Basics of information theory and information complexity

a tutorial

Mark Braverman
Princeton University

June 1, 2013
Part I: Information theory

- Information theory, in its modern format was introduced in the 1940s to study the problem of transmitting data over physical channels.
Quantifying “information”

- Information is measured in bits.
- The basic notion is Shannon’s entropy.
- The entropy of a random variable is the (typical) number of bits needed to remove the uncertainty of the variable.
- For a discrete variable:
 \[H(X) := \sum \Pr[X = x] \log \frac{1}{\Pr[X = x]} \]
Shannon’s entropy

• Important examples and properties:
 – If $X = x$ is a constant, then $H(X) = 0$.
 – If X is uniform on a finite set S of possible values, then $H(X) = \log S$.
 – If X is supported on at most n values, then $H(X) \leq \log n$.
 – If Y is a random variable determined by X, then $H(Y) \leq H(X)$.
Conditional entropy

• For two (potentially correlated) variables X, Y, the *conditional entropy* of X given Y is the *amount of uncertainty left in X given $Y*:

$$H(X|Y) := E_{y \sim Y} H[X|Y = y].$$

• One can show $H(XY) = H(Y) + H(X|Y)$.

• This important fact is known as the *chain rule*.

• If $X \perp Y$, then

$$H(XY) = H(X) + H(Y|X) = H(X) + H(Y).$$
Example

- $X = B_1, B_2, B_3$
- $Y = (B_1 \oplus B_2), (B_2 \oplus B_4), (B_3 \oplus B_4), B_5$
- Where $B_1, B_2, B_3, B_4, B_5 \in U \{0, 1\}$.
- Then
 - $H(X) = 3; H(Y) = 4; H(XY) = 5$
 - $H(X|Y) = 1 = H(XY) - H(Y)$
 - $H(Y|X) = 2 = H(XY) - H(X)$.
Mutual information

- $X = B_1, B_2, B_3$
- $Y = (B_1 \oplus B_2), (B_2 \oplus B_4), (B_3 \oplus B_4), B_5$
Mutual information

• The mutual information is defined as
 \[I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \]

• “By how much does knowing \(X \) reduce the entropy of \(Y \)?”

• Always non-negative \(I(X;Y) \geq 0 \).

• Conditional mutual information:
 \[I(X;Y|Z) := H(X|Z) - H(X|YZ) \]

• Chain rule for mutual information:
 \[I(XY;Z) = I(X;Z) + I(Y;Z|X) \]

• Simple intuitive interpretation.
Example – a biased coin

• A coin with ε-Heads or Tails bias is tossed several times.
• Let $B \in \{H, T\}$ be the bias, and suppose that a-priori both options are equally likely: $H(B) = 1$.
• How many tosses needed to find B?
• Let $T_1, ..., T_k$ be a sequence of tosses.
• Start with $k = 2$.
What do we learn about B?

- $I(B; T_1T_2) = I(B; T_1) + I(B; T_2 | T_1) = I(B; T_1) + I(B T_1; T_2) - I(T_1; T_2) \leq I(B; T_1) + I(B T_1; T_2) = I(B; T_1) + I(B; T_2) + I(T_1; T_2 | B) = I(B; T_1) + I(B; T_2) = 2 \cdot I(B; T_1)$.

- Similarly, $I(B; T_1 \ldots T_k) \leq k \cdot I(B; T_1)$.

- To determine B with constant accuracy, need $0 < c < I(B; T_1 \ldots T_k) \leq k \cdot I(B; T_1)$.

- $k = \Omega(1/I(B; T_1))$.
Kullback–Leibler (KL)-Divergence

• A distance metric between distributions on the same space.
• Plays a key role in information theory.

\[D(P \parallel Q) := \sum_x P[x] \log \frac{P[x]}{Q[x]} . \]

• \(D(P \parallel Q) \geq 0 \), with equality when \(P = Q \).
• Caution: \(D(P \parallel Q) \neq D(Q \parallel P) \)!
Properties of KL-divergence

• Connection to mutual information:
\[I(X;Y) = E_{y \sim Y} D(X_{Y=y} \parallel X). \]

• If \(X \perp Y \), then \(X_{Y=y} = X \), and both sides are 0.

• Pinsker’s inequality:
\[|P - Q|_1 = O(\sqrt{D(P \parallel Q)}). \]

• Tight!
\[D(B_{1/2+\varepsilon} \parallel B_{1/2}) = \Theta(\varepsilon^2). \]
Back to the coin example

- \(I(B; T_1) = \mathbb{E}_{b \sim B} D(T_{1,B=b} \parallel T_1) = D \left(B_1 \frac{1}{\mathbb{2} \pm \varepsilon} \parallel B_1 \frac{1}{\mathbb{2}} \right) = \Theta(\varepsilon^2) \).

- \(k = \Omega \left(\frac{1}{I(B;T_1)} \right) = \Omega \left(\frac{1}{\varepsilon^2} \right) \).

- “Follow the information learned from the coin tosses”

- Can be done using combinatorics, but the information-theoretic language is more natural for expressing what’s going on.
The reason Information Theory is so important for communication is because information-theoretic quantities readily operationalize.

Can attach operational meaning to Shannon’s entropy: $H(X) \approx \text{“the cost of transmitting } X\text{”}$.

Let $C(X)$ be the (expected) cost of transmitting a sample of X.

Back to communication
Not quite.

Let trit $T \in_U \{1,2,3\}$.

$C(T) = \frac{5}{3} \approx 1.67$.

$H(T) = \log 3 \approx 1.58$.

It is always the case that $C(X) \geq H(X)$.
But $H(X)$ and $C(X)$ are close

- Huffman’s coding: $C(X) \leq H(X) + 1$.
- This is a compression result: “an uninformative message turned into a short one”.
- Therefore: $H(X) \leq C(X) \leq H(X) + 1$.
Shannon’s noiseless coding

• The cost of communicating many copies of X scales as $H(X)$.

• Shannon’s source coding theorem:
 – Let $C(X^n)$ be the cost of transmitting n independent copies of X. Then the amortized transmission cost
 $$\lim_{n \to \infty} \frac{C(X^n)}{n} = H(X).$$

• This equation gives $H(X)$ operational meaning.
$H(X)$ operationalized

$X_1, ..., X_n, ... \quad H(X)$ per copy to transmit X’s communication channel
$H(X)$ is nicer than $C(X)$

- $H(X)$ is additive for independent variables.

- Let $T_1, T_2 \in_U \{1, 2, 3\}$ be independent trits.

- $H(T_1 T_2) = \log 9 = 2 \log 3$.

- $C(T_1 T_2) = \frac{29}{9} < C(T_1) + C(T_2) = 2 \times \frac{5}{3} = \frac{30}{9}$.

- Works well with concepts such as channel capacity.
“Proof” of Shannon’s noiseless coding

- \(n \cdot H(X) = H(X^n) \leq C(X^n) \leq H(X^n) + 1. \)

Additivity of entropy

Compression (Huffman)

- Therefore \(\lim_{{n \to \infty}} C(X^n)/n = H(X). \)
Operationalizing other quantities

- Conditional entropy $H(X|Y)$:
- (cf. Slepian-Wolf Theorem).

$X_1, \ldots, X_n, \ldots \rightarrow H(X|Y) \text{ per copy to transmit } X\text{'s}$

communication channel

Y_1, \ldots, Y_n, \ldots
Operationalizing other quantities

- Mutual information $I(X;Y)$:

 X_1, \ldots, X_n, \ldots
 $I(X;Y)$ per copy to sample Y's

 Communication channel

 Y_1, \ldots, Y_n, \ldots
Information theory and entropy

• Allows us to formalize intuitive notions.
• Operationalized in the context of one-way transmission and related problems.
• Has nice properties (additivity, chain rule...)
• Next, we discuss extensions to more interesting communication scenarios.
Communication complexity

- Focus on the *two party* randomized setting.

Shared randomness R

A & B implement a functionality $F(X, Y)$.

- e.g. $F(X, Y) = "X = Y?"$
Communication complexity

Goal: implement a functionality $F(X,Y)$. A protocol $\pi(X,Y)$ computing $F(X,Y)$:

Shared randomnessness R

Communication cost = #of bits exchanged.
Communication complexity

- Numerous applications/potential applications (some will be discussed later today).
- Considerably more difficult to obtain lower bounds than transmission (still much easier than other models of computation!).
Communication complexity

• (Distributional) communication complexity with input distribution μ and error ε: $CC(F, \mu, \varepsilon)$. Error $\leq \varepsilon$ w.r.t. μ.

• (Randomized/worst-case) communication complexity: $CC(F, \varepsilon)$. Error $\leq \varepsilon$ on all inputs.

• Yao’s minimax:

$$CC(F, \varepsilon) = \max_{\mu} CC(F, \mu, \varepsilon).$$
Examples

- $X, Y \in \{0,1\}^n$.
- Equality $EQ(X, Y) := 1_{X=Y}$.
- $CC(EQ, \varepsilon) \approx \log \frac{1}{\varepsilon}$.
- $CC(EQ, 0) \approx n$.
Equality

- F is “$X = Y?$”.
- μ is a distribution where w.p. $\frac{1}{2} X = Y$ and w.p. $\frac{1}{2} (X, Y)$ are random.

- Shows that $CC(EQ, \mu, 2^{-129}) \leq 129$.
Examples

• $X, Y \in \{0,1\}^n$.

• Inner product $IP(X, Y) := \sum_i X_i \cdot Y_i \, (mod \, 2)$.

• $CC(IP, 0) = n - o(n)$.

In fact, using information complexity:

• $CC(IP, \varepsilon) = n - o_\varepsilon(n)$.

Information complexity

- Information complexity $IC(F, \varepsilon)$
 communication complexity $CC(F, \varepsilon)$

as

- Shannon’s entropy $H(X)$
 transmission cost $C(X)$
Information complexity

• The smallest amount of information Alice and Bob need to exchange to solve \(F \).

• How is information measured?

• Communication cost of a protocol?
 – Number of bits exchanged.

• Information cost of a protocol?
 – Amount of information revealed.
Basic definition 1: The information cost of a protocol

- Prior distribution: \((X, Y) \sim \mu\).

\[IC(\pi, \mu) = I(\Pi; Y|X) + I(\Pi; X|Y) \]

what Alice learns about \(Y\) + what Bob learns about \(X\)
Example

• F is “$X = Y?$”.
• μ is a distribution where w.p. $\frac{1}{2} X = Y$ and w.p. $\frac{1}{2} (X, Y)$ are random.

$IC(\pi, \mu) = I(\Pi; Y|X) + I(\Pi; X|Y) \approx 1 + 64.5 = 65.5$ bits

what Alice learns about Y + what Bob learns about X
Prior μ matters a lot for information cost!

- If $\mu = 1_{(x,y)}$ a singleton,
 \[IC(\pi, \mu) = 0. \]
Example

• F is “$X = Y$? ”.
• μ is a distribution where (X, Y) are just uniformly random.

$IC(\pi, \mu) = I(\Pi; Y|X) + I(\Pi; X|Y) \approx 0 + 128 = 128$ bits

what Alice learns about Y + what Bob learns about X
Basic definition 2: Information complexity

• Communication complexity:

\[CC(F, \mu, \varepsilon) := \min_{\pi \text{ computes } F \text{ with error } \leq \varepsilon} |\pi|. \]

• Analogously:

\[IC(F, \mu, \varepsilon) := \inf_{\pi \text{ computes } IC(\pi, \mu)} IC(\pi, \mu). \]
Prior-free information complexity

- Using minimax can get rid of the prior.
- For communication, we had:
 \[CC(F, \varepsilon) = \max_{\mu} CC(F, \mu, \varepsilon). \]
- For information
 \[IC(F, \varepsilon) := \inf_{\pi \text{ computes } F \text{ with error } \leq \varepsilon} \max_{\mu} IC(\pi, \mu). \]
Ex: The information complexity of Equality

- What is $IC(EQ, 0)$?
- Consider the following protocol.

Let A be a non-singular matrix in $\mathbb{Z}^{n \times n}$. Let X and Y be in $\{0,1\}^n$. Continue for n steps, or until a disagreement is discovered.
Analysis (sketch)

• If $X \neq Y$, the protocol will terminate in $O(1)$ rounds on average, and thus reveal $O(1)$ information.

• If $X = Y$... the players only learn the fact that $X = Y$ (≤ 1 bit of information).

• Thus the protocol has $O(1)$ information complexity for any prior μ.
Operationalizing IC: Information equals amortized communication

• Recall [Shannon]: $\lim_{n \to \infty} \frac{C(X^n)}{n} = H(X)$.

• Turns out: $\lim_{n \to \infty} \frac{CC(F^n, \mu^n, \varepsilon)}{n} = IC(F, \mu, \varepsilon)$, for $\varepsilon > 0$. [Error ε allowed on each copy]

• For $\varepsilon = 0$: $\lim_{n \to \infty} \frac{CC(F^n, \mu^n, 0^+)}{n} = IC(F, \mu, 0)$.

• $\lim_{n \to \infty} \frac{CC(F^n, \mu^n, 0)}{n}$ an interesting open problem.
Information = amortized communication

- \(\lim_{n \to \infty} CC(F^n, \mu^n, \varepsilon) / n = IC(F, \mu, \varepsilon) \).
- Two directions: “≤” and “≥”.

- \(n \cdot H(X) = H(X^n) \leq C(X^n) \leq H(X^n) + 1 \).

Additivity of entropy
Compression (Huffman)
The “≤” direction

- \(\lim_{n \to \infty} \frac{CC(F^n, \mu^n, \varepsilon)}{n} \leq IC(F, \mu, \varepsilon) \).
- Start with a protocol \(\pi \) solving \(F \), whose \(IC(\pi, \mu) \) is close to \(IC(F, \mu, \varepsilon) \).
- Show how to compress many copies of \(\pi \) into a protocol whose communication cost is close to its information cost.
- More on compression later.
The “≥” direction

- \[\lim_{{n \to \infty}} \frac{CC(F^n, \mu^n, \varepsilon)}{n} \geq IC(F, \mu, \varepsilon). \]

- Use the fact that \[\frac{CC(F^n, \mu^n, \varepsilon)}{n} \geq \frac{IC(F^n, \mu^n, \varepsilon)}{n}. \]

- Additivity of information complexity:
 \[\frac{IC(F^n, \mu^n, \varepsilon)}{n} = IC(F, \mu, \varepsilon). \]
Proof: Additivity of information complexity

- Let $T_1(X_1, Y_1)$ and $T_2(X_2, Y_2)$ be two two-party tasks.
- E.g. “Solve $F(X, Y)$ with error $\leq \varepsilon$ w.r.t. μ”
- Then

$$IC(T_1 \times T_2, \mu_1 \times \mu_2) = IC(T_1, \mu_1) + IC(T_2, \mu_2)$$

- “\leq” is easy.
- “\geq” is the interesting direction.
\[
\text{IC}(T_1, \mu_1) + \text{IC}(T_2, \mu_2) \leq \text{IC}(T_1 \times T_2, \mu_1 \times \mu_2)
\]

- Start from a protocol \(\pi\) for \(T_1 \times T_2\) with prior \(\mu_1 \times \mu_2\), whose information cost is \(I\).
- Show how to construct two protocols \(\pi_1\) for \(T_1\) with prior \(\mu_1\) and \(\pi_2\) for \(T_2\) with prior \(\mu_2\), with information costs \(I_1\) and \(I_2\), respectively, such that \(I_1 + I_2 = I\).
\(\pi((X_1, X_2), (Y_1, Y_2)) \)

\(\pi_1(X_1, Y_1) \)
- Publicly sample \(X_2 \sim \mu_2 \)
- Bob privately samples \(Y_2 \sim \mu_2|_{X_2} \)
- Run \(\pi((X_1, X_2), (Y_1, Y_2)) \)

\(\pi_2(X_2, Y_2) \)
- Publicly sample \(Y_1 \sim \mu_1 \)
- Alice privately samples \(X_1 \sim \mu_1|_{Y_1} \)
- Run \(\pi((X_1, X_2), (Y_1, Y_2)) \)
Analysis - π_1

- Publicly sample $X_2 \sim \mu_2$
- Bob privately samples $Y_2 \sim \mu_2|X_2$
- Run $\pi((X_1, X_2), (Y_1, Y_2))$

- Alice learns about Y_1: $I(\Pi; Y_1 |X_1X_2)$

- Bob learns about X_1: $I(\Pi; X_1 |Y_1Y_2X_2)$.

- $I_1 = I(\Pi; Y_1 |X_1X_2) + I(\Pi; X_1 |Y_1Y_2X_2)$.

$p_1(X_1, Y_1)$
Analysis - π_2

- Publicly sample $Y_1 \sim \mu_1$
- Alice privately samples $X_1 \sim \mu_1|Y_1$
- Run $\pi((X_1, X_2), (Y_1, Y_2))$

- Alice learns about Y_2:
 $I(\Pi; Y_2|X_1X_2Y_1)$

- Bob learns about X_2:
 $I(\Pi; X_2|Y_1Y_2)$.

- $I_2 = I(\Pi; Y_2|X_1X_2Y_1) + I(\Pi; X_2|Y_1Y_2)$.

\[\pi_2(X_2, Y_2) \]
Adding I_1 and I_2

\[
I_1 + I_2 = I(\Pi; Y_1|X_1X_2) + I(\Pi; X_1|Y_1Y_2X_2) + I(\Pi; Y_2|X_1X_2Y_1) + I(\Pi; X_2|Y_1Y_2) \\
= I(\Pi; Y_1|X_1X_2) + I(\Pi; Y_2|X_1X_2Y_1) + I(\Pi; X_2|Y_1Y_2) + I(\Pi; X_1|Y_1Y_2X_2) = \\
I(\Pi; Y_1Y_2|X_1X_2) + I(\Pi; X_2X_1|Y_1Y_2) = I.
\]
Summary

• Information complexity is additive.
• Operationalized via “Information = amortized communication”.
• \(\lim_{n \to \infty} CC(F^n, \mu^n, \varepsilon)/n = IC(F, \mu, \varepsilon) \).
• Seems to be the “right” analogue of entropy for interactive computation.
Entropy vs. Information Complexity

<table>
<thead>
<tr>
<th></th>
<th>Entropy</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive?</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Operationalized</td>
<td>(\lim_{n \to \infty} \frac{C(X^n)}{n})</td>
<td>(\lim_{n \to \infty} \frac{CC(F^n, \mu^n, \varepsilon)}{n})</td>
</tr>
<tr>
<td>Compression?</td>
<td>Huffman: (C(X) \leq H(X) + 1)</td>
<td>???!</td>
</tr>
</tbody>
</table>
Can interactive communication be compressed?

• Is it true that $CC(F, \mu, \varepsilon) \leq IC(F, \mu, \varepsilon) + O(1)$?

• Less ambitiously:

$$CC(F, \mu, O(\varepsilon)) = O(IC(F, \mu, \varepsilon))$$?

• (Almost) equivalently: Given a protocol π with $IC(\pi, \mu) = I$, can Alice and Bob simulate π using $O(I)$ communication?

• Not known in general...
Direct sum theorems

• Let F be any functionality.
• Let $C(F)$ be the cost of implementing F.
• Let F^n be the functionality of implementing n independent copies of F.
• The direct sum problem:

 "Does $C(F^n) \approx n \cdot C(F)$?"
• In most cases it is obvious that $C(F^n) \leq n \cdot C(F)$.
Direct sum – randomized communication complexity

- Is it true that $CC(F^n, \mu^n, \epsilon) = \Omega(n \cdot CC(F, \mu, \epsilon))$?
- Is it true that $CC(F^n, \epsilon) = \Omega(n \cdot CC(F, \epsilon))$?
Direct product – randomized communication complexity

- Direct sum
 \[\text{CC}(F^n, \mu^n, \varepsilon) = \Omega(n \cdot \text{CC}(F, \mu, \varepsilon)) \]

- Direct product
 \[\text{CC}(F^n, \mu^n, (1 - \varepsilon)^n) = \Omega(n \cdot \text{CC}(F, \mu, \varepsilon)) \]
Direct sum for randomized CC and interactive compression

Direct sum:
- $CC(F^n, \mu^n, \varepsilon) = \Omega(n \cdot CC(F, \mu, \varepsilon))$?

In the limit:
- $n \cdot IC(F, \mu, \varepsilon) = \Omega(n \cdot CC(F, \mu, \varepsilon))$?

Interactive compression:
- $CC(F, \mu, \varepsilon) = O(IC(F, \mu, \varepsilon))$?

Same question!
The big picture

\[IC(F, \mu, \varepsilon) \]

\[IC(F^n, \mu^n, \varepsilon)/n \]

additivity
(=direct sum)
for information

interactive compression?

\[CC(F, \mu, \varepsilon) \]

\[CC(F^n, \mu^n, \varepsilon)/n \]

direct sum for communication?

information = amortized communication
Current results for compression

A protocol π that has C bits of communication, conveys I bits of information over prior μ, and works in r rounds can be simulated:

- Using $\tilde{O}(I + r)$ bits of communication.
- Using $\tilde{O}(\sqrt{I \cdot C})$ bits of communication.
- Using $2^{O(I)}$ bits of communication.
- If $\mu = \mu_X \times \mu_Y$, then using $O(I \text{ polylog } C)$ bits of communication.
Their direct sum counterparts

- \(CC(F^n, \mu^n, \varepsilon) = \tilde{\Omega}(n^{1/2} \cdot CC(F, \mu, \varepsilon)) \).
- \(CC(F^n, \varepsilon) = \tilde{\Omega}(n^{1/2} \cdot CC(F, \varepsilon)) \).

For product distributions \(\mu = \mu_X \times \mu_Y \),

- \(CC(F^n, \mu^n, \varepsilon) = \tilde{\Omega}(n \cdot CC(F, \mu, \varepsilon)) \).

When the number of rounds is bounded by \(r \ll n \), a direct sum theorem holds.
Direct product

• The best one can hope for is a statement of the type:
 \[CC(F^n, \mu^n, 1 - 2^{-O(n)}) = \Omega(n \cdot IC(F, \mu, 1/3)) \].

• Can prove:
 \[CC(F^n, \mu^n, 1 - 2^{-O(n)}) = \widetilde{\Omega}(n^{1/2} \cdot CC(F, \mu, 1/3)) \].
Proof 2: Compressing a one-round protocol

- Say Alice speaks: $IC(\pi, \mu) = I(M; X|Y)$.
- Recall KL-divergence:

 $I(M; X|Y) = E_Y D(M_{XY} \parallel M_Y) = E_Y D(M_X \parallel M_Y)$

- Bottom line:
 - Alice has M_X; Bob has M_Y;
 - Goal: sample from M_X using $\sim D(M_X \parallel M_Y)$ communication.
The dart board

- Interpret the public randomness as random points in $U \times [0,1]$, where U is the universe of all possible messages.
- First message under the histogram of M is distributed $\sim M$.

Proof Idea

- Sample using $O(\log 1/\varepsilon + D(M_X \parallel M_Y))$ communication with statistical error ε.

Public randomness:

~$|U|$ samples

~$|U|$ samples
Proof Idea

- Sample using $O(\log 1/\varepsilon + D(M_X \parallel M_Y))$ communication with statistical error ε.
Proof Idea

- Sample using $O(\log 1/\varepsilon + D(M_X \parallel M_Y))$ communication with statistical error ε.
Analysis

• If $M_X(u_4) \approx 2^k M_Y(u_4)$, then the protocol will reach round k of doubling.
• There will be $\approx 2^k$ candidates.
• About $k + \log 1/\varepsilon$ hashes to narrow to one.
• The contribution of u_4 to cost:

 $- M_X(u_4) \left(\log M_X(u_4)/M_Y(u_4) + \log 1/\varepsilon \right)$.

\[
D(M_X \parallel M_Y) := \sum_u M_X(u) \log \frac{M_X(u)}{M_Y(u)}.
\]
External information cost

•

\[(X, Y) \sim \mu.\]

\[IC_{ext}(\pi, \mu) = I(\Pi; XY)\]

what Charlie learns about (X,Y)
Example

• F is “$X=Y$?”.
• μ is a distribution where w.p. $\frac{1}{2} X=Y$ and w.p. $\frac{1}{2}$ (X,Y) are random.

\[IC_{ext}(\pi, \mu) = I(\Pi; XY) = 129 \text{ bits} \]

what Charlie learns about (X,Y)
External information cost

• It is always the case that

\[IC_{ext}(\pi, \mu) \geq IC(\pi, \mu). \]

• If \(\mu = \mu_X \times \mu_Y \) is a product distribution, then

\[IC_{ext}(\pi, \mu) = IC(\pi, \mu). \]
External information complexity

- $IC_{ext}(F, \mu, \varepsilon) := \inf_{\pi \text{ computes } F \text{ with error } \leq \varepsilon} IC_{ext}(\pi, \mu)$.

- Can it be operationalized?
Operational meaning of IC_{ext}?

• **Conjecture**: Zero-error communication scales like external information:

$$\lim_{n \to \infty} \frac{CC(F^n, \mu^n, 0)}{n} = IC_{ext}(F, \mu, 0)?$$

• Recall:

$$\lim_{n \to \infty} \frac{CC(F^n, \mu^n, 0^+)}{n} = IC(F, \mu, 0).$$
Example – transmission with a strong prior

- $X, Y \in \{0, 1\}$
- μ is such that $X \in U \{0, 1\}$, and $X = Y$ with a very high probability (say $1 - 1/\sqrt{n}$).
- $F(X, Y) = X$ is just the “transmit X” function.
- Clearly, π should just have Alice send X to Bob.
- $IC(F, \mu, 0) = IC(\pi, \mu) = H\left(\frac{1}{\sqrt{n}}\right) = o(1)$.
- $IC_{ext}(F, \mu, 0) = IC_{ext}(\pi, \mu) = 1$.
Example – transmission with a strong prior

- $IC(F, \mu, 0) = IC(\pi, \mu) = H\left(\frac{1}{\sqrt{n}}\right) = o(1)$.
- $IC_{ext}(F, \mu, 0) = IC_{ext}(\pi, \mu) = 1$.
- $CC(F^n, \mu^n, 0^+) = o(n)$.
- $CC(F^n, \mu^n, 0) = \Omega(n)$.

Other examples, e.g. the two-bit AND function fit into this picture.
Additional directions

Information complexity

Interactive coding

Information theory in TCS
Interactive coding theory

• So far focused the discussion on *noiseless coding*.
• What if the channel has noise?
• [What kind of noise?]
• In the non-interactive case, each channel has a capacity C.
Channel capacity

• The amortized number of channel uses needed to send X over a noisy channel of capacity C is

$$\frac{H(X)}{C}$$

• Decouples the task from the channel!
Example: Binary Symmetric Channel

- Each bit gets independently flipped with probability $\varepsilon < 1/2$.
- One way capacity $1 - H(\varepsilon)$.
Interactive channel capacity

- Not clear one can decouple channel from task in such a clean way.
- Capacity much harder to calculate/reason about.
- Example: Binary symmetric channel.
- One way capacity $1 - H(\varepsilon)$.
- Interactive (for simple pointer jumping, [Kol-Raz’13]):

$$1 - \Theta \left(\sqrt{H(\varepsilon)} \right).$$
Information theory in communication complexity and beyond

• A natural extension would be to multi-party communication complexity.
• Some success in the number-in-hand case.
• What about the number-on-forehead?
• Explicit bounds for $\geq \log n$ players would imply explicit ACC^0 circuit lower bounds.
Naïve multi-party information cost

\[IC(\pi, \mu) = I(\Pi; X|YZ) + I(\Pi; Y|XZ) + I(\Pi; Z|XY) \]
Naïve multi-party information cost

\[IC(\pi, \mu) = I(\Pi; X|YZ) + I(\Pi; Y|XZ) + I(\Pi; Z|XY) \]

- Doesn’t seem to work.
- Secure multi-party computation [Ben-Or, Goldwasser, Wigderson], means that anything can be computed at near-zero information cost.
- Although, these construction require the players to share private channels/randomness.
Communication and beyond…

- The rest of today:
 - Data structures;
 - Streaming;
 - Distributed computing;
 - Privacy.
- Exact communication complexity bounds.
- Extended formulations lower bounds.
- Parallel repetition?
- …
Thank You!
Open problem: Computability of IC

• Given the truth table of $F(X,Y)$, μ and ε, compute $IC(F, \mu, \varepsilon)$.

• Via $IC(F, \mu, \varepsilon) = \lim_{n \to \infty} CC(F^n, \mu^n, \varepsilon)/n$ can compute a sequence of upper bounds.

• But the rate of convergence as a function of n is unknown.
Open problem: Computability of IC

• Can compute the r-round $IC_r(F, \mu, \varepsilon)$ information complexity of F.
• But the rate of convergence as a function of r is unknown.
• Conjecture:
 $$IC_r(F, \mu, \varepsilon) - IC(F, \mu, \varepsilon) = O_{F, \mu, \varepsilon}\left(\frac{1}{r^2}\right).$$
• This is the relationship for the two-bit AND.