
Power-Aware Rateless Codes in Mobile

Wireless Communication

Calum Harrison
University College London

c.harrison@cs.ucl.ac.uk

Kyle Jamieson
University College London

k.jamieson@cs.ucl.ac.uk

ABSTRACT
Rateless error correction codes hold great potential for in-
creasing the capacity of practical wireless networks by ob-
viating the need for transmitters to estimate the highest re-
liable rate of an unpredictable wireless channel and send
information at that rate. But the accumulation and inten-
sive processing of noisy bits works against rateless codes’
adoption in mobile devices, where energy is at a premium
due to limited battery capacity. In this work, we identify
a new tradeoff between energy efficiency and wireless ca-
pacity that rateless codes can make in low signal-to-noise
ratio or highly variable “grey zone” conditions. We propose
Power-Aware Rateless Codes (PRC), a design that integrates
with the medium access control portion of a rateless wire-
less system, giving the system a way of selectively sacrific-
ing small amounts of wireless capacity for large savings in
decoder computation effort, thus reducing radio power con-
sumption in challenging radio environments.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design—Wireless; D.2.8 [Software Engineer-
ing]: Metrics—Wireless communication

General Terms
Algorithms, Design, Performance

Keywords
Wireless, Rateless, IRA, Capacity, Power Aware

1. INTRODUCTION
Rateless codes for noisy channels [8, 9, 17] hold great po-

tential for increasing the capacity of practical wireless net-
works by obviating the need for transmitters to adapt to the

This material is based on work supported by the European Research Council
under Grant No. 279976. Permission to make digital or hard copies of all
or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Hotnets ’12, October 29–30, 2012, Seattle, WA, USA.
Copyright 2012 ACM 978-1-4503-1776-4/10/12 ...$10.00.

unpredictable wireless channel, estimate the highest reliable
rate, and send information at that rate. Instead, the transmit-
ter simply sends at a very high rate, while the receiver accu-
mulates received information in a graph [8], trellis [17], or
matrix [9] structure, periodically making decoding attempts
and notifying the transmitter when successful. At moments
when the channel is poor, the error-correcting capabilities of
the rateless code compensate for the high transmission rate,
fixing bit errors. At moments when the channel is strong, the
high transmission rate implies a high communication rate.

Such rateless codes thus approach the Shannon rate of a
point-to-point channel, even when the wireless channel is
quickly and randomly varying in quality, is very poor, or
both. Furthermore, rateless codes seem a good choice for
an energy efficient decoder because compared to fixed-rate
codes, they are able to achieve a higher rate at similar SNRs
and do not require a full retransmission on decoding failure.
This greatly reduces the time that transmitter and receiver
radios are active, potentially saving energy.

But the required accumulation and intensive processing
of information works against the energy efficiency of rate-
less codes, especially in mobile devices where energy is at a
premium due to limited battery capacity. In fact, in order to
approach Shannon capacity, existing approaches require the
decoder to work increasingly harder as signal to noise ratio
(SNR) decreases, consuming more energy on the margin for
the same relative capacity (bits per channel use) gains.

Consider a mains-powered access point transmitting rate-
lessly-coded information on the downlink to a battery pow-
ered mobile. Before the access point’s first transmission,
it estimates how much information to send to the mobile,
and sends slightly more than that estimate. When the chan-
nel is stationary, the estimate will be accurate, but in the
presence of mobility, bursty interference, or environment-
induced channel fading, it may be well off. Once it has re-
ceived the first transmission, the mobile decodes, expend-
ing considerable computational resources. If the decoding
attempt fails, the mobile negatively acknowledges the trans-
mission, collects information from a second transmission,
and makes another decoding attempt, wasting energy.

We propose Power-Aware Rateless Codes (PRC), rateless
codes whose decoder integrates with medium access con-

trol, giving the system a way of selectively sacrificing small
amounts of wireless capacity for large savings in decoder
computation effort. Leveraging the fact that decoders for
graph-based codes break processing up into many small it-
erations, PRC works as follows. After the very first few it-
erations of decoding (i.e., before expending significant com-
putational resources on decoding the entire packet success-
fully) the PRC decoder uses internal decoder metrics to esti-
mate the likelihood of the entire decoding attempt being suc-
cessful, with a modest amount of processing effort. Then, it
makes a decision about whether to proceed based on:
• Whether the receiver is battery- or mains-powered.
• If battery-powered, the desired wireless performance level,

determined by the scarcity of wireless capacity at that par-
ticular moment (or lack thereof).

• If battery-powered, the amount of energy remaining and
the user’s preference for conserving battery energy.

If the PRC receiver decides not to proceed with the decod-
ing attempt, it aborts decoding for that transmission, thus
conserving power. The receiver retains all the received bits,
and requests another transmission from the sender.

The contributions of this paper are:
1. The identification of a new tradeoff between energy effi-

ciency and wireless capacity that graph-based codes can
make in low or highly variable SNR regimes.

2. A novel graph-based code that offers higher ergodic com-
munication rates over Spinal Codes [17] and Strider [9],
while simultaneously reducing power consumption.
With simulation-based experiments, we show that it is

possible to construct a high capacity graph-based rateless
code that is simultaneously able to quickly abort its decoding
effort based on early estimates of the likelihood of decod-
ing success. Evaluated as a whole, PRC (including MAC
protocol) slightly increases the fraction of Shannon capac-
ity achievable in the 21–25 dB SNR range while simultane-
ously requiring between one and two orders of magnitude
fewer instructions than Spinal codes, and remaining highly
competitive in terms of capacity outside that SNR range.

In the next section, we summarize related work in rateless
codes from a power-efficiency standpoint and introduce the
reader to rateless graph-based codes, the codes upon which
our proposed approach is based. Sections 3 and 4 present the
design and a preliminary performance evaluation of PRC,
respectively, and Section 5 closes.

2. RELATED WORK AND PRIMER ON
GRAPH-BASED CODES

In this section we survey recent work in rateless coding
from the perspective of energy efficiency, then present a primer
on existing graph-based codes to allow the reader to contrast
the novel graph-based code we describe in §3.

We begin with the decoder for a Spinal code, shown in
Figure 1. Each level of the decoding tree corresponds to a
block of k bits in the n-bit packet, and each of the 2

k edges
emanating from a node correspond to the 2

k possible mes-

...
...

...
...

2k

...2k

n/k levels (one per spine)

...

s0

s1

... B leaves

sn/k

... ...

Figure 1: In the Spinal Code decoder, earlier iterations
process earlier bits in the packet, while later iterations
process successively larger prefixes of packet bits.

permutation

...

...

+ + + ++

data nodes

check nodes
accumulator

parity nodes

Figure 2: In a graph-based code such as an Irregular
Repeat-Accumulate (IRA) code, data nodes connect to
an accumulator through a permutation. On each of its
iterations, the belief propagation decoder allocates pro-
cessing power roughly uniformly across all data bits.

sages in the corresponding k-bit block. As a result, informa-
tion received at level l tells the decoder about levels l and
lower (possibly fixing earlier bit errors), but not about levels
higher than l. Consequentially, while Spinal codes achieve
a rate close to Shannon capacity, the decoder may not know
whether the entire packet will decode or not until it has pro-
cessed all of the received information.

Strider [9] works by forming random linear combinations
of encoded data blocks as follows:

0

BBB@

packet 1
packet 2

...
packet M

1

CCCA
= R

0

BBB@

coded block 1
coded block 2

...
coded block K

1

CCCA
(1)

where R is an M⇥K matrix containing random coefficients.
Given the M received packets on the left hand side of Equa-
tion 1, Strider’s decoder first uses all M packets to decode
coded block 1, subtracts the effect of coded block 1 from
the packets on the left hand side, and reduces the number of
columns of R by one. The decoder continues iteratively un-
til all coded blocks are decoded. Since Strider’s decoder uses
all received packets to decode each coded block, an approach
similar to the one we propose here may be possible; we leave
an investigation of such an approach for future work.

2

+

data bit

check node
u2 u3

u3 = atanh(tanh(d1) tanh(d2)) d1 d2

d1 = r + u2 + u3

r

Figure 3: In a binary decoder, the “down” message a
data bit produces is the sum of the up messages not inci-
dent on the message’s edge while the “up” message from
a check bit diminishes in certainty if any of the con-
stituent down messages is uncertain.

2.1 Rateless graph-based codes
Many different types of rateless graph-based codes exist,

but they can all be described by a graph such as the one in
Figure 2. Here, the information to be communicated is as-
sociated with the data nodes in the graph, while the check
nodes represent a constraint on the information, most of-
ten that the connected data nodes sum to zero. The data
nodes are connected to the accumulator through a random
edge permutation, as shown in the figure.

LT [14], Online [16], Raptor [7], Rate-Compatible LDPC
[10], and Irregular Repeat-Accumulate (IRA) [12] codes all
play on this theme with different graph structures and pre-
coding steps to optimize performance. Such codes have also
found use in rateless content distribution on the Internet [4].

The belief propagation decoder of a graph-based code con-
sists of the same graph, where each of the data and parity
nodes carries information r about the received bits as dis-
torted by the wireless channel, as shown in Figure 3. The
belief propagation decoder operates in iterations, where one
iteration consists of all data nodes passing messages out of
each incident edge, followed by all check nodes passing mes-
sages out of each incident edge. In graph based codes, data
nodes can represent bits, or elements of a finite field of size
q (GF(q)). If data nodes represent bits, then each message is
a log-likelihood ratio (LLR) of the two possibilities for the
bit, log Pr(b=1)

Pr(b=0) . Otherwise, each message is a probability
vector of size q where each element of the vector represents
the probability that the data is that value in GF(q).

For a binary code, all messages are LLRs, with a large
positive LLR indicating strong confidence in a “1”, a large
negative LLR indicating strong confidence in a “0”, and an
LLR small in absolute value indicating a weak confidence in
that bit. Referring to Figure 3, the down message a data node
generates on an edge (d1, e.g.) is the sum of all information
known about the data with the exception of the information
from the edge over which the message departs: r+ u2 + u3.
The up message a check node generates on an edge (u3, e.g.)
is a function of the down messages arriving from connected
data nodes, with the exception of the down message arriving
over the edge the up message departs. It can be shown that
the correct function to use to combine these messages is the
hyperbolic tangent [3], but intuitively, the up message from
the check node tends to be low confidence (close to zero) if
any of its constituent down messages are zero. These con-

fe

a cb

+ ++ +

g

d

...

...

... ...

...

...e

a cb

++ +

g

d

...

...

... ...

...

...
⟶

Figure 4: Check splitting reduces the code rate.

cepts generalize to higher-order finite fields; for brevity we
omit details, but refer the reader to the literature [6], et al.

Some strategies for early termination in a belief propaga-
tion decoder have been proposed, primarily focusing on bi-
nary LDPC decoders [13], as well as Raptor [11] and GF(2q)
[5] codes. These works focus on either the sum of symbol
variances or the change in the number of incorrect bits from
iteration to iteration. Informal testing suggests that our more
sophisticated halting criterion halts decoding in fewer itera-
tions, but we leave a comparative experimental evaluation as
future work.

For our purposes in designing an energy-aware decoder,
the belief propagation decoder has a very useful property.
Referring to Figure 2, since data nodes are connected to
parity nodes through a random permutation, within a small
number of decoder iterations, it is highly likely that a ran-
domly-chosen pair of data nodes will have been tested against
each other by some check node. This observation is the start-
ing point of our energy-aware decoder design (§3.2).

3. DESIGN
In this section, we describe PRC’s code design (§3.1), de-

coder (§3.2), and medium access control protocol (§3.3).

3.1 Graph-based code
Recent work on Irregular Repeat-Accumulate (IRA) codes

over high-order finite fields has shown that they come ex-
tremely close to capacity on the Additive White Gaussian
Noise (AWGN) channel for short packet sizes [6]. Moti-
vated by this positive result on one-dimensional noisy chan-
nels, we base PRC’s code on an IRA code designed for the
two-dimensional Quadrature Amplitude Modulation (QAM)
channel that wireless networks use.

We have designed two codes: a GF(256) code that has su-
perior capacity properties (§4.2), and a binary code that has
superior power-consumption properties (§4.3). Our codes
use check splitting and combining techniques [8], whereby
a single high-degree check node is split into two or more
check nodes of lower degree, as shown in Figure 4.

3.2 Decoder
As observed in §2, each data node xi in a graph-based

code is associated with a numerical confidence in that node’s
correctness. This is the LLR in the case of a binary code, and
the data node’s variance across its probability vector

�

2
i =

q�1X

k=0

(Pr (xi = k)� µi)
2

3

for a GF(q) code, where µi =
1
N

Pq�1
k=0 Pr (xi = k).

The distribution of all data nodes’ �2
i values s essentially

the distribution (across data nodes) of decoder confidences,
quantities that change with each iteration of the decoder as
it passes messages into and out of check nodes, testing the
constraints that the check nodes enforce.

After each transmission from the sender, PRC tracks mul-
tiple variance order statistics (VOSs) in its decoder on ev-
ery iteration, monitoring their trajectories so as to predict
whether the packet will eventually decode. Notice that this
is a multi-stage decision process: at any iteration the decoder
may abort its decoding effort and request more bits.

On receiving each transmission the receiver uses standard
communications techniques to estimate the average SNR over
the packet’s preamble. While collisions or fading may im-
pact the body of the packet in different ways than the pream-
ble, we take this simple approach as a starting point, leaving
SNR estimation over all received bits to future work.

The PRC decoder proceeds in iterations, estimating the
derivative of each VOS by averaging the slope across the
three preceding samples. We term a VOS active if this es-
timate predicts that the packet will decode in ⌦ iterations,
where ⌦ is the average number of iterations required to de-
code at the estimated SNR.

Halting algorithm.
PRC halts decoding if the derivative of the VOS for per-

centiles above the 50

th percentile decreases to the point that
if the derivative were to remain constant it would not achieve
95% of the maximum possible variance. This will result in
the early termination of some packets that would otherwise
succeed. However, for a small capacity cost the decoder will
succeed in much fewer iterations after receiving additional
data, and so the total cost of decoding is generally lower.
It also halts decoding if the derivative of an active VOS for
percentiles below 50% becomes negative. If it runs for ⌦

iterations without succeeding or halting, PRC halts decod-
ing more readily: if sufficient progress has not been made
(i.e. any VOSs above the 10

th are inactive), or if any VOS’s
derivative over a single iteration becomes negative.

Let’s examine how PRC would behave during decoding of
the four packets in Figure 5. Packet (1) would not be inter-
rupted, and successfully decodes. Packet (2) would decode
as normal, but at iteration 8, when the derivative of the 20

th

percentile statistic becomes negative, PRC halts decoding.
Early termination of decoding in this instance marginally re-
duces the rate achieved, but saves energy as the packet de-
codes in very few iterations with more data. Packet (3) is an
undecodable packet that has been slowly improving through-
out decoding, however, at ⌦ it has not shown sufficient im-
provement and decoding halts. Finally, packet (4) is an un-
decodable packet that PRC halts early, as the derivatives of
higher percentile VOSs have decreased to the point where
it is insufficient to reach 95% of the maximum variance by
⌦. These examples also serve to illustrate how decoding

progress can vary greatly from packet to packet, and the dif-
ficulty of accurately determining whether a packet will suc-
cessfully decode or not.

3.3 Medium access control protocol
The medium access control (MAC) protocol we used for

simulations attempts to take advantage of the primary char-
acteristic of rateless codes that allow them to outperform
equivalent rated codes: because of variance in the noise,
some packets at equivalent SNRs will be better than oth-
ers. Our MAC therefore optimistically attempts to transmit
at slightly above the average rate obtained at a given SNR,
then to achieve the target BER.

4. EVALUATION
In this section, we present simulation-based results com-

paring the rate and power consumption of PRC, Spinal Codes,
and Strider. PRC keeps transmitting bits until it achieves a
bit error rate (BER) of less than 10

�6. Throughout, we use
operation counts as a surrogate for power consumption.

4.1 Methodology
We measure the number of operations used by PRC in de-

coding as the number of operations used to demodulate re-
ceived symbols, construct probability vectors, run each de-
coding iteration, calculate variance statistics, and determine
whether decoding should continue.

We approximate the number of operations the Spinal Codes
decoder uses as follows. The decoder uses a trellis struc-
ture, keeping B leaves and generating B2

k hashes at each
stage. Using the one-at-a-time hash function costs 31 oper-
ations [17]. Additionally, the decoder computes metrics for
each generated spine by computing the Euclidean distance
(costing � = 3 operations) between the spine and of each ⇣

received symbols for that spine. These metrics are summed
over the entire spine. The decoder sorts the resulting met-
rics, incurring a cost of B2

k
log(B2

k
) comparisons and a

further three operations when a swap is necessary. Since the
hash function maps ⇣ k-bit inputs randomly within the c-bit
symbol space, we can assume that the data being sorted is
randomly generated, and so expect half of the comparisons
to require a swap. This gives an expected cost of

B2

k
· 31 +B2

k
· ⇣ · �+B2

k
log(B2

k
) · (1 + 0.5 · 3) (2)

for each spine.

4.2 Rate comparison
We begin with a performance evaluation of just the codes

underlying PRC, Figure 6 shows the comparison of our codes
against Spinal codes and the implementations of Strider and
Raptor code by Perry et al. [17]. Results for Spinal Codes
with B = 16, 64 are generated using code provided by Perry
et al., using the puncturing schedule in [17] and evaluating
all B branches at the final spine for the correct message.

The basic codes underlying PRC perform extremely well,
with both codes generally outperforming both Raptor and

4

Figure 5: The variance order statistics (VOSs) of several GF(256) packets in the PRC decoder for SNR = 18.7 dB,
n = 1024, rate = 0.68, and ⌦ = 20.

Figure 6: Rate versus signal to noise ratio (SNR) for
PRC’s graph-based code without decoder power aware-
ness, Spinal Codes, Strider, Raptor Codes and the LDPC
envelope.
Strider. Additionally, they are extremely competetive with
Spinal Codes, outperforming them between 21–25dB and
remaining extremely competetive outside this range. This
is particularly true of the GF(256) code as the binary code
falls off sharper at lower rates.

Next we examine PRC as a whole; Figure 7 presents the
overall rate we achieve with the power-aware decoder and
MAC protocol described in §3.2 and §3.3, respectively, as
a fraction of Shannon capacity. The rate PRC achieves is
extremely competitive with Spinal Codes, marginally out-
performing Spinal Codes between 21 dB and 26 dB, while
generally staying within 0.25 bits/symbol below this range.
In fact, at the lowest SNRs our current implementation is
able to function at, PRC is becoming increasingly compete-
tive with Spinal Codes decoder. We also include the results
for Spinal Codes with vary values of B.

4.3 Power Efficiency and Savings
We now examine the power efficiency of PRC, using the

number of operations required to decode as a surrogate for
power efficiency. We begin by evaluating how much power
PRC saves over a decoder that uses a fixed number of runs.
The maximum number of runs required to successfully de-
code for our GF(256) and binary codes is generally fifty it-

Figure 7: Rate versus signal to noise ratio (SNR) for
PRC with decoder energy awareness and Spinal codes as
a fraction of Shannon capacity.

erations above 15 dB and scales up to one hundred iterations
below that. For PRC decoding, ⌦ is typically set to 15–40
depending on the SNR estimate.

Figure 8 shows the fraction of operations needed by PRC
to successfully decode in place of an equivalent full decod-
ing run. At 29–30 dB the fraction of operations used ap-
proaches and surpasses 1.0 due to very few packets requir-
ing additional iterations. As a result, codes with and with-
out PRC decode in roughly the same number of iterations,
meaning that the overhead from PRC has a larger effect on
the fraction of operations used. Below 28 dB, PRC performs
very well comparatively, generally requiring between 20–
60% for the GF(256) code and 40–90% operations for the
binary code. Also of note is that the demodulation cost for
obtaining soft values for the QAM-256 constellation is quite
high, approximately 1 million operations at high rates and
3 million at lower rates, which is a not inconsiderable over-
head, particularly for the binary code, where the additional
overhead required to obtain LLR values for the received bits
greatly increases the number of operations required to de-
modulate compared with obtaining probability vectors for
the GF(256) code. This could obviously be improved by in-
telligently demodulating to avoid this high cost. The high
demodulation cost, as well as the higher relative cost of run-

5

Figure 8: The fraction of operations used by the GF(256)
and binary code with PRC versus the same code without
PRC.

ning the halting algorithm on the binary implementation are
some reasons why the binary code with PRC does not see the
same improvements that the GF(256) code sees. This sug-
gests that a less effective but less expensive halting algorithm
may be the better choice for a binary implementation. Ad-
ditionally, as shown in Figure 7, the binary code with PRC
experiences a faster drop in rate than the GF(256) code, in-
dicating that the halting algorithm was poorly tuned for the
binary code.

To compare Spinal Codes against our simulation results,
we calculate the number of operations Spinal Codes would
require for a single decoding attempt. Spinal Codes incurs
a relatively small cost for decreasing the code rate, slightly
less than trebling the number of operations required between
rates 1.67 bits per symbol at 5 dB and 8.67 bits per symbol
at 30 dB. Changing the value of B is extremely beneficial to
Spinal Codes decoding cost, however Figure 7 shows that it
also seems to have a large effect on the fraction of capacity
obtained.

The operations count for the Raptor Code presented in
Figure 9 were obtained from our own implementation of
Raptor Codes using a similar construction method to Perry
et al. [17]. The LT code used the distribution given in the
Raptor RFC [15], and the outer LDPC code has code rate
0.95 and has regular left degree 4, the LDPC matrix itself
is created using the PEG algorithm. Capacity achieved us-
ing this code was highly disappointing, possibly due to the
shorter block length, n = 1024, compared with the results
produced by Perry et al.. Due to the poor rate achived by
this code, it would be unfair to compare at equivalent SNRs
to our codes, instead, we present results for a single Rap-
tor decoding attempt using a full 50 iterations at the same
rate achieved by Perry et al.’s Raptor code. Interestingly, the
number of operations for a full run of the belief propagation
on the Raptor code is extremely close to the number of op-
erations used by Spinal Codes, yet the Raptor code exhibits
much lower performance.

5. CONCLUSION AND FUTURE WORK
As alluded to in §3, we will investigate more sophisticated

irregular rateless IRA code designs to further increase ca-

Figure 9: Comparison of operations needed to decode
using PRC, number of operations needed without PRC,
and Spinal Codes with one and two frame transmissions.

pacity, and shift to lower-order modulations at lower rates
on a pre-determined schedule. We will also extend PRC
to incorporate ideas from “gear-shift” decoding [2], which
proposes switching decoding algorithms in response to pre-
dictions about the ease with which received bits will be de-
coded. Finally, as mentioned in §2, §4, a deeper look into
effective halting algorithms, particularly for the binary im-
plementation should further improve energy savings.

Other future work concerns modelling the power savings
of our approach. Here an early termination algorithm for a
fixed-rate LDPC decoder [1] uses 80 nJ per decoder itera-
tion, on average. A full decoding run, 50 iterations, would
use 4 µJ. Our approach reduces the operations between 30–
90%, suggesting potential savings of 0.4–3 µJ per packet.

6. REFERENCES
[1] E. Amador, R. Knopp, V. Rezard, and R. Pacalet. Dynamic power

management on ldpc decoders. In Proc. of the IEEE Symp. on VLSI
and Circuits, June 2010.

[2] M. Ardakani and F. Kschischang. Gear-shift decoding. IEEE Trans.
on Comms., 54(7):1235–1242, July 2006.

[3] J. Barry, E. Lee, and D. Messerschmitt. Digital communication.
Kluwer Academic Publishers, 2004.

[4] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain
approach to reliable distribution of bulk data. In Proc. of the ACM
SIGCOMM Conf., 1998.

[5] X. Chen, A. Men, and W. Zhou. A stopping criterion for nonbinary
ldpc codes over gf(q). In Proc. of the IEEE Singapore International
Conference on Communication Systems , Nov. 2008.

[6] M. Chiu. Bandwidth-efficient modulation codes based on non-binary
IRA codes. IEEE T. on Info. Theory, 56(1):152–167, 2010.

[7] O. Etesami and A. Shokrollahi. Raptor codes on binary memoryless
symmetric channels. IEEE Trans. I. Theory, 52(5):2033–2051, 2006.

[8] M. Good and F. Kschischang. Incremental redundancy via check
splitting. In Proc. Biennial Sym. on Comm., pages 55–58, 2006.

[9] A. Gudipati and S. Katti. Strider: Automatic rate adaptation and
collision handling. In Proc. of the ACM SIGCOMM Conf., 2011.

[10] J. Ha, J. Kim, and S. McLaughlin. Rate-compatible puncturing of
LDPC codes. IEEE T. on Info. Theory, 50(11):2824–2836, 2004.

[11] A. A. Hussein, A. Oka, and L. Lampe. Decoding with early
termination for raptor. IEEE Comm. Letters, 12(6), June 2008.

[12] H. Jin, A. Khandekar, and R. McEliece. Irregular repeat-accumulate
codes. In Proc. Symp. Turbo Codes Related Topics, 2000.

[13] F. Kienle and N. Wehn. Low complexity stopping criterion for ldpc
code decoders. In Proc. of IEEE VTC, pages 606–609, June 2005.

[14] M. Luby. LT codes. In Proc. of the IEEE FOCS Symp., 2002.
[15] M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer. Raptor

forward error correction scheme for object delivery, Oct. 2007.
[16] P. Maymounkov. Online codes. Technical Report 833, NYU, 2002.
[17] J. Perry, P. Iannucci, K. Fleming, H. Balakrishnan, and D. Shah.

Spinal codes. In Proc. of the ACM SIGCOMM Conf., 2012.

6

