1/2). It turns out, however,
that for any ε < 1, for |Σ| = Oε(1), it is possible to come up with a constant-
rate list-decoding scheme: one where the decoding function D(S′) outputs a list
of size s = Oε(1) of possible X1, . . . , Xs such that these are the only possible X’s
satisfying dH(E(X), S′) < (1 − ε)n. List decodable codes, first introduced in the
1950s [16, 47] have played an important role in a number of areas of theoretical
computer science, a partial survey of which can be found in [23, 24].

1.2. Interactive computation models in complexity theory. In
theoretical computer science interactive communication models are studied within
the area of communication complexity. While communication complexity can be
viewed as a direct extension of the study of non-interactive communication mod-
els which were discussed in the previous section, its development has been largely
disjoint from the development of information theory, and the areas have not recon-
nected until fairly recently. This may be partially explained by the combinatorial
nature of the tools most prevalent in theoretical computer science.

Communication complexity was introduced by Yao in [48], and is the sub-
ject of the text [30]. It has found numerous applications for unconditional lower
bounds in a variety of models of computation, including Turing machines, stream-
ing, sketching, data structure lower bounds, and VLSI layout, to name a few.
In the basic (two-party) setup, the two parties Alice and Bob are given inputs
X ∈ X and Y ∈ Y, respectively, and are required to compute a function F (X,Y)
of these inputs (i.e. both parties should know the answer in the end of the com-
munication), while communicating over a noiseless binary channel. The parties
are computationally unbounded, and their only goal is to minimize the number
of bits transmitted in the process of computing F (X,Y). In a typical setup F
is a function F : {0, 1}n × {0, 1}n → {0, 1}. Examples of functions commonly
discussed and used include the Equality function EQn(X,Y) := 1X=Y (X,Y), and
the Disjointness function

Disjn(X,Y) :=

n∧
i=1

(¬Xi ∨ ¬Yi). (12)

We will return to these functions later in our discussion.
Of course, the (non-interactive) transmission problem can be viewed as just a

special case of computing the function Px : X × {⊥} → X , which maps (X,⊥) to
X. However, there are two important distinctions between the “flavors” of typi-
cal information theory results and communication complexity. Firstly, information

6 Mark Braverman

theory is often concerned with coding results where block length — i.e. the number
of copies of the communication task to be performed — goes to infinity. Recall,
for example, that Shannon’s Source Coding Theorem (2) gave Shannon’s entropy
as a closed-form expression for the amortized transmission cost of sending a grow-
ing number of samples X (this is often but not always the case, for example, the
Huffman coding (11) result is not of this type). On the other hand, communica-
tion complexity more commonly studies the communication cost of computing a
single copy of F . Secondly, as in the examples above, communication complexity
often studies functions whose output is only a single bit or a small number of bits,
thus “counting style” direct lower bound proofs rarely apply. Tools that have been
successfully applied in communication complexity over the years include combi-
natorics, linear algebra, discrepancy theory, and only later classical information
theory.

To make our discussion of communication complexity more technical, we will
focus on the two-party setting. We briefly discuss the multi-party setting, which
also has many important applications, but is generally much less well-understood,
in the last section of the paper. The basic notion in communication complexity is
that of a communication protocol. A communication protocol over a binary channel
formalizes a conversation, where each message only depends on the input to the
speaker and the conversation so far:

Definition 1.1. A (deterministic) protocol π for F : X × Y → {0, 1} is defined
as a finite rooted binary tree, whose nodes correspond to partial communication
transcripts, such that the two edges coming out of each vertex are labeled with
a 0 and 1. Each leaf ` is labeled by an output value f` ∈ {0, 1}. Each internal
node v is labeled by a player’s name and either by a function av : X → {0, 1} or
bv : Y → {0, 1} corresponding to the next message of Alice or Bob, respectively.

The protocol π(X,Y) is executed on a pair of inputs (X,Y) by starting from
the root of the tree. At each internal node labeled by av the protocol follows
the child av(X) (corresponding to Alice sending a message), and similarly at each
internal node labeled by bv the protocol follows bv(Y). When a leaf ` is reached
the protocol outputs f`.

By a slight abuse of notation, π(X,Y) will denote both the transcript and the
output of the protocol; which is the case will be clear from the context. The com-
munication cost of a protocol is the depth of the corresponding protocol tree. A
protocol succeeds on input (X,Y) if π(X,Y) = F (X,Y). Its communication cost
on this pair of inputs is the depth of the leaf reached by the execution. The commu-
nication complexity CC(F) of a function F is the lowest attainable communication
cost of a protocol that successfully computes F . In the case of deterministic com-
munication we require the protocol to succeed on all inputs.

A deterministic communication protocol π induces a partition of the input
space X × Y into sets S` by the leaf ` that π(X,Y) reaches. Since at each step
the next move of the protocol depends only on either X or Y alone, each S` is
a combinatorial rectangle of the form S` = SX` × SY` . This key combinatorial
property is at the heart of many combinatorial communication complexity lower

Interactive information and coding theory 7

bounds. To give an example of such a simple combinatorial proof, consider the
rank bound. Let N = |X |, M = |Y|, and consider the N ×M matrix MF over
R whose (X,Y)-th entry is F (X,Y). Each protocol π with leaf set L of size L,
induces a partition of X ×Y into combinatorial rectangles {S`}`∈L. Let M` be the
matrix whose entries are equal to MX,Y for (X,Y) ∈ S` and are 0 elsewhere. Since
{S`}`∈L is a partition of X × Y, we have MF =

∑
`∈LM`. Assuming π is always

correct, each M` is monochromatic, i.e. either all-0, or all-1 on S`, depending on
the value of f`. Thus, rank(M`) ≤ 1, and

rank(MF) ≤
∑
`∈L

rank(M`) ≤ L. (13)

In fact, a stronger bound of L−1 holds unless MF is the trivial all-1 matrix. Thus
any protocol computing F must have communication cost of at least log(rank(MF)+
1), and it follows that the communication complexity of F is at least log(rank(MF)+
1). As an example of an application, if F = EQn is the Equality function, then
MEQn = I2n is the identity matrix, and thus CC(EQn) ≥ n+ 1. In other words,
the trivial protocol where Alice sends Bob her input X (n bits), and Bob responds
whether X = Y (1 bit), is optimal.

As in many other areas of theoretical computer science, there is much to be
gained from randomization. For example, in practice, the Equality function does
not require linear communication as Alice and Bob can just hash their inputs and
compare the hash keys. The shorter protocol may return a false positive, but it
is correct with high probability, and reduces the communication complexity from
n+ 1 to O(log n).

More generally, a randomized protocol is a protocol that tosses coins (i.e. ac-
cesses random bits), and produces the correct answer with high probability. The
distributional setting, where there is a prior probability distribution µ on the in-
puts and the players need to output the correct answer with high probability with
respect to µ is closely related to the randomized setting, as will be seen below. In
the randomized setting there are two possible types of random coins. Public coins
are generated at random and are accessible to both Alice and Bob at no commu-
nication cost. Private coins are coins generated privately by Alice and Bob, and
are only accessible by the player who generated them. If Alice wants to share her
coins with Bob, she needs to use the communication channel. In the context of
communication complexity the pubic-coin model is clearly more powerful than the
private coin one. Fortunately, the gap between the two is not very large [35], and
can be mostly ignored. For convenience reasons, we will focus on the public-coin
model.

The definition of a randomized public-coin communication protocol πR is iden-
tical to Definition 1.1, except a public random string R is chosen at the beginning
of the execution of the randomized πR, and all functions at the nodes of πR may
depend on R in addition to the respective input X or Y . We still require the
answer f` to be unequivocally determined by the leaf ` alone. The communication
cost |πR| of πR is still its worst-case communication cost (for historic reasons; an
average-case notion would also have been meaningful to discuss here).

8 Mark Braverman

The randomized communication complexity of F with error ε > 0 is given by

Rε(F) := min
πR:∀X,Y PrR[πR(X,Y)=F (X,Y)]≥1−ε

|πR|. (14)

For a distribution µ on X × Y the distributional communication complexity
Dµ,ε(F) is defined as the cost of the best protocol that achieves expected error ε
with respect to µ. Note that in this case fixing public randomness R to a uniformly
random value does not change (on average) the expected success probability of πR
with respect to µ. Therefore, without loss of generality, we may require π to be
deterministic:

Dµ,ε(F) := min
π:µ{X,Y : π(X,Y)=F (X,Y)}≥1−ε

|π|. (15)

It is easy to see that for all µ, Dµ,ε(F) ≤ Rε(F). By an elegant minimax
argument [49], a partial converse is also true: for each F and ε, there is a distribu-
tion against which the distributional communication complexity is as high as the
randomized:

Rε(F) = max
µ

Dµ,ε(F). (16)

For this reason, we will be able to discuss distributional and randomized commu-
nication complexity interchangeably.

How can one prove lower bounds for the randomized setting? This setting
is much less restrictive than the deterministic one, making lower bounds more
challenging. Given a function F , one can guess the hard distribution µ, and then
try to lower bound the distributional communication complexity Dµ,ε(F) — that
is, show that there is no low-communication protocol π that computes F with
error ≤ ε with respect to µ. Such a protocol π of cost k = |π| still induces a
partition {S`}`∈L of the inputs according to the leaf they reach, with L ≤ 2k and
each S` a combinatorial rectangle. However, it is no longer the case that when we
consider the corresponding submatrix M` of MF it must be monochromatic — the
output of π is allowed to be wrong on a fraction of S`, and thus for some inputs
the output of π on S` may disagree with the value of F . Still, it should be true
that for most leaves the value of F on S` is strongly biased one way or the other,
since the contribution of S` to the error is

e(S`) = min
(
µ(S` ∩ F−1(0)), µ(S` ∩ F−1(1))

)
. (17)

In particular, a fruitful lower bound strategy is to show that all “large” rectangles
with respect to µ have e(S`)/µ(S`) � ε, and thus there must be many smaller
rectangles — giving a lower bound on L ≤ 2|π|. One simple instantiation of this
strategy is the discrepancy bound: for a distribution µ, the discrepancy Discµ(F)
of F with respect to µ is the maximum over all combinatorial rectangles R of

Discµ(R,F) := |µ(F−1(0) ∩R)− µ(F−1(1) ∩R)|.

In other words, if F has low discrepancy with respect to µ then only very small
rectangles (as measured by µ) can be unbalanced. With some calculations, it can
be shown that for all ε > 0 (see [30] and references therein),

Dµ, 12−ε
(F) ≥ log2(2ε/Discµ(F)). (18)

Interactive information and coding theory 9

Note that (18) not only says that if the discrepancy is low then the communication
complexity is high, but also that it remains high even if we are only trying to
gain a tiny advantage over random guessing in computing F ! An example of a
natural function to which the discrepancy method can be applied is the n-bit Inner
Product function IPn(X,Y) = 〈X,Y 〉 mod 2. This simple discrepancy method
can be generalized to a richer family of corruption bounds that can be viewed as
combinatorial generalizations of the discrepancy bound. More on this method can
be found in the survey [31].

One of the early successes of applying combinatorial methods in communication
complexity was the proof that the randomized communication complexity of the
set disjointness problem (12) is linear, R1/4(Disjn) = Θ(n). The first proof of
this fact was given in the 1980s [26], and a much simpler proof was discovered
soon after [41]. The proofs exhibit a specific distribution µ of inputs on which
the distributional communication complexity Dµ,1/4(Disjn) is Ω(n). Note that
the uniform distribution would not be a great fit, since uniformly drawn sets are
non-disjoint with a very high probability. It turns out that the following family of
distributions µ is hard: select each coordinate pair (Xi, Yi) i.i.d. from a distribution
on {(0, 0), (0, 1), (1, 0)} (e.g. uniformly). This generates a distribution on pairs of
disjoint sets. Now, with probability 1/2 choose a uniformly random coordinate
i ∈U [n] and set (Xi, Yi) = (1, 1). Thus, under µ, X and Y are disjoint with
probability 1/2.

Treating communication complexity as a generalization of one-way communica-
tion and applying information-theoretic machinery to it is a very natural approach
(perhaps the most natural, given the success of information theory in communica-
tion theory). Interestingly, however, this is not how the field has evolved. In fact,
the fairly recent survey [31] was able to present the vast majority of communication
complexity results to its date without dealing with information theory at all. It
is hard to speculate why this might be the case. One possible explanation is that
the mathematical machinery needed to tackle the (much more complicated) inter-
active case from the information-theoretic angle wasn’t available until the 1990s;
another possible explanation is that linear algebra, linear programming duality,
and combinatorics (the main tools in communication complexity lower bounds)
are traditionally more central to theoretical computer science research and educa-
tion than information theory.

A substantial amount of literature exists on communication complexity within
the information theory community, see for example [36, 37] and references therein.
The flavor of the results is usually different from the ones discussed above. In
particular, there is much more focus on bounded-round communication, and sig-
nificantly less focus on techniques for obtaining specific lower bounds for the com-
munication complexity of specific functions such as the disjointness function. The
most relevant work to our current discussion is a relatively recent line of work by
Ishwar and Ma, which studied interactive amortized communication and obtained
characterizations closely related to the ones discussed below [32, 33].

Within the theoretical computer science literature, in the context of communi-
cation complexity, information theoretic tools were explicitly introduced in [13] in

10 Mark Braverman

the early 2000s for the simultaneous message model (i.e. 2 non-interactive rounds
of communication). Building on this work, [1] developed tools for applying infor-
mation theoretic reasoning to fully interactive communication, in particular giving
an alternative (arguably, more intuitive) proof for the Ω(n) lower bound on the
communication complexity of Disjn. The motivating questions for [13], as well as
for subsequent works developing information complexity, were the direct sum [17]
and direct product questions for (randomized) communication complexity.

In general, a direct sum theorem quantifies the cost of solving a problem Fn

consisting of n sub-problems in terms of n and the cost of each sub-problem F . The
value of such results to lower bounds is clear: a direct sum theorem, together with
a lower bound on the (easier-to-reason-about) sub-problem, yields a lower bound
on the composite problem (a process also known as hardness amplification). For
example, the Karchmer-Wigderson program for boolean formula lower bounds can
be completed via a (currently open) direct sum result for a certain communication
model [27]. Direct product results further sharpen direct sum theorems by showing
a “threshold phenomenon”, where solving Fn with insufficient resources is shown
to be impossible to achieve except with an exponentially small success probability.
Classic results in complexity theory, such as Raz’s Parallel Repetition Theorem
[39] can be viewed as a direct product result.

In the next section, we will formally introduce information complexity, first as
a generalization of Shannon’s entropy to interactive tasks. We will then discuss its
connections to the direct sum and product questions for randomized communica-
tion complexity, and to recent progress towards resolving these questions.

2. Noiseless coding and information complexity

Interactive information complexity. In this section we will work towards de-
veloping information complexity as the analogue of Shannon’s entropy for interac-
tive computation. It will sometimes be convenient to work with general interactive
two-party tasks rather than just functions. A task T (X,Y) is any action on inputs
(X,Y) that can be performed by a protocol. T (X,Y) can be though of as a set
of distributions of outputs that are acceptable given an input (X,Y). Thus “com-
puting F (X,Y) correctly with probability 1−ε” is an example of a task, but there
are examples of tasks that do not involve function or relation computation, for
example “Alice and Bob need to sample strings A and B, respectively, distributed
according to (A,B) ∼ µ(X,Y)”. For the purposes of the discussion, it suffices to
think about T as the task of computing a function with some success probabil-
ity. The communication complexity of a task T is then defined analogously to
the communication complexity of functions. It is the least amount of communica-
tion needed to successfully perform the task T (X,Y) by a communication protocol
π(X,Y).

The information complexity of a task T is defined as the least amount of in-
formation Alice and Bob need to exchange (i.e. reveal to each other) about their
inputs to successfully perform T . This amount is expressed using mutual informa-

Interactive information and coding theory 11

tion (specifically, conditional mutual information (7)). We start by defining the
information cost of a protocol π. Given a prior distribution µ on inputs (X,Y) the
information cost

IC(π, µ) := I(Y ; Π|X) + I(X; Π|Y), (19)

where Π is the random variable representing a realization of the protocol’s tran-
script, including the public randomness it used. In other words, (19) represents
the sum of the amount of information Alice learns about Y by participating in
the protocol and the amount of information Bob learns about X by participating.
Note that the prior distribution µ may drastically affect IC(π, µ). For example,
if µ is a singleton distribution supported on one input (x0, y0), then IC(π, µ) = 0
for all π, since X and Y are already known to Bob and Alice respectively under
the prior distribution µ. Definition (19), which will be justified shortly, generalizes
Shannon’s entropy in the non-interactive regime. Indeed, in the transmission case,
Bob has no input, thus X ∼ µ, Y = ⊥, and Π allows Bob to reconstruct X, thus
IC(π, µ) = I(X; Π) = H(X)−H(X|Π) = H(X).

The information complexity of a task T can now be defined similarly to com-
munication complexity in (15):

IC(T, µ) := inf
π successfully performs T

IC(π, µ). (20)

One notable distinction between (15) and (20) is that the latter takes an infimum
instead of a minimum. This is because while the number of communication proto-
cols of a given communication cost is finite, this is not true about information cost.
One can have a sequence π1, π2, . . . of protocols of ever-increasing communication
cost, but whose information complexity IC(πn, µ) converges to IC(T, µ) in the limit.
Moreover, as we will discuss later, this phenomenon is already observed in a task
T as simple as computing the conjunction of two bits.

Our discussion of information complexity will be focused on the slightly simpler
to reason about distributional setting, where inputs are distributed according to
some prior µ. In (20), if T is the task of computing a function F with error ε
w.r.t. µ, the distribution µ is used twice: first in the definition of “success”, and
then in measuring the amount of information learned. It turns out that it is possi-
ble to define worst-case information complexity [7] as the information complexity
with respect to the worst-possible prior distribution in the spirit of the minimax
relationship (16). In particular, the direct sum property of information complexity
which we will discuss below holds for prior-free information complexity as well.

Information complexity as defined here has been extensively studied in a se-
quence of recent works [2, 6, 7, 28, 12, 19], and the study is still very much in
progress. In particular, it is surprisingly simple to show that information com-
plexity is additive for tasks over independent pairs of inputs. Let T1 and T2 be
two tasks over pairs of inputs (X1, Y1), (X2, Y2), and let µ1, µ2 be distributions
on pairs (X1, Y1) and (X2, Y2), respectively. Denote by T1 ⊗ T2 to task composed
of successfully performing both T1 and T2 on the respective inputs (X1, Y1) and
(X2, Y2). Then information complexity is additive over these two tasks:

Theorem 2.1. IC(T1 ⊗ T2, µ1 × µ2) = IC(T1, µ1) + IC(T2, µ2).

12 Mark Braverman

Proof. (Sketch, a complete proof of a slightly more general statement can be found
in [7]). The “easy” direction of this theorem is the ‘≤’ direction. Take two protocols
π1 and π2 that perform T1 and T2 respectively, and consider the concatenation
π = (π1, π2) (which clearly performs T1⊗T2). Consider what Alice learns from an
execution of π with prior µ1×µ2. A straightforward calculation using, for example,
repeated application of the chain rule (8) yields

I(Y1Y2; Π1Π2|X1X2) = I(Y1; Π1|X1) + I(Y2; Π2|X2),

and similarly for what Bob learns. Therefore IC(π, µ1×µ2) = IC(π1, µ1)+IC(π2, µ2).
By passing to the limit as IC(π1, µ1) → IC(T1, µ1) and IC(π2, µ2) → IC(T2, µ2) we
obtain the ‘≤’ direction.

The ‘≥’ direction is more interesting, even if the proof is not much more com-
plicated. In this direction we are given a protocol π for solving T1 ⊗ T2 with
information cost I = IC(π, µ1 × µ2), and we need to construct out of it two proto-
cols for T1 and T2 of information costs I1 and I2 that add up to I1 + I2 ≤ I. We
describe the protocol π1(X1, Y1) below:

π1(X1,Y1) :
• Bob samples a pair (X2, Y2) ∼ µ2, and sends X2 to Alice;

• Alice and Bob execute π((X1, X2), (Y1, Y2)), and output the portion relevant
to T1 in the performance of T1 ⊗ T2.

It is not hard to see that the tuple (X1, Y1, X2, Y2) is distributed according to
µ1 × µ2, and hence by the assumption on π, π1 successfully performs T1. Note
that there is a slight asymmetry in π1: X2 is known to both Alice and Bob while
Y2 is only known to Bob. For the purpose of correctness, the protocol would have
worked the same if Bob also sent Y2 to Alice, but it is not hard to give an example
where the information cost of π1 in that case is too high. The information cost of
π is thus given by the sum of what Bob learns about X1 from π1 and what Alice
learns about Y1 (note that (X2, Y2) are not part of the input):

I1 = I(X1; Π|X2Y1Y2) + I(Y1; Π|X1X2).

The protocol π2(X2, Y2) is defined similarly to π1 in a skew symmetric way:

π2(X2,Y2) :
• Alice samples a pair (X1, Y1) ∼ µ1, and sends Y1 to Bob;

• Alice and Bob execute π((X1, X2), (Y1, Y2)), and output the portion relevant
to T2 in the performance of T1 ⊗ T2.

We get that π2 again successfully performs T2, and its information cost is:

I2 = I(X2; Π|Y1Y2) + I(Y2; Π|X1X2Y1).

Putting I1 and I2 together we get:

I1+I2 = I(X1; Π|X2Y1Y2)+I(Y1; Π|X1X2)+I(X2; Π|Y1Y2)+I(Y2; Π|X1X2Y1) =

I(X2; Π|Y1Y2) + I(X1; Π|X2Y1Y2) + I(Y1; Π|X1X2) + I(Y2; Π|X1X2Y1) =

I(X1X2; Π|Y1Y2) + I(Y1Y2; Π|X1X2) = I.

Interactive information and coding theory 13

Once again, passing to the limit, gives us the ‘≥’ direction, and completes the
proof.

If we denote an n-time repetition of a task T by T⊗n, then repeatedly applying
Theorem 2.1 yields

IC(T⊗n, µn) = n · IC(T, µ). (21)

Thus information complexity is additive and has the direct sum property: the cost
of n copies of T scales as n times the cost of one copy. This fact can be viewed as
an extension of the property H(Xn) = n ·H(X) to interactive problems, but what
does it teach us about communication complexity?

Direct sum and interactive compression. Let us return to the communica-
tion complexity setting, fixing T to be the task of computing a function F (X,Y)
with some error at most ε > 0 over a distribution µ (the case ε = 0 seems to be
different from ε > 0). We will denote by Fnε the task of computing n copies of F
on independent inputs distributed according to µn, with error at most ε on each
copy (note that computing F correctly with error at most ε on all copies simulta-
neously is a harder task). The direct sum question for communication complexity
asks whether

Dµn(Fnε) = Ω(n ·Dµ(Fε))? (22)

While this question remains open, information complexity sheds light on this ques-
tion by linking it to problems in interactive coding theory. As discussed below,
information complexity appears to be the best tool for either proving or disprov-
ing (22), as well as for establishing the “right” direct sum theorem in case (22) is
false. It is an easy observation that the information cost of a protocol π is always
bounded by its length |π|, and therefore information complexity is always bounded
by communication complexity. Therefore, by (21),

1

n
·Dµn(Fnε) ≥ 1

n
· IC(Fnε , µ

n) = IC(Fε, µ). (23)

It turns out that the converse is also true in the limit, as n→∞ [6]:

lim
n→∞

1

n
·Dµn(Fnε) = IC(Fε, µ). (24)

Equation (24) can be viewed as the interactive version of the Source Coding The-
orem (2). In particular, it gives an operational characterization of information
complexity exclusively in terms of communication complexity.

A promising attack route (that works to-date followed) on the direct sum
question for communication complexity is to try and prove a relationship of the
type IC(Fε, µ) & Dµ(Fε) (as discussed above, the converse is trivially true). In-
deed, if we could prove that IC(Fε, µ) = Ω(Dµ(Fε)), by (23) it would imply that
1
n ·Dµn(Fnε) = Ω(Dµ(Fε)) and prove (22).

One equivalent way to interpret the attempts to prove IC(Fε, µ) & Dµ(Fε) is
in terms of a search for an interactive analogue of Huffman coding (11) (where

14 Mark Braverman

it does hold that H(X) > C(x) − 1). (One way) Huffman coding shows how
to encode a low-entropy “uninformative” signal into a short one. Its interactive
version seeks to simulate a low information cost “uninformative” protocol π with
a low communication protocol π′.

Until very recently, we did not know whether such a general compression scheme
exists. Just this year, the first example of a relation whose information and com-
munication complexities are exponentially separated was given in a striking work
by Ganor, Kol, and Raz [19]. This result, in particular, shows a protocol π for a
sampling problem that has information cost I, but which cannot be simulated by
a protocol π′ with communication cost < 2Ω(I).

Note that (23), which follows from Theorem 2.1, can be further sharpened
as follows. If there is a protocol πn for solving Fnε — n copies of F — with
communication cost Cn, then there is a protocol π1 for solving a single copy of
Fε whose communication cost is still at most C := Cn, and whose information
cost is at most I ≤ Cn/n. To prove a lower bound on Cn, we can assume that
it is “too small”, and then show how to convert π1 into a protocol π′ for Fε that
uses < Dµ(Fε) communication. This brings us to the following general interactive
coding/compression question:

Problem 2.2. (Interactive compression problem). Given a protocol π whose com-
munication cost is C and whose information cost is I, what is the smallest amount
of communication needed to (approximately) simulate π?

To prove the strongest possible direct sum theorem we need π′ to be compressed
all the way down to O(I) bits of communication (the strongest possible interac-
tive compression result), however, partial interactive compression results lead to
weaker (but still non-trivial) direct sum theorems. At present, the two strongest
compression results, which partially resolve Problem 2.2, compress π to Õ(

√
C · I)

communication [2] and 2O(I) communication [7], respectively. Note that these re-
sults are incomparable since C > I can be much (e.g. double-exponentially) larger
than I.

These result lead to direct sum theorems for randomized communication com-
plexity. As the compression introduces an additional small amount of error, the
first result implies for any constant ρ > 0:

Dµn(Fnε) = Ω̃(
√
n ·Dµ(Fε+ρ)), (25)

and the second one implies

Dµn(Fnε) = Ω(n · log(Dµ(Fε+ρ))). (26)

The recent result of Ganor et al. [19] rules out the strongest possible direct sum
theorem for relations. Since the hard-to-compress protocol in their example has a

very high communication complexity (on the order of 22I

), it is still possible that

any protocol can be compressed to O(I · logO(1)(C)) communication, leading to a

Here, the Õ(·) notation hides poly-logarithmic factors.

Interactive information and coding theory 15

direct sum theorem with n
logO(1) n

instead of just n. We should also note that the

direct sum situation with functions (as opposed to relations) remains open.
Why is interactive compression so much harder than non-interactive? The

main difference between the interactive and non-interactive compression settings
is that in the interactive setting each message of the protocol conveys an average
of I/C � 1 bits of information. There are many ways to compress communication
in the relevant setting, but all of them incur an average loss of Ω(1) bits per round
(Huffman coding being one example of this phenomenon). This is prohibitively
expensive in the interactive case, if the number of rounds of interaction r is equal
to C. Therefore, inevitably, to compress interactive communication one has to
compress multiple rounds in one message. This problem disappears when I � r,
and this is what makes the ‘≤’ direction of (24) go through when n is sufficiently
large.

Direct product for communication complexity. Next, we turn our attention
to the more difficult direct product problem for communication complexity. The
direct sum question talks about the amount of resources needed to achieve a certain
probability of success on n copies of F . What if that amount of resources is not
provided? For example, (23) implies that unless n · IC(Fε, µ) bits of communication
is allowed in the computation of Fnε , the computation of some copy of F will have
< 1 − ε success probability. What does it tell us about the success probability
of all copies simultaneously? It only tells us that the probability of the protocol
succeeding on all copies simultaneously is bounded by 1 − ε. This is a very weak
bound, since solving the n copies independently leads to a success probability
of (1 − ε)n, which is exponentially small for a constant ε. How can this gap be
reconciled? In particular, can one show that Alice and Bob cannot “pool” the errors
from all n copies on the same instances, thus keeping the success probability for
each coordinate, as well as the global success probability, close to 1−ε? The direct
product problem precisely addresses this question. Let us denote by suc(F, µ,C)
as the highest success probability (w.r.t. µ) in computing F that can be attained
using communication ≤ C. Thus suc(F, µ,C) ≥ 1−ε is equivalent to Dµ(Fε) ≤ C.
Somewhat informally phrased, the direct product question asks whether

suc(Fn, µn, o(n · C)) < suc(F, µ,C)Ω(n)? (27)

As with the direct sum question, the direct product question appears “obvious”:
one would expect that the best we can do is just execute the best protocol for
one copy of F n times independently. This will lead to a success probability of
≤ suc(F, µ, o(C))n.

A prominent setting within complexity theory where a question similar to the
direct product question arose is that of parallel repetition for two-prover games
[39]. Parallel repetition is used in the context of probabilistically checkable proofs
(PCP) and hardness amplification. Hardness amplification is accomplished here by
taking a hard task T (e.g. a verification procedure where the success probability of
an unauthorized provers is 1− ε), and creating a task Tn by taking n independent
instances of T . It has been shown [39] that as n grows, the success probability

16 Mark Braverman

goes to 0. Unfortunately, it does not go to 0 as (1 − ε)n. Indeed, as shown by a
counterexample constructed by Raz [40], the best rate one can hope for is (1−ε2)n.
The reason for this, pointed out by an earlier example by Feige and Verbitsky [18],
is that the answers can be arranged to align errors together, so that when the
provers fail, they fail on a lot more than εn coordinates at the same time. This is
possible when answers are allowed to be correlated.

The direct product question (27) for communication complexity combines fea-
tures from the direct sum question (thus hinting that information complexity is
to play a role here as well), and from the parallel repetition setup (since we want
a success probability dropping exponentially in n). The direct sum discussion al-
ready suggests that for suc(F, µ,C) = 1 − ε, the best scaling of the amount of
communication one can hope for is as n · I, where I = IC(Fε, µ). This is because,
as n→∞, the per-copy communication cost of computing F with error ε scales as
n · I. Thus, if we denote by suci(F, µ, I) ≥ suc(F, µ, I) the best success probability
one can attain at solving F while incurring an information cost of at most I, the
direct product question for information asks whether

suc(Fn, µn, o(n · I)) < suci(F, µ, I)Ω(n)? (28)

Note that the success probability on the left-hand-side is still with respect to
communication. A statement such as this with respect to information cost is bound
to be false: Information cost being an average-case quantity, one can attain an
information-cost In protocol by doing nothing with probability 1−δ, and incurring
an information cost of In/δ � n · I with probability δ that can be taken only
polynomially (and not exponentially) small.

In a sequence of two papers, the second being very recent [11, 12], (28) was
shown to be true up to polylogarithmic factors for boolean functions. To simplify
parameters, suppose suci(F, µ, I) < 2/3. Then there are constants c1, c2 such that

if T log T < c1n · I, then suc(Fn, µn, T) < 2−c2n. (29)

The proof of (29) is quite involved and combines ideas from the proof of direct
sum theorems and of parallel repetition theorems.

Exact communication complexity bounds. One of the great successes of in-
formation theory as it applies to (classical, one-way) communication problems is in
its ability to give precise answers to fairly complicated asymptotic communication
problems, for example ones involving complicated dependencies between terminals
or complicated channels. For example, the capacity of the binary symmetric chan-
nel BSC0.2 is precisely 1 −H(0.2) ≈ 0.278, which means that to transmit n bits
over such a channel, we will need ≈ 3.596n utilizations of the channel (i.e. will need
to send ≈ 3.596n bits down the channel). Using combinatorial techniques, in most
cases, such precision is inaccessible in the two-party setting, since the techniques
often lose constant factors by design. In contrast, information complexity extends
the precision benefits of one-way information theory to the interactive setting.

We give one specific example of an exact communication complexity bound. Re-
call that the disjointness problem Disjn(X,Y) takes two n-bit vectors X,Y and

Interactive information and coding theory 17

checks whether there is a location with Xi = Yi = 1. Thus Disjn is just a disjunc-
tion of n independent copies of the two bit AND(Xi, Yi) function. Using techniques
similar to the proof of Theorem 2.1, one can show that the communication com-
plexity of disjointness is tightly linked with the information complexity of AND.
Note that disjointness becomes trivial if many coordinates (Xj , Yj) of the input are
(1, 1). However, any distribution of inputs where µ((Xj , Yj) = (1, 1)) ∼ 1/n → 0
will not be trivial. More formally, denote by 0+ a function f(n) of n such that
f(n) = o(1) and f(n) � 2−O(n). For example, one can take f(n) = 1/n. Then
with some work one shows [9] that

R0+(Disjn) =

(
inf

µ:µ(1,1)=0
IC(AND0, µ)

)
· n± o(n). (30)

Thus, understanding the precise asymptotics of the communication complexity of
Disjn boils down to understanding the (0-error) information complexity of the
two-bit AND function. It turns out that one can give an explicit information-
theoretically optimal family of protocols for AND, and calculate the quantity in
(30) explicitly, obtaining R0+(Disjn) = CDISJ · n± o(n) where CDISJ ≈ 0.4827.

Interestingly, even in the case of such a simple function as two-bit AND, the
information complexity is not attained by any particular protocol, but rather by an
infinite family of communication protocols! Moreover, if we denote by ICr(AND0)
the information cost of AND where the infimum in (20) is only taken over protocols
of length r, then it turns out that ICr(AND0) = IC(AND0) + Θ(1/r2), implying
that an asymptotically optimal protocol is only achieved with a super-constant
number of rounds [9]. We do not yet know how general this 1/r2 gap phenomenon
is, and which communication tasks admit a minimum in (20).

3. Interactive error-correcting codes

Adversarial error-correction. The discussion so far focused on coding for in-
teractive computing over a noiseless binary channel. In this section we will focus on
error-correction problems when the channel contains random or adversarial noise.
The first regime we would like to consider is that of adversarial noise. In this
regime Alice and Bob are trying to perform a task T over a channel in which
an adversary is allowed to corrupt a constant fraction of the messages. Both the
regime of a binary channel and that of a channel with constant-size alphabet Σ
(i.e. where symbols σ ∈ Σ are being transmitted over the channel) are interesting.

The one-way case has been extensively studied for several decades, as discussed
in the introduction. If the task T is just a simple transmission task, then the theory
of (worst-case) error-correcting codes [34, 44] applies. While there are many open
problems in coding theory, the overall picture is fairly well understood. In particu-
lar, constructions of “good” positive-rate, constant-distance codes exist (i.e. codes

Note that even when µ(1, 1) = 0 and thus AND(X,Y) = 0 on supp(µ), the task AND0

requires the protocol to always be correct – even on the (1, 1) input. Otherwise, IC(AND0, µ)
would trivially be 0.

18 Mark Braverman

that increase communication by a constant factor only, and can tolerate a constant
fraction of errors), and there are efficient encoding and decoding constructions.

In the interactive case, the task may include many back-and-forth messages. As
a generic task, it is convenient to think about alternating binary pointer jumping
(BPJn). In this problem the parties are working with a depth-n binary tree. Alice
is given a subset TA of edges on the odd layers of the tree, with exactly one edge
coming out of each vertex on odd layers. Similarly, Bob is given a subset TB of
edges on the even layers of the tree. Their goal is to find the unique leaf that is
connected to the root by edges from TA ∪ TB . There is an obvious n-bit protocol
for finding the leaf, where Alice and Bob alternate. The definition of BJPn is
parallel to the definition of a n-round protocol π as given by Definition 1.1. In
this sense, BPJn is the generic interactive task, as any interactive protocol can be
recast as an instance of BPJn.

To continue the comparison with the non-interactive setting, suppose an ad-
versary is allowed to corrupt a δ-fraction of the symbols exchanged by Alice and
Bob, for some δ > 0. Can they still compute BPJn? Solving BPJn efficiently
requires a lot of back-and-forth interaction. A näıve approach would be to apply
(standard) error-correction to the interactive protocol on a round-by-round basis.
This does not work, because the adversary can concentrate all of her errors, for
example, on the first round, causing all subsequent communications to be wrong
and derailing the protocol’s execution. Another obvious solution that dose work
is to have Alice send her input TA to Bob using a standard error-correcting code.
Bob then can compute the leaf. This solution works, but causes an exponential
blow-up in communication, since TA takes ∼ 2n bits to describe, while the efficient
solution for BPJn requires only O(n) communication.

It is not at all clear that a constant-rate error correcting code is possible. Sur-
prisingly, constant-rate error-correcting codes for interactive computing do exist.
The first such code was demonstrated in a breakthrough work by Schulman in the
1990s [42], who showed a constant-rate code against an adversary who is allowed to
corrupt a constant δ-fraction of the symbols on the channel for δ < 1/240. Schul-
man introduced a concept of a tree code. Variants and extensions of tree codes
have been used in all constructions since. The construction opened up opportu-
nities for interactive error-correction, but also left room for improvement, as the
error-parameter δ < 1/240 is far from optimal and the error-correction is not effi-
cient in that it requires time exponential in n to compute the encoding/decoding
(even though the communication itself is O(n) symbols).

After a gap in progress on interactive error-correction, a substantial amount
of progress has been made in the last 5 years [10, 20, 5, 8, 22, 21]. Progress so
far has focused on (1) making the tolerable error rate δ as high as possible; (2)
making the construction explicit and computationally efficient. This while keeping
the rate (i.e. the ratio between the encoding length and the length of the noise-
free execution) of the code constant. What remains completely open is the exact
coding rate for interactive coding, given a specific value of δ. All we know are
characterizations of δ for which various specific types of good codes exist.

Next, let us discuss the error-rate region for which (two-party) interactive error-

Interactive information and coding theory 19

correction is possible. Suppose Alice and Bob communicate over a channel which
uses an alphabet Σ2 with |Σ2| = O(1) a large constant that is allowed to depend
on δ (the case of a binary noisy channel, |Σ2| = 2, is also interesting, with many
of the problems still open there). An interactive error-correction scheme π is a
protocol of a fixed length n′ = O(n) over Σ2 that solves BPJn, even when the
channel is affected by a noise of rate δ. In other words, for any inputs (TA, TB),
any execution transcript Π of π in which a total of at most δ · n′ of the symbols
were corrupted results with Alice and Bob outputting the correct leaf

BPJn(TA, TB) = DA(TA,Π) = DB(TB ,Π), (31)

DA and DB being the decoding functions for Alice and Bob, respectively. Here DA

and DB are only allowed to depend on the portions of the transcript Π accessible
to Alice and Bob, respectively.

First assume that in π, the player speaking in each round is pre-determined (a
single symbol is sent in each round). Such protocols are caller robust. Note that
without this assumption, it is possible to have a round in which both Alice and
Bob (or neither Alice nor Bob) speak, since error may confuse the players as to
whose turn it is to speak. In this case further modeling assumptions are needed to
specify what happens during these rounds.

In the robust case, note that the adversary knows ahead of time nA and
nB — the number of rounds Alice and Bob speak, respectively, in π. Here
nA + nB = n′. Assume without loss of generality that nA ≤ n′/2. Then, as
with the proof that one way error-correcting codes cannot recover from an er-
ror rate exceeding 1/2, by extrapolating between π(TA1

, TB) and π(TA2
, TB), an

adversary can corrupt nA/2 rounds of π, and prevent Bob from distinguishing
two potential inputs TA1 and TA2 of Alice. If the resulting transcript is Π, as
long as BPJn(TA1

, TB) 6= BPJn(TA2
, TB), either DB(TB ,Π) 6= BPJn(TA1

, TB) or
DB(TB ,Π) 6= BPJn(TA2

, TB), meaning that π sometimes fails. Thus the adver-
sary can foil the protocol using nA/2 ≤ n′/4 errors, so we cannot hope to overcome
an error rate of δ ≥ 1/4.

It turns out [10] that it is possible to deal with error rates of δ = 1/4− ε using
constant-rate codes. As in Schulman’s construction, the key technical ingredient
of this result is that of a tree code. A tree code is a prefix code C : {0, 1}m →
Σm2 ; in a prefix code the i-th symbol of the codeword C(S)i = Ci(S[1..i]) only
depends on the first i symbols of the word being encoded. It is clear that a prefix
code cannot have the constant-distance property since, for example C(0m) and
C(0m−11) cannot differ in more than one symbol. The best property we can hope
for is that codewords of length k that deviate after the i-th symbol will differ
by close to (k − i) symbols. This is indeed the definition of a tree code: a tree
code C : {0, 1}m → Σm2 is said to have distance α if for all i,k, and w ∈ {0, 1}i,
w0, w1 ∈ {0, 1}k−i−1,

dH(C(w0w0), C(w1w1)) ≥ α · (k − i). (32)

It can be shown [42] that tree codes exist for any constant α < 1 (the alphabet
Σ2 may need to be made sufficiently large, with its size increasing as α approaches

20 Mark Braverman

1). Note that it is easy to see that a random code will not be a tree code with a
very high probability. Therefore, even constructing a non-explicit tree codes is not
a trivial task. To decode a tree code, the receiver just finds the codeword that is
closest to the received word in Hamming distance.

Informally, each symbol sent by the tree code not only encodes the current
symbol being sent, but also hashes the entire history of the transmission, ensuring
that a mistake introduced by an adversary will be corrected as following rounds
arrive. The key useful property of tree codes for the purposes of interactive error-
correction codes is the following: Suppose that t rounds ago Alice sent a message
z encoded using the tree code, and the adversary managed to keep Bob from
receiving it, and instead Bob thinks that z̄ was sent t rounds ago. This means
that the amount of errors between now and some point t′ ≥ t rounds ago must be
at least α · t′/2. In other words, to keep Bob from learning z, the adversary has
to introduce many errors in a large stretch that in particular is at least t symbols
long.

Next, let us give the intuition for how tree codes can be useful in interactive
error correction, following the construction in [10]. Unfortunately, due to space
constraints, we will not be able to give a full sketch here. The protocol π will
proceed by having Alice and Bob send edges of TA and TB , respectively, using a
tree code to encode a stream of edges being sent. The parties are trying to build
the unique path from the root in TA∪TB . At each point in time, one of the parties
(say Alice) can extend the path, assuming she correctly decoded the previous edges.
By the discussion above about the main property of tree codes, to keep Alice from
correctly decoding the previous edges, the adversary will have to use an error rate
of at least α/2 in Bob’s transmissions between the time the previous edge had
been sent by Bob, and when it is decoded by Alice. This amounts to an error rate
of α/4. By choosing α/4 > δ (which is possible since δ < 1/4) we can guarantee
enough rounds in which Alice and Bob will make progress. This outline glosses
over how edges are represented, and indeed representing edges so that each only
takes O(1) bits which can be encoded using the tree code is the main technical
challenge overcome by [10].

As noted earlier, relaxing the robustness assumption requires further modeling
assumptions on what happens in rounds where either both Alice and Bob or neither
speak. One would expect that by having the party that is being targeted by the
adversary speak more, one can improve the error tolerance of the protocol. Indeed,
the example showing the 1/4 limit above could be remedied if the party being
targeted by the adversary spoke more than n′/2 of the rounds (thus forcing the
adversary to expend more of her budget). Under a reasonable model, a recent
work [22] shows that the error-tolerance of non-robust protocols can be made
2/7− ε > 1/4, and that this bound is tight.

In the one-way error-correcting coding theory, an important way of going be-
yond error-rate 1/2 is using the concept of list decoding. A list-decodable code is
one where for a corrupt encoded words, there is a (constant-size) list of possible
decodings. Over large, constant-size alphabets, list-decodable codes exist for any
error rate of 1 − ε, where the output list size is Oε(1). In the interactive set-

Interactive information and coding theory 21

ting, somewhat surprisingly, one can also construct list-decodable error-correcting
schemes. In the robust setting, the best error rate attainable by a constant-rate
code is 1/2 − ε [8]. This construction uses a generalization of tree codes called
list-tree-codes. This generalization has an average-case rather than worst-case
coding property, and is instantiated by a random prefix code with a sufficiently
large constant |Σ2| with a very high probability. Interestingly, it appears that
one needs interactive list-decoding even just to attain optimal error-resistance for
unique decoding in some regimes.

One limitation of the constructions above is that they are not explicit. In other
words, while we know that they can all be instantiated, often with a random prefix
code, no provable explicit constructions of tree codes and list-tree-codes are known.
Worse yet, even if one could somehow derandomize these constructions, the brute-
force decoding procedures require exponential time. Several recent works developed
efficient interactive error-correcting coding schemes. In particular, the very recent
work by Ghaffari and Haeupler [21] gives an efficient scheme that achieves the
same error-correction guarantees as the best-known non-efficient scheme (see [21]
for additional recent history and references). Its only limitation is that it uses
randomness for initialization, but it allows this randomness to be accessible by
the adversary, so it is not a major limitation since no shared secret between Alice
and Bob is needed. Most excitingly, while the scheme has a slightly sub-constant
rate, by combining it with the construction of [8] it appears that it can be made
constant-rate, thus concluding the quest for efficient interactive error-correcting
schemes with optimal error dependence.

All efficient schemes to-date follow a similar paradigm: start with a non-efficient
scheme on a very small scale (say, log log n rounds). On such a small scale one
can just brute-force the search for tree codes, and for efficient encoding-decoding
schemes. Next, show how to go from an interactive constant-rate error-correcting
scheme of depth k to one of depth, say, 2k. Note that one will only need to apply
such a transition twice to go from depth log log n do depth n.

A major gap in our understanding of interactive error-correction is in the rate
of optimal codes. In other words, for a given error rate δ = 1/4 − ε, what is the
best rate

ρδ =
n

n′ log |Σ2|
one can hope to attain in solving BPJn? We do not even know the asymptotics of
ρδ as δ approaches the boundary points of 0 and 1/4. Perhaps this should not be
too disappointing, since parallel questions are open for one-way communication.
However, one could hope to resolve these problems in the random error model,
since there Shannon’s classical work does give us precise channel capacity answers.
We turn our attention to that regime next.

Random errors and channel capacity. In the random error model, Alice and
Bob communicate over a noisy channel C, where the noise is generated randomly.
For concreteness, we will focus here on the binary symmetric channel with error
ε, BSCε, where bits are being transmitted and each bit sent over the channel is
independently flipped with probability ε.

22 Mark Braverman

As discussed earlier, the channel capacity of BSCε is given by (10) and is
equal to 1−H(ε). Informally, this means that the utility of BSCε in conducting
communication is 1−H(ε), and that for a growing n, transmitting n random bits
over BSCε will require

n/cap(BSCε)± o(n) = n/(1−H(ε))± o(n) (33)

utilizations of the channel. How this logic should extend to the interactive case
is still up to debate. One natural extension is to consider the pointer jumping
problem BPJn from before as the standard interactive problem, and to define
interactive channel capacity in terms of the number of channel utilizations needed
to execute BPJn, similarly to

icap1(C) := lim
n→∞

n

of utilizations of C needed to perform BPJn w.h.p.
. (34)

No explicit formulas (or ways of obtaining explicit values) of icap1(BSCε) are
known. Even establishing directly that icap1(BSCε) > 0 does not seem completely
straightforward, although this fact is a direct consequence of the more general
adversarial setting from the previous section. One important recent result by Kol
and Raz [29] establishes a gap between icap1 and Shannon’s channel capacity for
BSCε showing that

icap1(BSCε) = 1−Θ(
√
H(ε)) = 1−Θ(

√
ε log 1/ε) < cap(BSCε) (35)

as ε → 0. This result is quite technical, and underscores the difficulty of the
interactive channel capacity question.

One of the nice properties of Shannon’s one-way information theory is that
the notions of entropy and of channel capacity commute. That is, if we want to
transmit a random variable X whose entropy is H(X)� 1 over a channel C, then
the number of channel utilizations needed to transmit X is on average

(H(X)/cap(C))(1 + o(1)). (36)

In the interactive setting, we have established information complexity as the in-
teractive analogue of channel capacity. It is unclear whether there is a way to
define interactive channel capacity that makes the interactive analogue of (36)
hold. Such an analogue may also help shed light onto the basic structure of in-
teractive communication. The result of [29] implies that such a characterization
cannot simultaneously capture interactive and non-interactive tasks, and thus it is
bound to be quite complex.

4. Conclusion and discussion

We conclude with some specific open problems and a general discussion. In addition
to some of the open questions outlined above, several other questions, which are
easy in the non-interactive setting become more challenging when interaction is
added to the mix.

Interactive information and coding theory 23

Computability of information complexity. The first problem that is (some-
what embarrassingly) open, is computing the information complexity from the
truth table of F :

Problem 4.1. Given the truth table of a function F : (X,Y) 7→ {0, 1}, an error
parameter ε ≥ 0, and a distribution µ of (X,Y), can one give a general procedure
for computing the information complexity IC(Fε, µ)?

We believe the answer to Problem 4.1 to be affirmative. As noted above,
the problem is that there might be a sequence of protocols whose information cost
decreases as protocol size increases. The ≤ direction of (24) gives one way to obtain
a decreasing sequence that converges to IC(Fε, µ) by considering the amortized cost
of n copies of F as n→∞. Unfortunately, for this procedure to compute IC(Fε, µ),
we need to have an effective bound on the sequence’s rate of convergence down to
IC(Fε, µ). The work [32] gives a computable characterization of IC(Fε, µ), but only
when one fixes the number of rounds of interaction (back-and-forth messages) in
advance. We do not know an effective rate of convergence of the round-restricted
information complexity to the unrestricted value.

One can also formulate Problem 4.1 as a continuous dynamic programming
problem in the spirit of the Hamilton-Jacobi-Bellman equation [9], but it is not
clear how to solve the resulting equation, although it might be doable by better un-
derstanding the properties of the function IC(Fε, µ) when considered as a function
on the space of distributions µ.

Multi-party communication. It is a natural and very interesting goal to gen-
eralize the discussion above to more than two terminals. There are various models
for multi-terminal interactive computation. The main complication stems from the
fact that the prior distributions, and the way the inputs to different players are
correlated, may be rather sophisticated. One popular model of multi-party compu-
tation is that of number-on-forehead (NOF). In the NOF model each party gets to
see all inputs but its own and the goal is to compute a function F (X1, . . . , Xk) of
the inputs [30, 14]. Lower bounds in this model would have profound implications
in complexity theory [3]. Multiparty NOF lower bounds are considerably harder
than two-party bounds. For example, it is still unknown whether the communica-
tion complexity of the 3-party analogue of Disjn has communication complexity
Θ(
√
n) or Θ(n) (or something in between) [43].

There are numerous complications in extending notions of information com-
plexity to multi-terminal settings. Apart from sheer technical difficulties, a major
obstacle is finding the “right” analogue of public and private randomness. Note
that even with three parties we have seven different types of randomness (one
“private” for each party, one “public”, and three shared between two of the three
parties but not the third). Allowing all the different types of randomness leads to
another impasse, as in this regime there are information-theoretically secure proto-
cols for multi-party computation [4] which would bring the information complexity
of all problems close to 0. This, it turn, limits the usefulness of an information
complexity notion based on the amount of information revealed to the parties.

24 Mark Braverman

Beyond communication: continuous relaxations for other models of
computation. From the viewpoint of theoretical computer science, information
complexity can be viewed as the continuous relaxation of communication com-
plexity. Avoiding the “discreteness” of bits and switching to information instead
simplified not only the proofs, but the results themselves. For example, the direct
sum theorem (Theorem 2.1) is true for information complexity but is not true, at
least in full generality, for communication complexity. Thus, this is one more ex-
ample in the context of complexity theory where a continuous relaxation is easier
to deal with. There are many more such examples in the context of algorithms.
For example, one of the leading paradigms in approximation algorithms involves
relaxing discrete problems into continuous convex optimization programs (for ex-
ample, linear or semi-definite), and then rounding the resulting fractional solution
to obtain an integral one. This allows one to connect the problem of algorithm
development with a rich (and deep) theory of continuous analysis and geometry.

In the context of computational complexity, there is still much to be desired in
terms of our ability to “de-discretize” computation. The difficulty of dealing with
a discrete computation theory has been foreseen by von Neumann as early as 1948
[46] in his Hixon Symposium talk:

“There exists today a very elaborate system of formal logic, and,
specifically, of logic as applied to mathematics. This is a discipline with
many good sides, but also with certain serious weaknesses. This is not
the occasion to enlarge upon the good sides, which I have certainly no
intention to belittle. About the inadequacies, however, this may be
said: Everybody who has worked in formal logic will confirm that it
is one of the technically most refractory parts of mathematics. The
reason for this is that it deals with rigid, all-or-none concepts, and has
very little contact with the continuous concept of the real or of the
complex number, that is, with mathematical analysis. Yet analysis is
the technically most successful and best-elaborated part of mathemat-
ics. Thus formal logic is, by the nature of its approach, cut off from
the best cultivated portions of mathematics, and forced onto the most
difficult part of the mathematical terrain, into combinatorics.

The theory of automata, of the digital, all-or-none type, as discussed
up to now, is certainly a chapter in formal logic. It would, therefore,
seem that it will have to share this unattractive property of formal logic.
It will have to be, from the mathematical point of view, combinatorial
rather than analytical.”

Over 65 years later, most fundamental problems in the theory of computation,
such as the P vs. NP problem, are wide open, and most unconditional lower
bounds are based on diagonalization ideas of Cantor, Gödel and Turing. With
some notable exceptions, such as the use of polynomials in circuit complexity
lower bounds, Von Neuman’s prognostication appears to have withstood the test
of time.

Is there a natural continuous relaxation of computational complexity specific
enough to deal with its major open problems? And are our mathematical tools

Interactive information and coding theory 25

mature enough to pursue one if it exists? In the context of communication, infor-
mation theory is a great example of a continuous theory that organizes (and greatly
simplifies) discrete communication. Communication complexity started out as a
discrete theory, but appears to be amenable to continuous treatment, with informa-
tion complexity being its natural continuous relaxation. It will be very interesting
to see whether this push can be extended further into computational complexity.

Acknowledgments. I would like to thank Ankit Garg, Rotem Oshman, Denis
Pankratov, and Omri Weinstein for their numerous comments on earlier drafts of
this paper.

References

[1] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information
statistics approach to data stream and communication complexity. Journal of Com-
puter and System Sciences, 68(4):702–732, 2004.

[2] B. Barak, M. Braverman, X. Chen, and A. Rao. How to compress interactive com-
munication. SIAM Journal on Computing, 42(3):1327–1363, 2013.

[3] Richard Beigel and Jun Tarui. On acc [circuit complexity]. In Foundations of
Computer Science, 1991. Proceedings., 32nd Annual Symposium on, pages 783–792.
IEEE, 1991.

[4] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover
interactive proofs: How to remove intractability assumptions. In Proceedings of the
20th Annual ACM Symposium on Theory of Computing, pages 113–131, 1988.

[5] Z. Brakerski and Y.T. Kalai. Efficient interactive coding against adversarial noise.
In Electronic Colloquium on Computational Complexity (ECCC), 2012.

[6] M. Braverman and A. Rao. Information equals amortized communication. In 52nd
Annual Symposium on Foundations of Computer Science (FOCS), pages 748–757.
IEEE, 2011.

[7] Mark Braverman. Interactive information complexity. In Proceedings of the 44th
symposium on Theory of Computing, pages 505–524. ACM, 2012.

[8] Mark Braverman and Klim Efremenko. List and unique coding for interactive com-
munication in the presence of adversarial noise. Electronic Colloquium on Compu-
tational Complexity (ECCC), 2014.

[9] Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. From infor-
mation to exact communication. In Proceedings of the 45th annual ACM symposium
on Symposium on theory of computing, pages 151–160. ACM, 2013.

[10] Mark Braverman and Anup Rao. Towards coding for maximum errors in interactive
communication. In Proceedings of the 43rd annual ACM symposium on Theory of
computing, pages 159–166. ACM, 2011.

[11] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct products
in communication complexity. In Foundations of Computer Science (FOCS), 2013
IEEE 54th Annual Symposium on, pages 746–755. IEEE, 2013.

26 Mark Braverman

[12] Mark Braverman and Omri Weinstein. An interactive information odometer with
applications. In Electronic Colloquium on Computational Complexity (ECCC), 2014.

[13] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Yao. Informational
complexity and the direct sum problem for simultaneous message complexity. In Bob
Werner, editor, Proceedings of the 42nd Annual IEEE Symposium on Foundations
of Computer Science, pages 270–278, Los Alamitos, CA, October 14–17 2001. IEEE
Computer Society.

[14] Arkadev Chattopadhyay and Toniann Pitassi. The story of set disjointness. ACM
SIGACT News, 41(3):59–85, 2010.

[15] Thomas M Cover and Joy A Thomas. Elements of information theory, 2nd edition.
J. Wiley and Sons, New York, 2006.

[16] Peter Elias. List decoding for noisy channels. 1957.

[17] Tomas Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amortized communi-
cation complexity. SIAM Journal on Computing, 24(4):736–750, 1995.

[18] Uriel Feige and Oleg Verbitsky. Error reduction by parallel repetitiona negative
result. Combinatorica, 22(4):461–478, 2002.

[19] Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of information and
communication. In Electronic Colloquium on Computational Complexity (ECCC),
2014.

[20] R. Gelles, A. Moitra, and A. Sahai. Efficient and explicit coding for interactive
communication. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd
Annual Symposium on, pages 768–777. IEEE, 2011.

[21] Mohsen Ghaffari and Bernhard Haeupler. Optimal error rates for interactive coding
ii: Efficiency and list decoding. arXiv preprint arXiv:1312.1763, 2013.

[22] Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. Optimal error rates for
interactive coding i: Adaptivity and other settings. arXiv preprint arXiv:1312.1764,
2013.

[23] Venkatesan Guruswami. List decoding of error-correcting codes. Springer, 2004.

[24] Venkatesan Guruswami. Bridging shannon and hamming: List error-correction with
optimal rate. In Proceedings of ICM, 2010.

[25] David A Huffman et al. A method for the construction of minimum redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[26] Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication com-
plexity of set intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557,
November 1992.

[27] Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower
bounds via the direct sum in communication complexity. Computational Complexity,
5(3/4):191–204, 1995. Prelim version CCC 1991.

[28] Iordanis Kerenidis, Sophie Laplante, Virginie Lerays, Jérémie Roland, and David
Xiao. Lower bounds on information complexity via zero-communication protocols
and applications. In Foundations of Computer Science (FOCS), 2012 IEEE 53rd
Annual Symposium on, pages 500–509. IEEE, 2012.

[29] Gillat Kol and Ran Raz. Interactive channel capacity. In Proceedings of the 45th
annual ACM symposium on Symposium on theory of computing, pages 715–724.
ACM, 2013.

Interactive information and coding theory 27

[30] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge Univer-
sity Press, Cambridge, 1997.

[31] Troy Lee and Adi Shraibman. Lower bounds in communication complexity. Now
Publishers Inc, 2009.

[32] N. Ma and P. Ishwar. Some results on distributed source coding for interactive
function computation. Information Theory, IEEE Transactions on, 57(9):6180–6195,
2011.

[33] Nan Ma and P. Ishwar. The infinite-message limit of two-terminal interactive source
coding. Information Theory, IEEE Transactions on, 59(7):4071–4094, July 2013.

[34] F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. North–
Holland, New York, 1977.

[35] Ilan Newman. Private vs. common random bits in communication complexity. In-
formation Processing Letters, 39(2):67–71, 31 July 1991.

[36] A Orlitsky and A El Gamal. Communication complexity. In Complexity in infor-
mation theory, pages 16–61. Springer, 1988.

[37] Alon Orlitsky and James R Roche. Coding for computing. In Information Theory,
1995. Proceedings., 1995 IEEE International Symposium on, page 451. IEEE, 1995.

[38] Vera Pless, Richard A Brualdi, and William Cary Huffman. Handbook of coding
theory. Elsevier Science Inc., 1998.

[39] R. Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803,
1998.

[40] Ran Raz. A counterexample to strong parallel repetition. SIAM Journal on Com-
puting, 40(3):771–777, 2011.

[41] Alexander Razborov. On the distributed complexity of disjointness. TCS: Theoretical
Computer Science, 106, 1992.

[42] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions
on Information Theory, 42(6):1745–1756, 1996.

[43] Alexander A Sherstov. Communication lower bounds using directional derivatives.
In Proceedings of the 45th annual ACM symposium on Symposium on theory of
computing, pages 921–930. ACM, 2013.

[44] M. Sudan. Algorithmic introduction to coding theory – course notes, 2001.
http://people.csail.mit.edu/madhu/FT01/course.html.

[45] Jacobus Hendricus Van Lint. Introduction to coding theory, volume 86. Springer,
1982.

[46] J. von Neumann. The general and logical theory of automata. In John von Neumann,
collected works, chapter 9, pages 288–328. Pergamon Press, 1951.

[47] John M Wozencraft. List decoding. Quarterly Progress Report, 48:90–95, 1958.

[48] Andrew C. C. Yao. Some complexity questions related to distributive computing
(preliminary report). In Proceedings of the eleventh annual ACM symposium on
Theory of computing, pages 209–213. ACM, 1979.

[49] Andrew C. C. Yao. Lower bounds by probabilistic arguments. In Foundations of
Computer Science, 1983., 24th Annual Symposium on, pages 420–428. IEEE, 1983.

Department of Computer Science, Princeton University, Princeton, NJ 08544, USA

E-mail: mbraverm@cs.princeton.edu

