Optimal Provision-After-Wait in Healthcare

[Working paper]†

Mark Braverman‡ Jing Chen§ Sampath Kannan¶

Abstract

We investigate computational and mechanism design aspects of optimal scarce resource allocation, where the primary rationing mechanism is through waiting times. Specifically we consider the problem of allocating medical treatments to a population of patients. Each patient has demand for exactly one unit of treatment, and can choose to be treated in one of \(k\) hospitals, \(H_1, \ldots, H_k\). Different hospitals have different costs, which are fully paid by a third party—the “payer”—and do not accrue to the patients. The payer has a fixed budget \(B\) and can only cover a limited number of treatments in the more expensive hospitals. Access to over-demanded hospitals is rationed through waiting times: each hospital \(H_i\) will have waiting time \(w_i\). In equilibrium, each patient will choose his most preferred hospital given his intrinsic preferences and the waiting times. The payer thus computes the waiting times and the number of treatments authorized for each hospital, so that in equilibrium the budget constraint is satisfied and the social welfare is maximized.

We show that even if the patients' preferences are known to the payer, the task of optimizing social welfare in equilibrium subject to the budget constraint is NP-hard. We also show that, with constant number of hospitals, if the budget constraint can be relaxed from \(B\) to \((1+\epsilon)B\) for an arbitrarily small constant \(\epsilon\), then the original optimum under budget \(B\) can be approximated very efficiently.

We further study the endogenous emergence of waiting time from the dynamics between hospitals and patients. When the patients arrive uniformly along time and when they have generic types, we show that the payer does not need to explicitly enforce the optimal waiting times. Rather, each hospital's waiting time simply changes according to the demand there, and the dynamics will always converge to the desired waiting times in finite time.

We then investigate the optimization problem over a much larger class of mechanisms that contains the equilibrium ones as special cases. In the setting with two hospitals, we show that under a natural assumption on the patients' preference profiles, optimal welfare is in fact attained by the randomized assignment mechanism, which allocates patients to the hospitals at random subject to the budget constraint, but avoids waiting times.

Finally, we discuss potential policy implications of our results, as well as follow-up directions and open problems.

Keywords: Healthcare, Mechanism design, Budget constraint, Waiting times

*The first author is supported by the Alfred P. Sloan Fellowship, an NSF CAREER award (CCF-1149888), NSF Award CCF-1215990, and a Turing Centenary Fellowship. The second author is supported in part by the Zurich Financial Services and NSF grant CCF-0832797. The third author is supported by NSF Award CCF-1137084. Part of this research was done when the third author was visiting Princeton University. The authors would like to thank Itai Ashlagi for pointing us to important references.

†Last updated: June 23, 2013

‡Department of Computer Science, Princeton University, mbraverm@cs.princeton.edu.
§Institute for Advanced Study, Princeton and Department of Computer Science, Stony Brook University, jingchen@math.ias.edu.
¶Department of Computer and Information Science, University of Pennsylvania, kannan@cis.upenn.edu.
1 Introduction

In this paper we study computation and mechanism design issues in the context of optimal health-care provision. Specifically, we consider the setting where waiting times, and not payments, are used to allocate scarce care resources among patients. Waiting times in healthcare provision is an important topic of public debate worldwide. For example, it has a central role in the ongoing debate surrounding the Patient Protection and Affordable Care Act (“Obamacare”) in the United States. In a large number of countries with public health coverage financing, including Australia, Canada, Spain, and the United Kingdom, procedures such as elective surgery are rationed by waiting [26, 11]. While in the public perception waiting times are often associated with poor resource management, in the economics literature it is well-understood that queues of consumers will form whenever a good is priced below the good’s perceived value, as long as supply is scarce [4, 21, 16] – independently of the ultimate distribution mechanism. In particular, waiting times in this context are dictated by economic incentive constraints and not by stochastic fluctuations as in classical queuing theory. Therefore, whenever “correct” monetary pricing is impossible or undesirable, waiting times should be incorporated explicitly into the allocation models.

We focus on providing a single non-urgent healthcare service (such as a particular surgery) to a population of patients, and define the Provision-after-Wait problem for this scenario. In our model, a population of patients arrives in each time unit (say, 1 month), seeking for the desired service at some hospital. There are k hospitals providing the service under different costs. The patients have different preferences about the hospitals, and the composition of the patient population in each time unit is the same. Each patient needs to be served exactly once. The service is fully financed by a third party — a “payer”, e.g., the government or an insurer. Therefore the patients’ choices of hospitals are not affected by the (monetary) costs. But the payer has a fixed budget B that he is willing to spend on providing the service to the entire patient population in each time unit, and it is unaffordable to let every patient go to his favorite hospital (otherwise the provision problem is already solved at the very beginning). Without loss of generality, we assume that the payer has enough budget to treat all patients in the cheapest hospital. This can always be achieved by adding a dummy hospital which has cost 0 and is the least preferred by all patients, representing the option of not getting any service.

The payer rations the patients’ demand subject to his budget by setting for each hospital H_i a waiting time w_i, measured using the same time unit. Every patient going to H_i has to wait for w_i before he can be served. There is no co-pays, and thus the waiting time is the only cost directly incurred by the patients.\footnote{Adding co-pays to the model would be interesting follow-up work, but the space of possible models is far vaster with co-pays. Issues in introducing co-pays include dealing with different people having different time/money trade-offs, and defining the patients’ utility properly (with the usual ethical question: do people with higher utility for money have lower utility for health, a.k.a. “should poor people count for less”? In this paper we avoid these problems, since time is fair to everybody and our patients utility is measured in waiting-time equivalents.)}

We assume that waiting times are known to the patients before they make decisions.\footnote{For example, the patients can observe the length of the lines before deciding which one to join, or they can be informed explicitly when trying to make an appointment.} Each patient P_j has value v_{ij} for hospital H_i, representing his utility for being treated in H_i right away. Similar to [10], we assume that the patients have quasi-linear utilities with respect to waiting time, that is, patient P_j’s utility for being treated at H_i with waiting time w_i is $u_{ij} \triangleq v_{ij} - w_i$. The primary reason for this choice is that it is the most natural way to ensure that patients are treated equally by welfare-optimizing mechanisms. Since, as mechanism designers, we do not have full access to the u_{ij}’s of individual patients but can observe waiting times, our welfare-loss due to waiting will just be the sum of all the waiting times in the system.\footnote{We can relax this assumption to allow utility functions of the form $u_{ij} = v_{ij} - U(w_i)$, where $U(w)$ is a function (common to all patients) that maps waiting time w to utility loss caused by waiting w time units.}
The patients are unrestricted in their choices of hospitals. Thus, at equilibrium, a patient is assigned to a hospital that maximizes his utility given the waiting times. The social welfare of an equilibrium is defined to be the total utility of the patients in each time unit. The government’s goal when solving the PROVISION-AFTER-WAIT problem is to find the optimal equilibrium waiting times and assignments of patients to hospitals that maximize social welfare, subject to the budget constraint.

Our model is formally defined in Section 2. Below we would like to emphasize three main features of it.

Two non-interchangeable “currencies”. Firstly, as money is still involved, the setting leads to two non-interchangeable “currencies” of money and waiting time. This complicates the design problem, both conceptually and computationally. As we shall see from the first part of our main results, even if money and waiting time are kept separate and only the latter affects the demand, the fact that they cannot be “traded” for each other (thus reducing the setting to one currency) makes the problem much more difficult.

Indirect control of waiting times. Secondly, although waiting time is modeled as a parameter whose optimal value is decided by the government, there is no need for the government to enforce it explicitly. Instead, as we shall show in the second part of our main results, the government can simply decide the amount of money it is willing to pay to each hospital in each time unit, and the desired waiting times at different hospitals will emerge endogenously among the hospitals and the patients. Indeed, the role of waiting time in our model is similar to that of price in markets. In a market, it is theprice that ultimately drives consumers to different purchases, but the producers do not get to dictate it. They can only control the price indirectly by adjusting their supply levels, and the “correct” price will emerge endogenously from the market. This analogy makes it more reasonable to adopt our model in reality: it is more natural for the government to control the amount of money it pays and tell a hospital “I’ll only pay you $5,000 each month for this service”, than for it to control waiting times and tell a hospital “you have to make each patient using this service wait for 3 months”.

Welfare-burning effect of waiting times. Finally, unlike monetary transfers, nobody benefits from one’s waiting time, and thus waiting times represent a net loss in welfare. That is why in our model the social welfare is defined as the total utility of the patients—that is, total value minus total waiting time—, differently from auctions where social welfare is the total value of the buyers. The welfare-burning phenomenon is common in the study of resource allocation with waiting times, and is similar to the money-burning mechanisms [14], subject to the important caveat that time burnt is not interchangeable with money.

Given the general welfare-burning effect of waiting times, it is very natural to ask whether they can be avoided or reduced via a different allocation mechanism altogether. If monetary payments are not allowed, and patients are free to choose their hospitals, then the (deterministic) equilibrium solution of the PROVISION-AFTER-WAIT problem is the only one possible. What if the payer has sufficient control over the patients that it can tell them where to receive their treatment, or otherwise restrict their options? The simplest such mechanism would be a randomized assignment of patients to available slots, with the probabilities decided by the budget constraint. In such assignment, we benefit from zero waiting time. On the downside, we incur an efficiency loss: patients may not end up in the hospitals they prefer. How does this randomized assignment mechanism compare to the mechanism where patients are given a free choice and waiting times are used as a rationing

4Possible “soft” mechanisms for doing this are discussed below.
tool? The answer to this question depends on the preference profiles of the patients. Informally speaking, if patients have strong and diverse preferences on where to be treated, then the free-choice equilibrium mechanism is better, since efficiency gains due to better allocation offset the inefficiency caused by waiting. At the other extreme, if all patients have similar preferences, then no efficiencies are to be gained from patients’ choice, and randomized assignment mechanisms are superior. We further investigate this question in the case of two hospitals, in the third part of our main results.

1.1 Main results

Finding optimal equilibrium waiting times and assignments

We first study the computation issues in our model, assuming that the government is fully informed about the hospitals’ costs and the patients’ valuations. The following theorem shows that the Provision-after-Wait problem is hard to solve in general.

Theorem 1. Finding optimal equilibrium waiting times and assignments is NP-hard.

The hardness result motivates one to ask whether one can efficiently approximate the welfare of the optimal solution. Interestingly, we show that if we relax the budget constraint to \((1 + \epsilon)B\) with an arbitrarily small constant \(\epsilon\), we can achieve at least as much welfare as the best \(B\)-budget equilibrium solution, using an algorithm whose running time depends on \((\log m)^k\), where \(m\) is the number of patients in one time unit and \(k\) is, as already mentioned, the number of hospitals.

Theorem 2. (rephrased) There is an algorithm that runs in time \(O((\log_{1+\epsilon} m)^k \cdot m^4)\) and outputs an equilibrium solution such that, the total cost is at most \((1 + \epsilon)B\) and the social welfare is at least as high as that of the optimal equilibrium solution with budget \(B\).

These results are formally presented in Sections 3 and 4. It remains an interesting open problem whether there is a welfare approximation algorithm that does not exceed the budget. Also, it is unknown whether there is an approximation algorithm that is polynomial in \(k\).

Letting waiting times emerge endogenously

Next we show how the desired waiting times and the corresponding optimal social welfare can emerge endogenously as the patients arrive and choose their favorite hospitals in dynamics. Say the government has decided how to spend its budget for the desired service, by using our approximation algorithm above or by using other methods. The way of spending the budget can be enforced by setting the quota for each hospital, namely, how many patients the government is willing to pay in one time unit (of course, the total quota must be at least the number of patients).

It is natural to assume that the hospitals want to keep waiting times as low as possible, and at time 0 all hospitals have waiting time 0. When the patients arrive along time, they choose which hospital to go according to their own valuations and the current waiting times. If a hospital gets over-demanded, namely, the number of patients going there exceeds the quota paid by the government, then a line has to form and this hospital’s waiting time increases accordingly. If the waiting time becomes too high due to previous demand, patients arriving later may choose not to go there and the hospital may become under-demanded, causing its waiting time to decrease. As there may be many waiting time vectors of the hospitals that correspond to equilibrium assignment given the quotas, it is not immediately clear which one the dynamics will converge to (if it converges), and how much social welfare the government can generate from the dynamics.

Assuming the patients’ valuations are in a generic position as properly defined in Section 5, our following theorem characterize the structure of the optimal equilibrium given any quotas of the hospitals.
Theorem 3. (rephrased) For any quotas of the hospitals, there is a unique optimal equilibrium maximizing social welfare. It has the minimum waiting time vector among all equilibria, and any hospital whose quota is not fully used has waiting time 0.

Accordingly, it is reasonable to hope that the optimal equilibrium is the one implemented by the dynamics. Our following theorem shows this is indeed the case.

Theorem 5.2. (rephrased) At any point of time, the waiting time of any hospital will never exceed its waiting time in the optimal equilibrium, and thus the social welfare generated in any time unit will be at least the optimal social welfare given the quotas. The dynamics will converge once the optimal equilibrium is reached, and it will not converge to anything else.

These results are formally presented in Section 5. It would be interesting to show that the dynamics will always converge. But as we just pointed out, the optimal social welfare given the quotas will be generated whether the dynamics converges or not.

When is the randomized assignment optimal?

Finally, we turn our attention to the enlarged setting where we are not limited to mechanisms that produce equilibrium solutions. The two “extreme” mechanisms are the equilibrium mechanism discussed above that gives the patients free choices, and the randomized assignment mechanism that assigns patients at random to available slots and does not give them any choice. In addition, there is an infinite number of various lotteries in-between these extremes. In a lottery, the patients are presented with a set of distributions over hospitals, with an expected waiting time associated with each distribution. Instead of free choices among all possible (distributions of) hospitals, the patients can only choose from the available ones in the lottery, and they make choices to maximize their expected utilities.

Intuitively, if there are no extreme variations among the patients’ preferences, the randomized assignment should outperform other mechanisms, since it avoids the deadweight loss of waiting times. We give further evidence suggesting that randomized assignment may be superior in terms of social welfare, by analyzing the case when there are two hospitals.

Let the hospitals be H_0 and H_1 with costs c_0 and c_1 respectively, such that $c_0 < c_1$. We assume without loss of generality that patients going to hospital H_0 faces no waiting time\footnote{Indeed, positive waiting time at H_0 will give patients incentives to go to the more expensive hospital H_1, and thus increase the total cost while burning more social welfare.}. Thus patients who prefer H_1 over H_0 will always choose H_0. We can therefore exclude them from consideration, and focus on patients who prefer H_1 over H_0.

We assume a continuous population of such patients, indexed by the $[0,1]$ interval. Each patient x is associated with a value $v(x)$, representing how much time x is willing to wait to be treated in H_1 instead of H_0. That is, $v(x)$ is the difference between x’s utility for being treated at H_1 immediately and his utility for being treated at H_0 immediately. We rename the patients so that $v(x)$ is a non-decreasing function on $[0,1]$. Thus, for example, $v(0.5)$ represents the median time that patients preferring H_1 are willing to wait to be treated there. We prove the following theorem in Section 6.

Theorem 6. (rephrased) If $v(x)$ is concave, then no lottery can generate more social welfare than the randomized assignment.

Here a lottery is a set of options, each consisting of a probability of being treated in H_1 and the corresponding waiting time there. This shows that for a broad class of preferences, the randomized assignment is welfare-maximizing even when waiting times are an option available to the payer. As a special case, this shows that randomized assignment has better welfare than the optimal
equilibrium solution. It would be interesting to find an analogous sufficient condition for three or more hospitals.

1.2 Discussion and open problems

In this paper we consider two separate issues. The first one is how to optimally allocate treatments in equilibrium, when the payer faces budget constraints and waiting times are used to ration patients’ behavior. The second one is whether it may be beneficial to do away with the equilibrium requirements by limiting available options of the patients.

While finding the optimal equilibrium solution in the Provision-after-Wait problem is NP-hard, our approximation result suggests that this problem might not be as difficult in practice. In many cases the number of treatment facilities involved is fairly small, making running time exponential in k feasible. Moreover, in some cases the “hospitals” are actually treatment alternatives that vary in costs (e.g. physiotherapy is cheaper than knee replacement), in which case k may be as low as 2. For the general case where k can be big, it would be interesting to explore restrictions on the patients’ valuations that would make the exact optimization efficient, such as when the valuations are highly correlated so that the valuation matrix (v_{ij}) has low rank. There are many questions one can ask about the general complexity of the Provision-after-Wait problem, for example, whether it is strongly NP-hard, whether it has an FPTAS, whether it is fixed-parameter tractable in the number of hospitals, etc.

As we shall show, equilibrium assignment with waiting times has a strong connection to unit-demand auctions [7, 1], and such a connection leads to our approximation result. One natural question is whether this connection can be used in dynamic setting to show that the system will remain in the patient-optimal equilibrium as the population’s preferences slowly shift over time. A related question is whether it is possible to approximate optimal welfare in equilibrium if the payer only knows the approximate distribution of patient types in the population. Another related question is whether one can design mechanisms for our setting such that the patients have incentives to truthfully reveal their valuations, so that the government does not need to know these valuations to begin with.

The study of waiting times as a rationing mechanism is closely related to the study of ordeal mechanisms [2], where other tools (e.g. excessive bureaucracy) are used in place of waiting times to reduce demand to the supply level. These may be used in settings where queues are not an option such as school choice. Developing computational mechanism design tools for these settings is a very interesting direction of study.

Our third result looks beyond equilibrium solutions. We give evidence that equilibrium solutions are in fact dominated in many cases. One immediate implication is that giving the payer power to restrict choice may in fact improve overall welfare. While this is perhaps not surprising, choice restriction may be very difficult or politically infeasible to implement in practice, due to the fact that patients have an inherent preference for choice [23].

There are important indirect ways, however, in which a payer (especially a government payer) may influence choice. One of them is through release (or non-release) of quality of care information about providers. The topic of quality of care information is important both in theory and in practice. In the United States, for example, Medicare has started to publicly release hospital performance information as part of its pay-for-performance push [17]. The effect performance reporting has on provider incentives has been the subject of much study and discussion [24, 20, 13]. It has even been suggested that it would be possible to manipulate reported quality metrics in a way that would...

6Note that in medicine not all ordeals are necessarily dead-weight loss. For example, the famous (and highly-demanded) Shouldice hernia clinic in Ontario, Canada requires its patients to lose weight before being admitted for a surgery [15]. Most clinics do not place such a requirement.
force the provider to exert first-best quality and cost effort [22]. To the best of our knowledge, there has been no work on the effect of quality reporting on patient incentives.\footnote{In [5] the authors show that in special market structures the consumers may benefit from their uncertainty about the product valuation. But the model is very different.}

Inasmuch as quality information influences patients’ choices, it may actually cause harm in the context of allocation using waiting times. Consider a scenario where there are two hospitals, a good one \(H_g \) and a bad one \(H_b \). All patients prefer the good hospital over the bad by the same amount, but they do not know which is which. As a result, both hospitals will receive half the patients, and waiting time will be zero. If the payer reveals that \(H_g \) is the good hospital through its quality-of-care disclosure, then all patients will prefer \(H_g \) over \(H_b \) by the same amount \(\Delta \). Unless \(H_g \) has enough slots for everybody, the waiting time there will have to be \(\Delta \), which completely burns social welfare and makes all patients worse-off than when they were ignorant. In effect, before the quality disclosure, uninformed patients implemented the randomized assignment – through free choice. Once the quality information was disclosed, the game moved to the equilibrium solution.

Our results and the discussion above suggest that in some cases a population of more informed patients will experience higher waiting times and lower overall utility than uninformed patients. This suggests an unfortunate potential side effect of information disclosure in cases where allocation is done by waiting times. Such a side effect deserves further study since, at the moment, quality information release is regarded as an absolute good. Understanding the optimal structure of information released to the patients in terms of overall welfare (as well as provider-side incentives) is an important and interesting direction of study.

1.3 Additional related work

The role of waiting time can be studied either from the supply side, namely, how waiting times interact with the hospitals’ incentives, or from the demand side, namely, how they interact with the patients’ incentives. In [26] the authors give a thorough analysis of existing policies on reducing waiting times by affecting the incentives of either side. Our model focuses on the demand side, and below we discuss some other works that also focus on this side.

The authors of [11] study quality and waiting times with the existence of ex post moral hazard. They assume that the patients are ex ante identical, and that the treatment has \textit{objective} quality levels with which both the valuations and the costs are monotonically increasing. But notice that if the patients are identical, rationing by waiting times is bounded to burn a lot of social welfare since at equilibrium every patient has to be treated in the same way —as elaborated in our results. In our model the patients’ valuations can be arbitrarily associated with different hospitals, reflecting \textit{subjective} views they may have, and the hospitals’ costs can also be arbitrary and do not necessarily reflect their real quality.

In [10, 12] the authors study the effect of waiting time prioritization on social welfare. They consider a single waiting list (or in our language, a single hospital), and the patients are prioritized and may face different waiting times in the same list. In our model different hospitals may have different waiting times, but we do not discriminate the patients, and at the same hospital everybody faces the same waiting time. In [6] the authors give experimental evidence on the effect of expanding patient choice of providers on waiting times. In their theoretical model, there are two hospitals and the patients can freely go to the one with shorter waiting time. Thus the patients do not have subjective preferences over hospitals, and waiting time is the only parameter affecting their choices. Moreover, the authors of [9] study the relationship between waiting times and coinsurance, with a single hospital and a single representative consumer.

In [19] the author studies resource allocation where the consumers wait for the stochastic arrival of the items. Differently from our model and the models discussed above, in this work waiting time
does not burn social welfare, as the total waiting time of the consumers is always the time for
each type to arrive. There are two different types of items to be allocated, and also two types of
consumers, respectively preferring one type of items. A consumer can decide whether he wants to
take the arriving item or to continue waiting for his preferred type. The social welfare of the system
is measured by the probability that a consumer is matched to his preferred type. Although this is a
very different model from ours, it is worth mentioning that the author provides a truthful queuing
policy which is optimal. As we have discussed in Section 1.2, it would be interesting to design a
truthful mechanism in our model from which the government can elicit the patients’ valuations.
Finally, in none of the works mentioned above is the insurance/resource provider’s budget
constraint considered as a parameter affecting waiting times and social welfare.

2 The Provision-After-Wait Problem

Now let us be formal about our model. The Provision-After-Wait problem studies how to
provide a single healthcare service to a population of patients, and is specified by the following
parameters.

- The set of hospitals is \{H_1, \ldots, H_k\}.
- For each \(i \in [k]\), the cost of \(H_i\) serving one patient is \(c_i \in \mathbb{Z}^+\), where \(\mathbb{Z}^+\) is the set of
 non-negative integers.
- The set of patients is \{P_1, \ldots, P_m\}.
- For each \(i \in [k]\) and \(j \in [m]\), the value of patient \(P_j\) for hospital \(H_i\) is \(v_{ij} \in \mathbb{Z}^+\).
- An assignment of the patients to the hospitals is a triple \((w, h, \lambda)\), where \(w = (w_1, \ldots, w_k) \in
 (\mathbb{Z}^+)^k\) is the waiting time vector of the hospitals, \(h : [m] \to [k]\) is the assignment function, and
 \(\lambda = (\lambda_1, \ldots, \lambda_k) \in \{1, \ldots, m\}^k\) with \(\sum_{i \in [k]} \lambda_i = m\) is the quota vector, such that
 \(|h^{-1}(i)| = \lambda_i\) for each \(i \in [k]\).

According to such an assignment, patient \(P_j\) will receive the service at hospital \(H_{h(j)}\) after
waiting time \(w_{h(j)}\).

- A patient \(P_j\)’s utility under assignment \((w, h, \lambda)\) is \(u_j(w, h, \lambda) \equiv v_{h(j)j} - w_{h(j)}\), that is, quasi-
 linear in the waiting time.

The social welfare of this assignment is \(SW(w, h, \lambda) \equiv \sum_{j \in [m]} u_j(w, h, \lambda)\).

- The government has budget \(B \in \mathbb{Z}^+\), and an assignment \((w, h, \lambda)\) is feasible if \(\sum_{i \in [k]} \lambda_i \cdot c_i \leq B\).

For the problem to be interesting, we assume that \(mc_{\text{min}} \leq B < mc_{\text{max}}\), where \(c_{\text{min}}\) and \(c_{\text{max}}\)
are respectively the minimum and the maximum cost of the hospitals.

Remark 1. The hospitals’ costs, the patients’ valuations, and the waiting times are assumed to be
integers without loss of generality. As long as they have finite description, we can always choose
proper units so that all of them are integers.

Remark 2. The quota vector of an assignment can be inferred from the assignment function and
thus is redundant. We define it explicitly to ease the discussion of our main results.

We would like to emphasize that, in the healthcare literature waiting time is recognized as a
tool to ration supply by driving down demand. As such, it does not depend on the congestion at
the hospitals, but rather on the patients’ “willingness to wait”. In our model, the waiting times are set by the government according to its budget and the patients’ values. Even if a hospital’s real capacity (namely, the maximum number of patients it is able to handle, which is typically assumed to be large enough) is bigger than the number of patients going there, the patients may still have to wait for certain amount of time, because letting them wait for any shorter will result in more patients demanding that hospital than the government can afford. This is demonstrated by the following example.

Assume there are two hospitals, \(H_0 \) and \(H_1 \), with costs $500 and $3,000 respectively. There are three patients, valuing \(H_1 \) for 10, 7, 3 respectively, and all valuing \(H_0 \) for 0. The government has budget $6,000. Assume that \(H_1 \) is capable of handling all three patients immediately. Yet, if the government lets \(H_1 \) be saturated and sends all three patients there, the total cost will be $9,000, which is unaffordable. It is clear that the government can afford only one patient at \(H_1 \). Thus at equilibrium the waiting time at \(H_1 \) must be 7, and only the patient who is willing to wait for 10 will actually be served there. Notice that this patient has to wait even though there is no congestion at all, because of the budget constraint.

Since in reality the government may not be able or willing to force a patient to go to a hospital assigned to him, it must ensure that wherever it wants that patient to go is indeed the best hospital for him, given the waiting times. Accordingly, we have the following definition.

Definition 1. Assignment \((w, h, \lambda)\) is an equilibrium assignment if: (1) it is feasible, (2) for each \(j \in [m] \) we have \(u_j(w, h, \lambda) \geq 0 \), and (3) for each \(j \in [m] \) and \(i \in [k] \) we have

\[
u_j(w, h, \lambda) \geq v_{ij} - w_i.
\]

Assignment \((w, h, \lambda)\) is an optimal equilibrium assignment if: (1) it is an equilibrium assignment, and (2) for any other equilibrium assignment \((\lambda', w', h')\),

\[
SW(\lambda, w, h) \geq SW(w', h', \lambda').
\]

The social welfare of optimal equilibrium assignments is denoted by \(SW_{OEA} \).

As we are interested in the (existence and) computation of optimal equilibrium assignments, we assume that the government has precise knowledge about the cost of each hospital. We may also assume that the government knows each patient’s valuation for each hospital, but we do not need it. In fact, it is enough for the government to know the “distribution” of the \(k \)-dimensional valuation vectors of the patients, namely, the fraction of the patients having each particular valuation vector. Once it computes \(w \) in the optimal solution, the assignment function \(h \) will be automatically implemented by the patients going to their favorite hospitals\(^9\), and the government need not know where each patient is going. Notice that it is not sufficient for the government to know the distribution of the valuations for each single hospital, since the correlations between valuations for different hospitals will affect the outcome.

3 The Computational Complexity of Optimal Equilibrium Assignments

We begin with two easy observations about our model, as a warm-up.

\(^8\)In reality, the cheap “hospital” may in fact be a cheap service such as a CT scan, while the expensive one may in fact be an expensive service such as an MRI. A patient is willing to get either one of them, with different values.

\(^9\)If there are more than one favorite hospitals for a patient, we assume that he goes to the cheapest hospitals, so that the budget constraint is satisfied.
The first observation is that, if the patients have unanimous preferences, namely, \(v_{ij} = v_{ij'} \) for each \(i \in [k] \) and each \(j, j' \in [m] \), then no equilibrium assignment can improve the social welfare of the following trivial one: order the hospitals according to the patients’ valuations decreasingly, find the first hospital \(H_i \) such that \(mc_i \leq B \), and assign all patients to \(H_i \) with \(w_i = 0 \) and \(w'_i = \max_{i' \in [k]} v_{i'i} \) for any \(i' \neq i \). Indeed, for any equilibrium assignment \((w,h,\lambda)\) we have \(v_{h(j)j} - w_{h(j)} = v_{h(j')j} - w_{h(j')} \) for each \(j, j' \in [m] \). Letting \(i^* = \arg\min_{i:h^{-1}(i) \neq \emptyset} c_i \), \(\lambda' \) be such that \(\lambda'_{i^*} = m \) and \(\lambda'_i = 0 \) for all other \(i \), \(h' \) be such that \(h'(j) = i^* \) for all \(j \), we have that \((w,h',\lambda')\) is another equilibrium assignment with the same social welfare as \((w,h,\lambda)\). Thus it suffices to look for an optimal equilibrium assignment that sends all patients to the same hospital. This is also intuitive: if the patients are all the same, then at equilibrium the government must make them equally happy, and it can do so by treating them in the same way.

Another observation is that, even if the government only cares about meeting the budget constraint in expectation, and is allowed to assign each patient to several hospitals probabilistically (with the total probability summing up to 1), the optimal social welfare it can get in expectation will just be the same as the optimal one obtained by deterministic assignments. This is so because, at equilibrium, all the hospitals to which a patient \(P_j \) is assigned with positive probability must yield the same utility for him. Thus assigning \(P_j \) deterministically to the one with the smallest cost leads to another equilibrium assignment with the same social welfare and still meeting the budget constraint. Accordingly, to maximize social welfare it suffices to consider only deterministic assignments.

The following theorem shows that even the optimal deterministic assignments are hard to find in general.

Theorem 1. Finding optimal equilibrium assignments is NP-hard.

Proof. The reduction is from the knapsack problem, which is well known to be NP-hard. In this problem there are \(k \) items, \(a_1, \ldots, a_k \), and each \(a_i \) has value \(v_i \) and cost \(c_i \). We are also given a budget \(B \), and the goal is to select a subset of items so as to maximize their total value while keeping their total cost less than or equal to \(B \).

We can transform this problem to a Provision-after-Wait problem with \(k + 1 \) hospitals and \(k \) patients. Each hospital \(H_i \) with \(1 \leq i \leq k \) has cost \(c_i \), and each patient \(P_i \) has value \(v_i \) for \(H_i \) and 0 for all others. Hospital \(H_{k+1} \) has cost 0 and is valued 0 by all patients. The government has budget \(B \).

Given an equilibrium assignment \((w,h,\lambda)\) to the Provision-after-Wait problem, we can construct a solution to the knapsack problem with total value equal to \(SW(w,h,\lambda) \)—the set \(A = \{ i : h(i) = i \} \) is such a solution. Indeed, without loss of generality we can assume \(h(i) = k + 1 \) whenever \(h(i) \neq i \). By the definition of equilibrium assignments, we have \(w_{k+1} = 0 \), \(w_i = v_i \) if \(h(i) = k + 1 \), and \(w_i = 0 \) otherwise. Thus \(SW(w,h,\lambda) = \sum_{i \in A} v_i \), which is the total value of \(A \) in the knapsack problem. As the total cost of \((w,h,\lambda)\) is \(\sum_{i \in A} c_i \leq B \), the set \(A \) meets the budget constraint in the knapsack problem.

It is easy to see that the other direction is also true, that is, given a solution \(A \subseteq [k] \) to the knapsack problem, we can construct an equilibrium assignment \((w,h,\lambda)\) for the Provision-after-Wait problem whose social welfare equals the total value of \(A \).

Accordingly, an optimal equilibrium assignment to Provision-after-Wait corresponds to an optimal solution to knapsack.

Remark 3. The NP-hardness of the knapsack problem comes from the need for integrality. Its fractional version can be easily solved using a greedy bang-per-buck approach. But this is not the case in our problem. Indeed, as we have noted, given a fractional equilibrium assignment we can

10
construct a deterministic equilibrium assignment with the same social welfare. Thus for our problem the fractional version is as hard as the integral version.

4 Approximating Optimal Equilibrium Assignments with Arbitrarily Small Deficit

Although the optimization problem is hard when both the numbers of patients and hospitals are large, in practice we expect the number of hospitals to be small, and it makes sense to solve the problem efficiently in this case.

An easy observation is that optimal equilibrium assignments can be found in time $O(m^k \text{poly}(m,k))$. Indeed, there are at most m^k possible assignment functions $h : [m] \to [k]$. For each h and the corresponding quota vector λ, the total value of the patients is fixed, and thus maximizing social welfare is equivalent to minimizing total waiting time. Accordingly, the best equilibrium waiting time vector given h and λ can be found using the linear program below (or one can prove that no feasible waiting time vector exists at equilibrium).

$$\min_w \sum_{i \in [k]} w_i \lambda_i$$

s.t. $\forall j \in [m], i \in [k], v_{h(j)} - w_{h(j)} \geq v_{ij} - w_i$, $\sum_{i \in [k]} c_i \lambda_i \leq B$.

We then choose h such that the corresponding equilibrium assignment (w,h,λ) maximizes social welfare.

Given the above observation, we are interested in replacing the m^k part with a better bound. As we shall show, if the government is willing to violate its budget constraint by an arbitrarily small fraction, then the problem can be solved much more efficiently.

Definition 2. Let ϵ be a positive constant. An assignment (w,h,λ) is an equilibrium assignment with ϵ-deficit if it is an equilibrium assignment with the feasibility condition replaced by the following condition: $\sum_{i \in [k]} \lambda_i c_i \leq (1 + \epsilon)B$.

We shall construct an algorithm that, in time $O(\log^k \epsilon m \cdot (1 + \epsilon)^3 m^4)$, finds an equilibrium assignment with ϵ-deficit whose social welfare is at least $\text{SW} _\text{OEA}$, the social welfare of the optimal equilibrium assignments with budget B. To do so, we first establish a strong connection between the PROVISION-AFTER-WAIT problem and the well-studied problem of unit-demand auctions (see, e.g., [7, 1, 3, 8]).

4.1 A connection between the Provision-After-Wait problem and unit-demand auctions

A unit-demand auction is specified by n goods (perhaps including identical ones), m buyers, and the values v_{ij} of each buyer $j \in [m]$ for each good $i \in [n]$. The goal is to find an equilibrium allocation and prices, where each buyer gets the good that maximizes his utility given the prices.

If we consider the patients in the PROVISION-AFTER-WAIT problem as buyers who want to buy hospital services using waiting times, our setting looks a lot like a unit-demand auction. Except one thing: in our setting the set of goods for sale is unknown. It is natural to consider the k hospitals as k goods, but each one of them has to have certain amount of identical copies, as each hospital may serve more than one patients. One cannot simply model the hospitals as k goods with
m copies each, as then the resulted auction will give each patient his favorite hospital with zero waiting time, and the budget constraint may be broken.

Notice that, if we were given the quota vector \(\lambda \) in the optimal equilibrium solution of the Provision-after-Wait problem, then we can consider each hospital \(H_i \) as \(\lambda_i \) copies of identical goods, and we have a well defined unit-demand auction. Every equilibrium solution to this auction leads to an assignment function \(h \) and a waiting time vector \(w \), such that \((w, h, \lambda)\) is an equilibrium assignment to the original Provision-after-Wait problem. In particular, the budget constraint is satisfied automatically, since we started with a quota vector that meets the budget constraint.

In general, for any quota vector \(\lambda \) such that \(\sum_i \lambda_i \geq m \), the problem of finding equilibrium assignments with respect to \(\lambda \) reduces to finding equilibrium prices and allocations in unit-demand auctions where each hospital \(H_i \) corresponds to \(\lambda_i \) identical goods. If \(\lambda \) meets the budget constraint, namely, \(\sum_i c_i \lambda_i \leq B \), then the resulting equilibrium assignment meets the budget constraint.

It is well known that a unit-demand auction always has equilibrium prices and allocations, which can be found by the Hungarian method [18]. The only caution is that, for a hospital to have a well-defined waiting time, the prices of its corresponding goods in the unit-demand auction must be all the same. Fortunately, as will become clear in Section 4.2, at equilibrium identical goods must always have the same price, although this is not explicitly required.

Therefore for each quota vector \(\lambda \), whether it meets the budget constraint or not, there exists an equilibrium assignment with respect to \(\lambda \). Following the result of [1], the optimal equilibrium assignment with respect to \(\lambda \) can be computed efficiently, and this will lead to our algorithm for approximating the optimal equilibrium solution of the Provision-after-Wait problem.\(^{10}\)

4.2 A useful result in multi-unit auctions

Our algorithm uses that of [1] for unit-demand auctions as a black box, therefore we first recall their result (while using our notation to help establish the connection with our results).

Definition 3. A unit-demand auction, or simply an auction in this paper, is a triple \((g, m, v)\), where the set of goods is \(\{1, 2, \ldots, g\}\), the set of bidders is \(\{1, 2, \ldots, m\}\), and \(v\) is the valuation matrix, that is, a \(g \times m\) matrix of non-negative integers. Each \(v_{ij}\) denotes the valuation of bidder \(j\) for good \(i\).

Given an auction \((g, m, v)\), a matching is a triple \((u, p, \mu)\), where \(u = (u_1, \ldots, u_m) \in \mathbb{Z}_+^m\) is the utility vector, \(p = (p_1, \ldots, p_g) \in \mathbb{Z}_+^g\) is the price vector, and \(\mu \subseteq [g] \times [m]\) is a set of good-bidder pairs such that no bidder and no good occur in more than one pair. Bidders and goods that do not appear in any pair in \(\mu\) are unmatched.

Definition 4. Given an auction \((g, m, v)\), a matching \((u, p, \mu)\) is weakly feasible if for each \((i, j) \in \mu\) we have \(u_j = v_{ij} - p_i\), and for each unmatched bidder \(j\) we have \(u_j = 0\).

A matching \((u, p, \mu)\) is feasible if it is weakly feasible and for each unmatched good \(i\) we have \(p_i = 0\).

A matching \((u, p, \mu)\) is stable if for each \((i, j) \in [g] \times [m]\) we have \(u_j \geq v_{ij} - p_i\).

A matching \((u^*, p^*, \mu^*)\) is bidder-optimal if: (1) it is stable and feasible, and (2) for every matching \((u, p, \mu)\) that is stable and weakly feasible, and for every bidder \(j\), we have \(u^*_j \geq u_j\).

In [1] the authors construct an algorithm, STABLEMATCH, which, given an auction \((g, m, v)\), outputs a bidder-optimal matching \((u^*, p^*, \mu^*)\) in time \(O(mg^3)\).

Notice that the original definitions in [1] have for each good-bidder pair a reserve price and a maximum price. In our model we do not need them, so the definitions above are more succinct.

\(^{10}\) Although equilibrium assignments can be efficiently computed given \(\lambda\), the problem of deciding the “correct” \(\lambda\) makes the Provision-after-Wait problem hard, even in very special cases, as shown in Section 3.
than the original ones. In fact, as pointed out by [1], with maximum prices, there may be no bidder-optimal matching. But without them such a matching always exists, as shown by [7].

Notice also that [1] does not distinguish between weak feasibility and feasibility. But it is easy to see that their algorithm and its analysis still apply under our definitions. We shall use these two notions when analyzing our algorithm.

Next we establish two properties for the matching \((u^*, p^*, \mu^*)\) output by \textsc{StableMatch}.

- **Property 1.** If \(g \geq m\), then without loss of generality we can assume that \((u^*, p^*, \mu^*)\) has no unmatched bidder.

 Indeed, if there exists an unmatched bidder \(j\), then there must exist an unmatched good \(i\) (since \(g \geq m\)). Since \((u^*, p^*, \mu^*)\) is bidder-optimal, we have \(u^*_j = 0\), \(p^*_i = 0\), and \(u^*_j \geq v_{ij} - p^*_i\). Thus we have \(v_{ij} = 0\), and the matching \((u^*, p^*, \mu^* \cup \{(i, j)\})\) is another bidder-optimal matching.

- **Property 2.** If two goods \(i, i'\) are identical, namely, \(v_{ij} = v_{i'j}\) for each bidder \(j\), then \(p^*_i = p^*_{i'}\).

 Indeed, if both goods are unmatched then \(p^*_i = p^*_{i'} = 0\). Otherwise, say \((i, j) \in \mu^*\). By definition, \(u^*_j = v_{ij} - p^*_i \geq v_{i'j} - p^*_{i'}\). As \(v_{ij} = v_{i'j}\), we have \(p^*_i \leq p^*_{i'}\). If \(i'\) is unmatched then \(p^*_{i'} = 0\), implying \(p^*_i = 0\). If \((i', j') \in \mu^*\) then similarly we have \(p^*_{i'} \leq p^*_{i'}\), and thus \(p^*_i = p^*_{i'}\) again.

4.3 Our algorithm for approximating optimal equilibrium assignments

Now we are ready to construct our algorithm for approximating optimal equilibrium assignments. The algorithm takes as input the number of patients \(m\), the number of hospitals \(k\), the hospitals’ costs \(c_1, \ldots, c_k\), the patients’ valuations \(v_{ij}\)’s for the hospitals, the budget \(B\), and a small constant \(\epsilon > 0\). Letting \((w, h, \lambda)\) be an optimal equilibrium assignment, the algorithm works by guessing \(\lambda\), constructing a multi-unit auction based on the guessed vector, computing the bidder-optimal matching using \textsc{StableMatch}, and extracting the waiting time vector and the assignment function from the matching.

More precisely, let \(L \triangleq \lceil \log_{1+\epsilon} m \rceil\), \(C_0 \triangleq 0\), and \(C_\ell \triangleq \lfloor (1 + \epsilon)^\ell \rfloor\) for each \(\ell = 1, \ldots, L\). The algorithm examines all the vectors \(\hat{\lambda} = (\hat{\lambda}_1, \ldots, \hat{\lambda}_k) \in \{C_0, C_1, \ldots, C_L\}^k\) one by one, say lexicographically.

If \(\sum_{i \in [k]} \hat{\lambda}_i \not\in [m, (1 + \epsilon)m)\) or if \(\sum_{i \in [k]} \hat{\lambda}_i c_i > (1 + \epsilon)B\), the algorithm disregards this vector and moves to the next. Otherwise it constructs an auction \((g, m, \hat{v})\) as follows. The set of patients corresponds to the set of bidders; each hospital \(H_i\) corresponds to \(\hat{\lambda}_i\) copies of identical goods \(H_{i1}, \ldots, H_{i\hat{\lambda}_i}\), thus \(g = \sum_{i \in [k]} \hat{\lambda}_i\); the valuation matrix \(\hat{v}\) has rows indexed by \(\{ir : i \in [k], r \in [\hat{\lambda}_i]\}\), columns indexed by \([m]\), and for each \(j \in [m], i \in [k]\), and \(r \in [\hat{\lambda}_i]\), \(\hat{v}_{ir,j} = v_{ij}\).

The algorithm then runs \textsc{StableMatch} with input \((g, m, \hat{v})\) to generate the bidder-optimal matching \((u^*, p^*, \mu^*)\), and extracts the waiting time vector \(\hat{w}\) and the assignment function \(\hat{h}\) as follows. For each hospital \(H_i\), let \(\hat{w}_i = p^*_i\). For each patient \(P_j\), let \(H_{ir}\) be the unique good to which \(P_j\) is matched (by Property 1 in Section 4.2) such a good always exists) according to \(\mu^*\), and let \(\hat{h}(j) = i\). The triple \((\hat{w}, \hat{h}, \hat{\lambda})\) may not be an assignment as \(\sum_{i \in [k]} \hat{\lambda}_i\) may be larger than \(m\), but there is a unique quota vector \(\hat{\lambda}'\) such that \((\hat{w}, \hat{h}, \hat{\lambda}')\) is an assignment.

The algorithm computes the social welfare of the assignment \((\hat{w}, \hat{h}, \hat{\lambda}')\) with the maximum social welfare.

We prove the following theorem.
Theorem 2. Our algorithm runs in time $O(\log_{1+\epsilon}k \cdot m \cdot (1+\epsilon)^3 m^4)$, and outputs an equilibrium assignment (w^*, h^*, λ^*), such that $SW(w^*, h^*, \lambda^*) \geq SW_{OEA}$.

Proof. The running time of the algorithm can be immediately seen. Indeed, if a vector $\hat{\lambda}$ is not disregarded, then it takes $O(mg) = O((1+\epsilon)m^2)$ time to construct the auction as $g \in [m, (1+\epsilon)m]$, $O(mg^3) = O((1+\epsilon)^3 m^4)$ time to run STABLEMATCH, and $O(m)$ time to extract the assignment. Accordingly, it takes $O((1+\epsilon)^3 m^4)$ time to examine a single vector λ, and there are $O(\log_{1+\epsilon}m)$ vectors in total.

The remaining part of the theorem follows from the two lemmas below.

Lemma 1. (w^*, h^*, λ^*) is an equilibrium assignment with ϵ-deficit.

Proof. In fact, we show that for each vector $\hat{\lambda}$ that is not disregarded, the extracted assignment $(\hat{w}, \hat{h}, \hat{\lambda}')$ is an equilibrium assignment with ϵ-deficit. To see why this is true, first notice that $\sum_{i \in [k]} \hat{\lambda}'_i c_i \leq (1+\epsilon)B$ by the construction of the algorithm, thus

\[\sum_{i \in [k]} \hat{\lambda}'_i c_i \leq (1+\epsilon)B. \tag{1} \]

Second, for each $j \in [m]$, letting $H_{\hat{h}(j)r}$ be the good matched to P_j according to μ^*, we have

\[u_j(\hat{w}, \hat{h}, \hat{\lambda}') = v_{\hat{h}(j)j} - \hat{w}_{\hat{h}(j)} = \hat{v}_{\hat{h}(j)jr} - p_{\hat{h}(j)1} = \hat{v}_{\hat{h}(j)rj} - p_{\hat{h}(j)r} = u_j^* \geq 0, \tag{2} \]

where the third equality is because of Property 2 in Section 4.2 (in particular, $H_{\hat{h}(j)1}$ and $H_{\hat{h}(j)r}$ are identical goods, and $p_{\hat{h}(j)1} = p_{\hat{h}(j)r}$), and the other equalities/inequality are by definition.

Third, since (u^*, p^*, μ^*) is a bidder-optimal matching for auction (g, m, \hat{v}), we have that for each $j \in [m], i \in [k], r \in [\hat{\lambda}]$,

\[u_j^* \geq \hat{v}_{irj} - p_{ir}^* = v_{ij} - p_{ij1}^* = v_{ij} - \hat{w}_i, \]

and thus

\[u_j(\hat{w}, \hat{h}, \hat{\lambda}') = u_j^* \geq v_{ij} - \hat{w}_i. \tag{3} \]

Equations 1, 2, and 3 together imply that every $(\hat{w}, \hat{h}, \hat{\lambda}')$ is an equilibrium assignment with ϵ-deficit, and so is (w^*, h^*, λ^*). \hfill \square

Lemma 2. $SW(w^*, h^*, \lambda^*) \geq SW_{OEA}$.

Proof. To see why this is true, arbitrarily fix an optimal equilibrium assignment (w, h, λ). Notice that for each hospital H_i, there exists a “good guess” $\hat{\lambda}_i \in \{C_0, \ldots, C_L\}$ such that

\[\lambda_i \leq \hat{\lambda}_i \leq (1+\epsilon)\lambda_i. \]

Since λ satisfies $\sum_{i \in [k]} \lambda_i = m$ and $\sum_{i \in [k]} \lambda_i c_i \leq B$, the vector $\hat{\lambda} = (\hat{\lambda}_1, \ldots, \hat{\lambda}_k)$ satisfies

\[\sum_{i \in [k]} \hat{\lambda}_i \in [m, (1+\epsilon)m] \quad \text{and} \quad \sum_{i \in [k]} \hat{\lambda}_i c_i \leq (1+\epsilon)B. \]

Thus it won’t be disregarded by the algorithm. Let (g, m, \hat{v}) be the auction constructed from λ, (u^*, p^*, μ^*) the output of STABLEMATCH under input (g, m, \hat{v}), and $(\hat{w}, \hat{h}, \hat{\lambda}')$ the assignment
extracted from \((u^*, p^*, \mu^*)\). Following the same reasoning as in Equation 2, we have that for each \(j \in [m]\), \(u_j(\hat{w}, \hat{h}, \hat{\lambda}') = u^*_j\). Thus

\[
SW(\hat{w}, \hat{h}, \hat{\lambda}') = \sum_{j \in [m]} u^*_j. \tag{4}
\]

From \((w, h, \lambda)\), we construct a matching \((u, p, \mu)\) for the auction \((g, m, \hat{v})\) as follows. For each bidder \(j\), we have \(u_j = v_{h(j)} - w_{h(j)}\); for each good \(H_{ir}\) with \(i \in [k]\) and \(r \in [\lambda_i]\), we have \(p_{ir} = w_i\); and for each hospital \(H_i\), letting \(j_1 \leq j_2 \leq \cdots \leq j_{\lambda_i}\) be the patients assigned to \(H_i\) by \(h\), we have \(\mu = \{(j_r, ir) : i \in [k], r \in [\lambda_i]\}\).

It is easy to verify that the so constructed \((u, p, \mu)\) is stable and weakly feasible, thus by the optimality of \(u^*\) we have that for each \(j \in [m]\),

\[
u^*_j \geq u_j. \tag{5}\]

Moreover, for the same reason as Equation 4, we have

\[
SW(w, h, \lambda) = \sum_{j \in [m]} u_j. \tag{6}
\]

Equations 4, 5, and 6 together imply

\[
SW(\hat{w}, \hat{h}, \hat{\lambda}') \geq SW(w, h, \lambda) = SW_{OEA}
\]
as we want to show.

In sum, Theorem 2 holds.

\[\square\]

\textbf{Remark.} By running our algorithm with input budget \(B/(1+\epsilon)\), we obtain an assignment whose budget is at most \(B\) and whose social welfare is at least the optimal social welfare with budget \(B/(1+\epsilon)\). However, this social welfare may be much smaller than the optimal social welfare with budget \(B\). That is why we insist on having a deficit instead of meeting the budget constraint strictly.

\section{The Endogenous Emergence of Waiting Times}

Next we study the dynamics between hospitals and patients. We show that in our model, when the patients’ valuations are in some generic position, the only thing the government needs to enforce is the amount of money it is willing to pay to each hospital, which can be equivalently enforced by the quota vector. Given the quotas, the optimal waiting times and the optimal social welfare will emerge endogenously from the dynamics.

\subsection{The uniqueness of the optimal equilibrium}

We start by defining the generic position of the patients and studying the structure of the optimal equilibrium under it. Following [3], we have the following.

\textbf{Definition 5.} The patients \(\{P_1, \ldots, P_m\}\) with valuations \((v_{ij})_{i \in [k], j \in [m]}\) are independent if, there do not exist two different subsets \(S\) and \(T\) of the multiset \(\{v_{ij} : i \in [k], j \in [m]\}\) such that, both \(S\) and \(T\) contains positive numbers and \(\sum_{v \in S} v = \sum_{v' \in T} v'\).
Notice that the above definition of independent patients is weaker than the typical definition of generic position, which rules out any relevant equality relation among the valuations. Let λ be a quota vector with $\sum_{i \in [k]} \lambda_i \geq m$.11 Recall that given λ, the Provision-After-Wait problem reduces to a unit-demand auction. Thus following [25, 7], among all equilibrium waiting time vectors with respect to λ, there is a unique one that simultaneously minimizes the waiting time at each hospital and maximizes the utility of each patient.12 Denoting this minimum waiting time vector by \bar{w}, we prove the following theorem.

Theorem 3. Assuming the patients are independent, there is a unique equilibrium assignment with respect to λ and \bar{w}. Moreover, denoting this equilibrium by $(\bar{w}, \bar{h}, \lambda)$, we have that $\min_{i \in [k]} \bar{w}_i = 0$, and that at this equilibrium every hospital with positive waiting time is saturated, namely, $|\bar{h}^{-1}(i)| = \lambda_i$ whenever $\bar{w}_i > 0$.

Proof. Without loss of generality, we assume $\lambda_i > 0$ for each $i \in [k]$. Consider the demand graph G given \bar{w}, that is, a bipartite graph with k nodes on one side for the hospitals and m nodes on the other side for the patients. For each $i \in [k]$ and $j \in [m]$, the edge (i, j) is in G if and only if H_i maximizes P_j’s utility, namely, $v_{ij} - \bar{w}_i = \max_{i' \in [k]} v_{i'j} - \bar{w}_{i'}$. By definition, any equilibrium assignment must assigns each patient P_j to an adjacent hospital H_i. Thus it suffices to show that within each connected component of G there is only one equilibrium assignment. We start by proving the following claim.

Claim 1. There is no cycle in G.

Proof. For the sake of contradiction, assume there exists a (necessarily even-length) cycle $(i_1, j_1, i_2, j_2, \ldots, i_\ell, j_\ell, i_1)$, where i_r’s are hospitals and j_r’s are patients. By the construction of G, we have that for each $r \in [\ell]$, both $H_{i_r} = H_{i_{r+1}}$ maximize P_{j_r}’s utility, with $\ell + 1$ defined to be 1. Thus

$$v_{i_rj_r} - \bar{w}_{i_r} = v_{i_{r+1}j_r} - \bar{w}_{i_{r+1}}.$$

Summing all ℓ equations together, we have

$$\sum_{r \in [\ell]} v_{i_rj_r} - \bar{w}_{i_r} = \sum_{r \in [\ell]} v_{i_{r+1}j_r} - \bar{w}_{i_{r+1}},$$

namely,

$$\sum_{r \in [\ell]} v_{i_rj_r} - \sum_{r \in [\ell]} \bar{w}_{i_r} = \sum_{r \in [\ell]} v_{i_{r+1}j_r} - \sum_{r \in [\ell]} \bar{w}_{i_{r+1}}.$$

As $\sum_{r \in [\ell]} \bar{w}_{i_r} = \sum_{r \in [\ell]} \bar{w}_{i_{r+1}}$, we have

$$\sum_{r \in [\ell]} v_{i_rj_r} = \sum_{r \in [\ell]} v_{i_{r+1}j_r}.$$

Accordingly, we have found two different subsets $\{v_{i_rj_r} : r \in [\ell]\}$ and $\{v_{i_{r+1}j_r} : r \in [\ell]\}$ that sum up to the same value, contradicting the hypothesis that the patients are independent. \hfill \Box

Following Claim 1, the connected components of G are all trees. Similarly, we have the following:

Claim 2. Each connected component of G contains at most one hospital with waiting time 0.

11Notice that we do not require that λ satisfies the budget constraint, and our results apply to such λs as well.

12Notice that this is the waiting time vector computed by the STABLEMATCH algorithm of [1].
Proof. Again for the sake of contradiction, assume there is a connected component with two different hospitals \(H_i \) and \(H_j \) such that \(\bar{w}_i = \bar{w}_j = 0 \). Accordingly, there is a path \((i_1, j_1, i_2, j_2, \ldots, i_\ell)\) where \(i_r \)'s are hospitals and \(j_r \)'s are patients, such that \(i_1 = i \) and \(i_\ell = i' \). Similar to the proof of Claim 1, for each \(r < \ell \), we have
\[
v_{i_r,j_r} - \bar{w}_{i_r} = v_{i_{r+1},j_r} - \bar{w}_{i_{r+1}}.
\]
Summing all \(\ell - 1 \) equations together, we have
\[
\sum_{r=1}^{\ell-1} v_{i_r,j_r} - \sum_{r=1}^{\ell-1} \bar{w}_{i_r} = \sum_{r=1}^{\ell-1} v_{i_{r+1},j_r} - \sum_{r=1}^{\ell-1} \bar{w}_{i_{r+1}}.
\]
As \(\bar{w}_{i_1} = \bar{w}_{i_\ell} = 0 \), the above equation implies
\[
\sum_{r=1}^{\ell-1} v_{i_r,j_r} - \sum_{r=2}^{\ell-1} \bar{w}_{i_r} = \sum_{r=1}^{\ell-1} v_{i_{r+1},j_r} - \sum_{r=2}^{\ell-1} \bar{w}_{i_r},
\]
and thus
\[
\sum_{r=1}^{\ell-1} v_{i_r,j_r} = \sum_{r=1}^{\ell-1} v_{i_{r+1},j_r},
\]
again contradicting the hypothesis that the patients are independent. \(\Box\)

Claim 2 and the following claim together imply that each connected component of \(G \) has exactly one hospital with waiting time 0.

Claim 3. Each connected component of \(G \) has at least one hospital with waiting time 0.

Proof. By contradiction. Assume there is a component \(C \) such that \(\bar{w}_i > 0 \) for each \(H_i \) in \(C \). Let
\[
\epsilon_1 = \min_{H_i \in C} \bar{w}_i.
\]
Notice that for each \(P_j \) not in \(C \), by definition, the best utility that \(j \) can get from hospitals in \(C \) is strictly less than \(u_{j}^{\max} \), the best utility that \(j \) can get from his favorite hospital. Let
\[
\epsilon_2 = \min_{P_j \notin C} \left[u_{j}^{\max} - \max_{H_i \in C} (v_{ij} - \bar{w}_i) \right].
\]
We have \(\epsilon_1 > 0 \) and \(\epsilon_2 > 0 \). Let \(\epsilon = \frac{\min(\epsilon_1, \epsilon_2)}{2} \), \(w'_i = \bar{w}_i - \epsilon \) for each \(H_i \in C \), and \(w' = (\bar{w}_{-C}, w'_C) \). That is, \(w' \) is \(\bar{w} \) with all waiting times of hospitals in \(C \) reduced by \(\epsilon \). As \(\epsilon < \epsilon_1 \), \(w' \) is a valid waiting time vector.

Notice that for any equilibrium assignment \((\bar{w}, h, \lambda)\), the assignment \((w', h, \lambda)\) is still an equilibrium. Indeed, when the waiting time vector changes from \(\bar{w} \) to \(w' \), for each patient \(P_j \), his utility at every hospital \(H_i \in C \) increases by \(\epsilon \), and his utility at every other hospital remains the same. For \(P_j \notin C \), \(\epsilon < \epsilon_2 \), and thus the best utility \(j \) gets from \(C \) is still smaller than \(u_{j}^{\max} \), which is \(j \)'s utility at \(H_{h(j)} \notin C \). For \(P_j \in C \), we have \(H_{h(j)} \in C \) as well, and \(H_{h(j)} \) still maximizes \(j \)'s utility after the increase.

Accordingly, \(w' \) is another equilibrium waiting time vector. But \(w'_i < \bar{w}_i \) for each \(H_i \in C \) and \(w'_i = \bar{w}_i \) for each \(H_i \notin C \), contradicting the hypothesis that \(\bar{w} \) minimizes the waiting time of each hospital among all equilibrium waiting time vectors. Therefore Claim 3 holds. \(\Box\)
Following Claims 1, 2, and 3, each connected component \(C \) can be considered as a tree rooted at the unique hospital with waiting time 0, with hospitals and patients alternating along each path. Based on this structure, we show that there is only one way of assigning the patients to the hospitals at equilibrium in \(C \). To do so, we need the following:

Claim 4. For each hospital \(H_i \in C \) with \(\bar{w}_i > 0 \), the degree of \(H_i \) in \(G \) is strictly larger than its quota \(\lambda_i \).

The proof is similar to that of Claim 3: if the degree of some \(H_i \in C \) is at most \(\lambda_i \), then we can find a proper value \(\epsilon \in (0, \bar{w}_i) \) such that the vector \(w' \triangleq (\bar{w}_{-i}, \bar{w}_i - \epsilon) \) is still an equilibrium waiting time vector. Indeed, with properly chosen \(\epsilon \), for every equilibrium \((\bar{w}, h, \lambda) \), let \(h' \) be the assignment such that \(h'(j) = i \) if \(P_j \) is adjacent to \(H_i \) (this is doable because the degree of \(H_i \) is at most \(\lambda_i \)), and \(h'(j) = h(j) \) otherwise. Then \((w', h', \lambda)\) is another equilibrium. But this contradicts the hypothesis that \(\bar{w} \) minimizes the waiting time of each hospital among all equilibrium waiting time vectors. The formal analysis is omitted.

Following Claim 4, we have that the leaves of tree \(C \) are all patients. Indeed, if there is a hospital with degree 1 and positive waiting time, then its quota is 0, contradicting our original assumption that all hospitals have positive quotas. Accordingly, at every equilibrium, every patient at a leaf must be assigned to his preceding hospital, as this is the only one maximizing his utility. Letting \(H_i \) be a non-root hospital whose descendants are all leaves, we have that the number of descendants of \(H_i \), denoted by \(d_i \), is at most \(\lambda_i \), otherwise no equilibrium exists. As \(\bar{w}_i > 0 \), by Claim 4 we have that the degree of \(H_i \) is strictly larger than \(\lambda_i \), which implies \(d_i \geq \lambda_i \). Accordingly, \(H_i \) uses up all its quota to serve its descendants, and the patient \(P_j \) preceding \(H_i \) must be assigned to his preceding hospital.

Repeating the above reasoning in a bottom-up way along the tree, we have that there is only one way of assigning the patients to hospitals at equilibrium with respect to \(\lambda \) and \(\bar{w} \), that is, each patient is assigned to his predecessor in \(G \), and every hospital with positive waiting time is saturated by its descendants. Thus Theorem 3 holds.

By definition, the equilibrium \((\bar{w}, \bar{h}, \lambda)\) maximizes social welfare with respect to \(\lambda \), thus it is reasonable to assume that this is the equilibrium that the government aims to implement.

5.2 The dynamics between hospitals and patients

We now show that given \(\lambda \), the waiting time vector \(\bar{w} \) will endogenously emerge from the dynamics between hospitals and patients, and so will \(\bar{h} \). We consider a continuous-time dynamics, where the patient population arrive continuously and uniformly along time. In such a dynamics, the quota-vector \(\lambda \) represents the *service rate* of the hospitals that the government is willing to pay for. Namely, for each hospital \(H_i \), the total number of patients paid by the government by any time \(t \) is \(\lambda_i t \).

The set of patients in previous sections, \(\{P_1, \ldots, P_m\} \) with valuations \((v_{ij})_{i \in [k], j \in [m]}\), now represents the set of *types* of the arriving patients. That is, although the patient population goes to infinity, there are only finitely many types of them. Every type has *arrival rate* 1: by any time \(t \), the number of patients that have arrived is \(nt \), where \(t \) of them are of type \(P_1 \) (i.e., with valuation \((v_{1j}, \ldots, v_{kj})\)), and another \(t \) of them are of type \(P_2 \), etc. We say that the patient population is *independent* if \(\{P_1, \ldots, P_m\} \) is independent. Notice that in general there may be different \(P_i \) and...
P_j with the same valuation, and the number of patients of a particular type by time t may be larger than t. But when the population is independent, any different P_j and P_j' must have different valuations, and indeed represent different types. Below we consider independent population.

Let $w(t) \triangleq (w_1(t), \ldots, w_k(t))$ be the non-negative waiting time vector of the hospitals at time t, such that $w(0) = (0, \ldots, 0)$. A patient of type P_j arriving at time t chooses a hospital H_i maximizing his utility given $w(t)$, and will be served there at time $t + w_j(t)$.

To break ties consistently throughout time, we impose a partial ordering over the hospitals, according to their positions in the demand graph G with respect to w. In particular, if H_i and $H_{i'}$ are in the same connected component of G and H_i precedes $H_{i'}$, then at any time t and for any patient of type P_j whose utility is maximized at both H_i and $H_{i'}$ given $w(t)$, we assume that P_j does not choose H_i. If H_i and $H_{i'}$ are in different connected components, then P_j can choose one arbitrarily, or even split the population of this type arbitrarily between H_i and $H_{i'}$, as indicated by the definition below.

Definition 6. For any i, j, t, the demand rate of P_j for H_i at time t, denoted by $d_{ij}(t)$, is a number in $[0, 1]$ such that,

- $\sum_{i \in [k]} d_{ij}(t) = 1,$
- $d_{ij}(t) > 0$ only if H_i maximizes P_j’s utility at time t, and there is no other hospital $H_{i'}$ in the same connected component of G that does so.

The demand rate for H_i at time t is $d_i(t) \triangleq \sum_{j \in [m]} d_{ij}(t)$.

The fractional values of the d_{ij}’s indicate how the patients of the same type will split between all hospitals maximizing their utilities. For example, $d_{ij}(t) = 1/3$ means that fixing the current waiting times, in the long run a third of the patients of type P_j will choose H_i. Notice that we do not completely specify how the patients should make their decisions when there are ties, and yet our results hold no matter how.

Because the patients arrive continuously under a constant rate, their effect on the waiting times at any point of time is infinitesimal, and $w(t)$ is continuous. By definition, within an arbitrarily small time interval $(t, t + \delta)$, the number of patients choosing H_i is $d_i(t)\delta$. Since the number of patients served by H_i in time δ is $\lambda_i \delta$, the waiting time will not change if $d_i(t) = \lambda_i$ (i.e., if the demand rate matches the service rate), and will change by $\frac{d_i(t)\delta - \lambda_i \delta}{\lambda_i}$ otherwise, unless $w_i(t) = 0$ and $d_i(t) < \lambda_i$, in which case $w_i(t + \delta)$ will remain 0. That is,

$$w_i(t + \delta) - w_i(t) = \begin{cases}
\frac{d_i(t)}{\lambda_i} - 1 \delta & \text{if } w_i(t) > 0 \text{ or } d_i(t) \geq \lambda_i, \\
0 & \text{otherwise.}
\end{cases}$$

(7)

Accordingly, for each $i \in [k]$ the right derivative of $w_i(t)$ is

$$\frac{d_+ w_i(t)}{dt} = \begin{cases}
\lim_{\delta \to 0} \frac{w_i(t+\delta)-w_i(t)}{\delta} = \frac{d_i(t)}{\lambda_i} - 1 & \text{if } w_i(t) > 0 \text{ or } d_i(t) \geq \lambda_i, \\
0 & \text{otherwise.}
\end{cases}$$

(8)

Notice that for particular tie-breaking rules, the function $d_i(t)$ may not be continuous, and thus $w_i(t)$ may not be differentiable.

We say that $w(t)$ is at most \bar{w}, written as $w(t) \leq \bar{w}$, if $w_i(t) \leq \bar{w}_i$ for each $i \in [k]$. Moreover, we say that $w(t)$ is smaller than \bar{w}, written as $w(t) < \bar{w}$, if the above inequality holds for some $i \in [k]$. The following two theorems show that the dynamics will always converge to \bar{w} in finite time, and will never exceed \bar{w} before converging.

14So the patients are served in a first-in-first-out queue.
Theorem 4. When the patient population is independent we have that:

1. \(w(t) \leq \bar{w} \) for any \(t \geq 0 \);
2. if \(w(t) = \bar{w} \) then \(\frac{d_i}{dt} w_i(t) = 0 \) for any \(i \in [k] \); and
3. if \(w(t) < \bar{w} \) then there exists \(i \in [k] \) such that \(\frac{d_i}{dt} w_i(t) > 0 \).

Proof. To prove Statement (1), it suffices to show that whenever \(w(t) \leq \bar{w} \) and \(w_i(t) = \bar{w}_i \) for some \(i \), we have \(d_i(t) \leq \lambda_i \) and thus \(w_i(t) \) will not increase. Since \(|h^{-1}(i)| \leq \lambda_i \) by the definition of equilibrium \((\bar{h}, \bar{w}, \lambda)\), it suffices to show

\[
d_i(t) \leq |h^{-1}(i)|,
\]

or equivalently, to show that

\[
\text{if } \bar{h}(j) \neq i \text{ then } d_{ij}(t) = 0.
\]

To do so, arbitrarily fix a type \(P_j \) such that \(\bar{h}(j) \neq i \). If \(v_{ij} - w_i(t) < \max_{v'} v_{ij} - w_{v'}(t) \) then certainly \(P_j \) does not choose \(H_i \) given \(w(t) \), and \(d_{ij}(t) = 0 \). Assume now

\[
v_{ij} - w_i(t) = \max_{v'} v_{ij} - w_{v'}(t).
\]

Notice that

\[
v_{ij} - w_i(t) = v_{ij} - \bar{w}_i \leq v_{h(j)j} - \bar{w}_{h(j)} \leq v_{h(j)j} - w_{h(j)}(t) = \max_{v'} v_{ij} - w_{v'}(t),
\]

where the equality is because \(w_i(t) = \bar{w}_i \), the first and the last inequalities are by definition, and the second is because \(w_{h(j)}(t) \leq \bar{w}_{h(j)} \) by hypothesis. Thus we have

\[
v_{ij} - w_i(t) = v_{ij} - \bar{w}_i = v_{h(j)j} - \bar{w}_{h(j)} = v_{h(j)j} - w_{h(j)}(t) = \max_{v'} v_{ij} - w_{v'}(t).
\]

The second equality implies that both \(H_i \) and \(h_{h(j)} \) are adjacent to \(P_j \) in the demand graph \(G \) according to \(\bar{w} \), and thus it must be the case that \(h_{h(j)} \) precedes \(P_j \) and \(P_j \) precedes \(H_i \) in \(G \). The last equality implies that \(h_{h(j)} \) also maximizes the utility of \(P_j \) given \(w(t) \), and thus \(P_j \) will not choose \(H_i \) according to our tie-breaking rule, namely, \(d_{ij}(t) = 0 \).

Accordingly, \(d_i(t) \leq |h^{-1}(i)| \leq \lambda_i \), and Statement (1) holds.

Statement (2) simply follows from the fact that, when \(w(t) = \bar{w} \), the patients choose their hospitals according to the unique equilibrium \((\bar{w}, \bar{h}, \lambda)\), and thus \(d_i(t) = |h^{-1}(i)| = \lambda_i \) for every \(i \) such that \(\bar{w}_i > 0 \), and \(d_i(t) = |h^{-1}(i)| \leq \lambda_i \) for every \(i \) such that \(\bar{w}_i = 0 \).

To prove Statement (3), it suffices to show that when \(w(t) < \bar{w} \), there exists some hospital \(H_i \) with \(d_i(t) > \lambda_i \). For the sake of contradiction, assume \(d_i(t) \leq \lambda_i \) \(\forall i \). We shall construct a new demand vector \((d'_{ij}(t))_{i \in [k], j \in [m]} \) such that

\[
d'_{ij}(t) \in \{0, 1\} \forall i, j, \text{ and } d'_i(t) \triangleq \sum_j d'_{ij}(t) \leq \lambda_i \forall i.
\]

To do so, consider the demand graph \(G(t) \) with respect to \(w(t) \). For each \(H_i \) and \(P_j \), \(d_{ij}(t) > 0 \) implies that \(H_i \) and \(P_j \) are adjacent in \(G(t) \). Since the patient population is independent, \(G(t) \) is a forest with hospitals and patients alternating along each path, as in the proof of Theorem 3.
To begin with, let \(d'_{ij}(t) = 0 \) \(\forall i, j \), and \(\lambda'_i = \lambda_i \) \(\forall i \). We have \(d_i(t) \leq \lambda'_i \) \(\forall i \) by definition. In the procedure of the construction, for each \(H_i \), \(\lambda'_i \) denotes its remaining quota, after some patients have been assigned to it. It will be invariant that
\[
d'_i(t) + \lambda'_i = \lambda_i \ \forall i, \quad d_i(t) \leq \lambda'_i \ \forall i, \quad \text{and} \quad \sum_{i \in [k]} d_{ij}(t) = 1 \ \forall P_j \ \text{in the graph.} \tag{9}
\]

In the first step of the construction, we arbitrarily choose a leaf and distinguish two cases. If the chosen leaf is a patient, say \(P_j^* \), then let the unique adjacent hospital be \(H_i^* \). We have
\[
d_{ij^*}(t) = 0 \ \forall i \neq i^*, \quad \text{and} \quad d_{i^*j^*}(t) = 1 \leq d_{i^*}(t) \leq \lambda'_{i^*}.
\]
Set \(d'_{i^*j^*}(t) = 1 \), \(d_{i^*j^*}(t) = 0 \), and \(\lambda'_{ij^*} = \lambda'_{i^*} - 1 \), and remove \(P_{j^*} \) from the graph. That is, \(P_{j^*} \) is assigned to \(H_i^* \) and occupies 1 quota there. Notice that the invariance remains. Indeed, \(d'_{i^*}(t) \) increases by 1 and \(\lambda'_{i^*} \) decreases by 1, both \(d_{i^*}(t) \) and \(\lambda'_{i^*} \) decrease by 1, and everything else remains unchanged.

If the chosen leaf is a hospital, say \(H_i^* \), then let the unique adjacent patient be \(P_{j^*} \). We have
\[
0 \leq d_{i^*j^*}(t) = d_{i^*}(t) \leq \lambda'_{i^*}.
\]
If \(\lambda'_{i^*} \geq 1 \) (this is true in the first step, but may not be true later), then set \(d'_{i^*j^*}(t) = 1 \), \(d_{i^*j^*}(t) = 0 \) \(\forall i \), and \(\lambda'_{ij^*} = \lambda'_{i^*} - 1 \). Remove \(P_{j^*} \) and all adjacent degree-1 hospitals from the graph. That is, \(P_{j^*} \) is assigned to \(H_i^* \), and for any other hospital \(H_i \) with \(P_{j^*} \) the only adjacent patient, no patient will be assigned to it and \(d'_{i}(t) \) will remain 0. Notice that the invariance remains. Indeed, \(d'_{i^*}(t) \) increases by 1 and \(\lambda'_{i^*} \) decreases by 1, \(d_{i^*}(t) = d_{i^*j^*}(t) = 0 \) and \(\lambda'_{i^*} \) is non-negative, for any \(i \neq i^* \) \(d_{i^*}(t) \) either decreases or remains unchanged, and everything else remains unchanged.

If \(\lambda'_{i^*} = 0 \) (this does not happen in the first step, but may happen in later steps), then \(d_{i^*j^*}(t) = 0 \) as well and we simply remove \(H_i^* \) from the graph, keeping the invariance.

Repeat the above step, and after at most \(m + k \) rounds we finish processing all nodes. In the end, all the \(d'_{ij}(t) \)'s are either 0 or 1, and \(d'_i(t) \leq \lambda_i \ \forall i \). Accordingly, the \(d'_{ij}(t) \)'s correspond to an equilibrium assignment with waiting time \(w(t) \), contradicting the fact that \(\bar{w} \) is the minimum equilibrium waiting time vector with respect to \(\lambda \).

Therefore Statement (3) holds.

Letting \(MSW = \sum_{j \in [m]} \max_{i \in [k]} v_{ij} \) and \(\lambda_{\max} = \max_{i \in [k]} \lambda_i \), we have the following theorem.

Theorem 5. When the patient population is independent, the dynamics converges to \(\bar{w} \) in time \(t \leq MSW \cdot \lambda_{\max} \).

Proof. Similar to [8], we consider the following potential function:
\[
P(t) \triangleq \sum_{i \in [k]} \lambda_i w_i(t) + \sum_{j \in [m]} u_j(t),
\]
where \(u_j(t) \triangleq \max_{i \in [k]} v_{ij} - w_i(t) \). By Theorem 3 we have \(\min_{i \in [k]} \bar{w}_i = 0 \). By Theorem 5.2 we have that before the dynamics converges, \((0, \ldots, 0) \leq w(t) < \bar{w} \) for any \(t \), and thus \(\min_{i \in [k]} w_i(t) = \min_{i \in [k]} \bar{w}_i = 0 \). Accordingly, \(u_j(t) \geq 0 \) for each \(P_j \), and \(P(t) \geq 0 \). As \(P(0) = MSW \) to begin with, it suffices to prove that \(P(t) \) strictly decreases, and the decreasing rate is at least \(1/\lambda_{\max} \).

To do so, notice that
\[
P(t) = \sum_i \lambda_i w_i(t) + \sum_j d_j(t)(v_{ij} - w_i(t))
\]
\[
= \sum_i \lambda_i w_i(t) - \sum_i (\sum_j d_{ij}(t))w_i(t) + \sum d_{ij}(t)v_{ij}
\]
\[
= \sum_i (\lambda_i - d_i(t))w_i(t) + \sum d_{ij}(t)v_{ij}.
\]
Thus for any arbitrarily small $\delta > 0$, by definition we have

$$
P(t + \delta) - P(t) = \sum_{i} (\lambda_i - d_i(t + \delta))w_i(t + \delta) - (\lambda_i - d_i(t))w_i(t) + \sum_{i,j} d_{ij}(t + \delta)v_{ij} - \sum_{i,j} d_{ij}(t)v_{ij}
$$

$$
= \sum_{i} (w_i(t + \delta) - w_i(t)) (\lambda_i - d_i(t)) - \sum_{i} w_i(t + \delta) d_i(t + \delta) + \sum_{i} w_i(t + \delta) d_i(t) + \sum_{i,j} d_{ij}(t + \delta)v_{ij} - \sum_{i,j} d_{ij}(t)v_{ij}
$$

$$
= \sum_{i} (w_i(t + \delta) - w_i(t)) (\lambda_i - d_i(t)) + \sum_{i,j} (d_{ij}(t + \delta) - d_{ij}(t)) (v_{ij} - w_i(t + \delta))
$$

Since $w(t)$ is continuous, we have $\lim_{\delta \to 0} v_{ij} - w_i(t + \delta) = v_{ij} - w_i(t)$. Since the patients only choose hospitals that maximize their utilities, for any i,j such that $v_{ij} - w_i(t + \delta) < u_j(t)$, we have $d_{ij}(t) = 0$ and $d_{ij}(t + \delta) = 0$ for arbitrarily small δ. That is, for each P_j,

$$
\sum_{i:v_{ij} - w_i(t) = u_j(t)} d_{ij}(t) = \sum_{i:v_{ij} - w_i(t) = u_j(t)} d_{ij}(t + \delta) = 1.
$$

Combining this equation with Equation 7 we have

$$
\lim_{\delta \to 0} \frac{P(t + \delta) - P(t)}{\delta} = \sum_{i:w_i(t) > 0 \text{ or } d_i(t) \geq \lambda_i} \frac{(d_i(t) - \lambda_i)^2}{\lambda_i} + \sum_{j} u_j(t) \lim_{\delta \to 0} \frac{\sum_{i:v_{ij} - w_i(t) = u_j(t)} (d_{ij}(t + \delta) - d_{ij}(t))}{\delta}
$$

$$
= \sum_{i:w_i(t) > 0 \text{ or } d_i(t) \geq \lambda_i} \frac{(d_i(t) - \lambda_i)^2}{\lambda_i} + \sum_{j} u_j(t) \lim_{\delta \to 0} \frac{1 - 1}{\delta}
$$

$$
= \sum_{i:w_i(t) > 0 \text{ or } d_i(t) \geq \lambda_i} \frac{(d_i(t) - \lambda_i)^2}{\lambda_i}.
$$

By Statement (3) of Theorem 2, there exists some hospital H_i such that $d_i(t) > \lambda_i$, and thus

$$
\lim_{\delta \to 0} \frac{P(t + \delta) - P(t)}{\delta} \leq \frac{1}{\lambda_i} \leq \frac{1}{\lambda_{max}}.
$$

Therefore $P(t)$ decreases at speed at least $1/\lambda_{max}$ and the dynamics converges to \bar{w} in time at most $MSW \cdot \lambda_{max}$, as desired.

6 The Optimality of the Randomized Assignment

Although waiting time is widely used to ration demand in economic settings, it may burn a lot of social welfare, since the time waited is not beneficial to anybody. Therefore in this section, we study different allocation schemes in healthcare and give evidence that the government can avoid
the welfare-burning effect of waiting times by limiting the choices available to the patients. In particular, we show that the randomized assignment is actually optimal in terms of social welfare in many cases.

Following our discussion in Section 1, we consider the case of two hospitals, a “good” one H_1 and a “bad” one H_0, with costs $c_1 > c_0$. As already said, whoever prefers H_0 can be directly assigned there and we do not consider them in our setting any more. The patients preferring H_1 are indexed by the interval $[0, 1]$, and each patient x is associated with a value $v(x)$, indicating how long he is willing to wait at H_1 to be treated there instead of H_0. We assume that the patients have been renamed and normalized, so that $v(x)$ is non-decreasing and $v(0) = 0$. Since the number of patients is infinite, we talk about the cost density $c_i(x)$ of each hospital, rather than the cost for serving a single patient. Without loss of generality, $c_1(x) \equiv 1$ and $c_0(x) \equiv 0$. The government has budget $B \in (0, 1)$, meaning that at most a B fraction of the patients can be served at H_1. The government’s goal is to maximize the expected social welfare subject to the requirement that the budget constraint is satisfied in expectation.

In the randomized assignment, the government assigns each patient to H_1 with probability p and waiting time 0. The budget constraint gives

$$\int_0^1 pc_1(x)dx = p = B,$$

and the corresponding social welfare, denoted by SW_r, is

$$SW_r = \int_0^1 pv(x)dx = B \int_0^1 v(x)dx. \quad (10)$$

Below we compare this social welfare with that of lotteries.

Definition 7. A contract is a pair (p, w), where $p \in [0, 1]$ is the probability of assigning a patient to H_1, and $w \geq 0$ is the waiting time for that patient at H_1.

A lottery consists of a set of contracts, denoted by the domain $D \subseteq [0, 1]$ of the probabilities, and the waiting time function $w(p)$ defined over D.

Given a contract $C = (p, w)$ for patient x, the expected utility of x is

$$u(x, C) = p \cdot (v(x) - w).$$

Given a lottery $L = (D, w(p))$, each patient x chooses the contract $C(x) = (p(x), w(p(x)))$ maximizing his expected utility. Namely, for each $p \in D$,

$$u(x, C(x)) \geq u(x, (p, w(p))).$$

If there are more than one values of p that maximize the expected utility of x, we assume that $p(x)$ is the smallest one, so that the cost of serving patient x is minimized. Notice that $p(x)$ depends on x only indirectly, via the function $v(x)$: indeed, $p(x) = p(x')$ whenever $v(x) = v(x')$. Thus we can write $p(x)$ as $p(v(x)).$

As an example, the randomized assignment is a lottery with $D = \{B\}$ and $w(B) = 0.15$. As another example, any equilibrium assignment is also a lottery, with $D = [0, 1]$ and $w(p)$ always equal to the waiting time of H_1 specified by the equilibrium. Indeed, for every patient x, the contract maximizing his expected utility is to go to the hospital assigned by the equilibrium with probability 1.

\[15\] In general D can be a proper subset of $[0, 1]$, as the government may not offer the whole interval $[0, 1]$ for the patients to choose from.
Without loss of generality, we assume that \(D \) is a subinterval of \([0, 1]\), denoted by \([a, b]\). Indeed, if a patient can choose between \((p_1, w(p_1))\) and \((p_2, w(p_2))\) according to the lottery, then by using a “mixed strategy” he can choose to be assigned to \(H_1 \) with any probability \(p = \alpha p_1 + (1 - \alpha)p_2 \) with \(\alpha \in [0, 1] \), and corresponding expected waiting time \(\alpha p_1 w(p_1) + (1 - \alpha)p_2 w(p_2) \).

Also without loss of generality, we assume that the patients’ expected waiting time function \(p \cdot w(p) \) is convex, and thus differentiable almost everywhere. Indeed, for any contracts \(C_1 = (p_1, w(p_1)), C_2 = (p_2, w(p_2)) \), and \(C = (p, w(p)) \) with \(p = \alpha p_1 + (1 - \alpha)p_2 \) for some \(\alpha \in [0, 1] \), if \(p \cdot w(p) > \alpha p_1 w(p_1) + (1 - \alpha)p_2 w(p_2) \), then a patient is always better off by mixing between \(C_1 \) and \(C_2 \) instead of choosing \(C \). Thus we may simply assume that \(p \cdot w(p) \leq \alpha p_1 w(p_1) + (1 - \alpha)p_2 w(p_2) \).\(^{16}\)

The social welfare and the budget constraint are naturally defined for lotteries, as follows.

Definition 8. Given a lottery \(L = ([a, b], w(p)) \) and the contracts \((p(x), w(p(x)))\) chosen by the patients \(x \in [0, 1] \), letting \(u(x) \triangleq u(x, (p(x), w(p(x)))) \), the social welfare of \(L \), denoted by \(SW_L \), is

\[
SW_L = \int_0^1 u(x) dx.
\]

Lottery \(L \) is feasible if the budget constraint is satisfied, namely, \(\int_0^1 p(x) dx = B \).

Notice that we require a feasible lottery to use up all the budget. This is again without any loss of generality, since our theorem below implies that any lottery with cost \(B' < B \) is beaten by the randomized assignment with budget \(B' \), and thus by the one with budget \(B \).

We assume that the expected waiting time function \(pw(p) \) is piece-wise twice differentiable in \(p \). Notice that, although assuming twice differentiability of \(pw(p) \) over the whole domain is too much, assuming it piece-wisely is quite natural. For example, the government may use different \(w(p) \)’s for different intervals of \(p \), but inside each interval it uses a smooth \(w(p) \). Both the randomized assignment and equilibrium assignments trivially satisfy this assumption.

The following theorem shows that, when the distribution of the patients’ valuations accumulates toward the higher-value side, the randomized assignment is optimal compared with any lottery. Since equilibrium assignments are special cases of lotteries, the randomized assignment is optimal compared with them as well.

Theorem 6. For any concave valuation function \(v(x) \) and any feasible lottery \(L = ([a, b], w(p)) \), we have \(SW_r \geq SW_L \).

Proof. As the choice of \(p(x) \) maximizes the utility of \(x \), for any \(\Delta > 0 \) patient \(x \) prefers contract \(C(x) = (p(x), w(p(x))) \) to contract \(C(x + \Delta) = (p(x + \Delta), w(p(x + \Delta))) \), and patient \(x + \Delta \) prefers \(C(x + \Delta) \) to \(C \). That is,

\[
u(x) = p(x)[v(x) - w(p(x))] \geq p(x + \Delta)[v(x) - w(p(x + \Delta))],
\]

and

\[
u(x + \Delta) = p(x + \Delta)[v(x + \Delta) - w(p(x + \Delta))] \geq p(x)[v(x + \Delta) - w(p(x))].
\]

Accordingly,

\[
v(x) \cdot \Delta p(x) \leq \Delta(p(x) \cdot w(p(x))), \quad \text{and} \quad v(x + \Delta) \cdot \Delta p(x) \geq \Delta(p(x) \cdot w(p(x))). \tag{11}
\]

As \(pw(p) \) is piece-wise twice differentiable, all the differential equations and statements made in this paragraph hold piece-wisely, and we shall not mention the piece-wisely again and again. To begin with, letting \(\Delta \to 0 \) in Equation 11, we have (with variable \(x \) omitted for conciseness)

\[
v = \frac{d(pw(p))}{dp}, \tag{12}
\]

\(^{16}\)Notice that \(w(p) \) itself may not be convex.
where the function on the right-hand side is well defined and differentiable in \(p \). As \(p(v) \) is the inverse of Equation 12, it is differentiable in \(v \). As \(v(x) \) is concave, it is differentiable in \(x \) almost everywhere. Thus \(p(x) = p(v(x)) \) is differentiable in \(x \). Accordingly, we have

\[
du(x) = dp \cdot (v - w) + p \cdot (dv - dw) = p \cdot dv + v \cdot dp - (w \cdot dp + p \cdot dw) \\
= p \cdot dv + v \cdot dp - d(p \cdot w) = p \cdot dv + v \cdot dp - v \cdot dp = p \cdot dv.
\]

(Notice that \(p(v) \) and \(p(x) \) may not be continuous functions, but we only need them to be “nice” piece-wisely.)

Now putting all the pieces together and integrating both sides of Equation 13 over the whole domain, we have

\[
u(x) = \int_0^{v(x)} p(\hat{v})d\hat{v}.
\]

As \(v(x) \) is non-decreasing and concave, we have that \(\hat{v}'(x) \geq 0 \) and \(\hat{v}'(x) \) is non-increasing. If there exists \(x < 1 \) such that \(\hat{v}'(x) = 0 \), then let \(x_0 \) be the smallest number with \(\hat{v}'(x_0) = 0 \); otherwise (i.e., \(v(x) \) is strictly increasing) let \(x_0 = 1 \). We have that \(v(x) \) is strictly increasing on \([0, x_0] \) and constant on \([x_0, 1] \). Let \(v_0 = v(x_0) \). Following Equation 14 the social welfare of lottery \(L \) is

\[
SW_L = \int_0^1 u(x)dx = \int_0^1 \int_0^{v(x)} p(\hat{v})d\hat{v}dx = \int_0^{v_0} \int_0^1 p(\hat{v})d\hat{v}dx + \int_{x_0}^1 \int_0^{v_0} p(\hat{v})d\hat{v}dx \\
= \int_0^{v_0} \left(\int_{v^{-1}(\hat{v})}^{x_0} dx \right) d\hat{v} + \int_{x_0}^{v_0} \left(\int_{v_0}^1 dx \right) d\hat{v} \\
= \int_0^{v_0} p(\hat{v}) \cdot (x_0 - v^{-1}(\hat{v}))d\hat{v} + \int_{x_0}^{v_0} p(\hat{v}) \cdot (1 - x_0)d\hat{v} \\
= \int_0^{x_0} p(x)(x_0 - x)v'(x)dx + \int_{x_0}^{v_0} p(x)(1 - x_0)v'(x)dx \\
= \int_0^{x_0} p(x)(1 - x)v'(x)dx.
\]

Similarly, the social welfare of the randomized assignment can be written as

\[
SW_r = \int_0^1 Bv(x)dx = \int_0^1 \int_0^{v(x)} Bdvdx = \int_0^{v_0} \int_0^1 Bdvdx + \int_{x_0}^1 \int_0^{v_0} Bdvdx \\
= \int_0^{v_0} \int_{v^{-1}(\hat{v})}^{x_0} Bdv\hat{v} + \int_{x_0}^{v_0} \int_{v_0}^1 Bdv\hat{v} = \int_0^{v_0} B(x_0 - v^{-1}(\hat{v}))d\hat{v} + \int_{x_0}^{v_0} B(1 - x_0)d\hat{v} \\
= \int_0^{x_0} B(x_0 - x)v'(x)dx + \int_{x_0}^{v_0} B(1 - x_0)v'(x)dx = \int_0^{x_0} B(1 - x)v'(x)dx.
\]

To prove \(SW_r - SW_L \geq 0 \), below we first show that \(p(x) \) is non-decreasing. To do so, again notice that \(p(x) \) maximizes the expected utility of \(x \). Thus for any two patients \(x_1 < x_2 \), we have

\[
u(x_1) = p(x_1)(v(x_1) - w(p(x_1))) \geq p(x_2)(v(x_1) - w(p(x_2)))
\]

and

\[
u(x_2) = p(x_2)(v(x_2) - w(p(x_2))) \geq p(x_1)(v(x_2) - w(p(x_2))).
\]

Thus \(p(x_2)(v(x_2) - v(x_1)) \geq p(x_1)(v(x_2) - v(x_1)) \). If \(v(x_2) = v(x_1) \) then \(p(x_2) = p(x_1) \) (as we already said, \(p(x) \) only depends on \(v(x) \)), otherwise \(p(x_2) \geq p(x_1) \). That is, the function \(p(x) \) is non-decreasing.
As L is feasible, we have $\int_0^1 p(x)dx = B$. Since $v(x)$ is constant on $[x_0, 1]$, so is $p(x)$. Therefore $p(x_0) \geq B$. Accordingly, there exists $x_B \in [0, x_0]$ such that $p(x) \leq B$ for all $x < x_B$, and $p(x) \geq B$ for all $x \geq x_B$. Thus we have

$$SW_r - SW_L = \int_0^{x_0} (B - p(x))(1 - x)v'(x)dx + \int_{x_B}^{x_0} (B - p(x))(1 - x)v'(x)dx.$$

Notice that the value of $p(x_B)$ does not affect the value of the integration, thus without loss of generality we assume $p(x_B) = B$.

Again because $v'(x)$ is non-negative and non-increasing, for any $x \leq x_B$, we have $(1 - x)v'(x) \geq (1 - x_B)v'(x_B) \geq 0$. Because $B - p(x) \geq 0$ for all $x \leq x_B$, we have

$$(B - p(x))(1 - x)v'(x) \geq (B - p(x))(1 - x_B)v'(x_B).$$

Similarly, for any $x \geq x_B$, we have $0 \leq (1 - x)v'(x) \leq (1 - x_B)v'(x_B)$ and $B - p(x) \leq 0$, which again implies

$$(B - p(x))(1 - x)v'(x) \geq (B - p(x))(1 - x_B)v'(x_B).$$

Thus

$$SW_r - SW_L \geq \int_0^{x_B} (B - p(x))(1 - x)v'(x_B)dx + \int_{x_B}^{x_0} (B - p(x))(1 - x)v'(x_B)dx = (1 - x_B)v'(x_B)\int_0^{x_0} (B - p(x))dx.$$

Following the budget constraint we have

$$\int_0^1 p(x)dx = \int_0^{x_0} p(x)dx + p(x_0)(1 - x_0) = B = \int_0^{x_0} Bdx + B(1 - x_0),$$

and thus

$$\int_0^{x_0} (B - p(x))dx = (p(x_0) - B)(1 - x_0).$$

Therefore

$$SW_r - SW_L \geq (1 - x_B)v'(x_B)(p(x_0) - B)(1 - x_0) \geq 0,$$

where the second inequality is because $x_B \leq 1$, $v'(x_B) \geq 0$, $p(x_0) \geq B$, and $x_0 \leq 1$.

In sum, no feasible lottery can generate more social welfare than the randomized assignment, and Theorem 6 holds.

\[\square\]

Remark 4. Notice that the analysis above holds as long as $(1 - x)v'(x)$ is non-increasing. Thus the randomized assignment is optimal compared with any lottery even for some convex valuation function, such as $v(x) = e^x$. It would be interesting to fully characterize the condition under which the randomized assignment is optimal.

References

