




in the MIMO system. Supposing transmitters send symbols chosen
from a constellation O of size |O| = 2Q (i.e., Q bits per symbol),
such a solution, called the maximum-likelihood solution, finds

x∗ = arg min
s∈Onc

‖y−Hs‖2 . (1)

This is the solution that minimizes detection errors and therefore
maximizes throughput. Unfortunately, the computational complex-
ity of the exhaustive search in Equation 1 grows exponentially both
in the message length and in the constellation size. For example, if
we were to attempt to find the maximum-likelihood solution by ex-
haustive search, we would need to perform |O|nc Euclidean distance
calculations. This means that for an OFDM system with 48 data
sub-carriers, four antennas and a 4-QAM constellation, we would
need to calculate approximately 104 Euclidean distances, but in the
same system sending with 64-QAM, we would need approximately
109 distance calculations. Sphere decoding reduces this complexity
while still finding the maximum-likelihood solution.

2.1 The sphere constraint
The sphere decoder constrains its search to only those possibilities s
that lie within a hypersphere of radius r about the received vector
y, as measured by the Euclidean distance d(s). This is the sphere
constraint:

d(s) < r2, where d(s) = ‖y−Hs‖2 . (2)

Most sphere decoders begin with r ←∞, and on finding a solution
at distance r′ < r can safely set r to r′ without the possibility of
excluding the maximum-likelihood solution.

2.2 The tree
The sphere decoder recasts the maximum-likelihood problem (Equa-
tion 1) into a search in a tree of height nc (number of client antennas)
and branching factor |O| (constellation size). Figure 3 shows an
example for nc = 3 and QPSK (|O| = 4) to which we will sub-
sequently refer. Each level l of the tree corresponds to a decision
on the value of the transmitted symbols from antennas l through nc,
which we will term a partial symbol vector s(l) = [sl, sl+1, . . . , snc ]).
Formulating the problem as a tree search requires the channel matrix
H to be triangularized using a QR decomposition [53] into H = QR,
where Q (of dimension na × nc) has the property that Q∗Q = I and
R = [rij] (of dimension nc × nc) is upper-triangular (i.e., has zeroes
below its diagonal). We can then rewrite the received signal as

ŷ = Rs + Q∗w, where ŷ = Q∗y, (3)

and the Euclidean distances d(s) as

d(s) = K + ‖ŷ− Rs‖2 . (4)

where K is an independent constant that can be safely ignored.
Since R is upper-triangular, we can now calculate partial Euclidean
distances for the partial symbol vectors, starting at the top of the
tree at level nc. We label each branch in the tree with a non-negative
branch cost

c(s(l)) =

∣∣∣∣∣∣̂yl −
nc∑

j=l

rljsj

∣∣∣∣∣∣
2

. (5)

As we walk down the tree from the root, selecting a branch at level
l prepends a new symbol sl to s(l+1), where s(l+1) is the tentative
solution constructed up to the level above. We calculate the partial
Euclidean distance for all s(l) as

d(s(l)) = d(s(l+1)) + c(s(i)). (6)
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Figure 3: The sphere decoder operating on nc = 3 transmit anten-
nas, each sending a QPSK (|O| = 4) symbol. Constellation points
(denoted ×) and corresponding branches of the tree are numbered
at the uppermost level (l = 3), and the received signal is denoted ◦.
Visited nodes are colored black.

Since the branch cost is non-negative, the sphere decoder prunes
all children below partial symbol s(l) if

d(s(l)) ≥ r2, (7)

as they will violate the sphere constraint. This pruning greatly
reduces the number of solutions the sphere decoder needs to con-
sider, but notice that further efficiencies are possible if we visit
solutions closest to the maximum-likelihood solution earlier in our
search. The efficiency of the sphere detector is thus to a large part
determined by the tree-traversal strategy.

2.3 Traversing the tree
We begin with a depth-first tree-traversal strategy, as it is the ap-
proach we take in Geosphere for reasons that will become clear
later. A refinement of a textbook depth-first tree traversal is to visit
children of a tree node in ascending order of their partial Euclidean
distances, an idea known as Schnorr-Euchner enumeration [46] after
its inventors.

Continuing our example of Figure 3, conventional Schnorr-Euch-
ner sphere decoders will first greedily follow the path to a leaf a
that minimizes partial Euclidean distance at each level (this path’s
branches are shown with thick lines in the figure). This entails
computing distances for this path as well as all sibling nodes along
the path (all nodes in this diagram). Upon reaching a, the decoder
sets its sphere radius to d(a) and backtracks up one level to check
the node whose distance is second-closest, b. Let’s assume that
d(b) < d(a); this means that the sphere decoder needs to expand
b, search its children, and find the one with minimum distance (c).
Once this is finished, the decoder backtracks up one level again
to l = 3 and considers node d. Now d(d) ≥ d(a), so none of d’s
children or siblings (note that the nodes are sorted) could possibly be
the maximum-likelihood solution, so the sphere decoder terminates
and returns a as the maximum-likelihood solution.

It is clear that this pruning reduces the number of visited nodes,
but reducing the number of visited nodes does not necessarily reduce
processing requirements. In particular, the sorting requirement of
Schnorr-Euchner enumeration is very computationally expensive
for higher-order constellations (e.g., 16- and 64-QAM), and can
therefore compromise the sphere decoder’s efficiency. In the forego-
ing example, in order to determine the node to visit we have fully
enumerated and sorted all possibilities when we visited a node not
violating the sphere constraint. This entails, at each step, calculating
partial Euclidean distances for all possible children and then sorting
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Figure 4: Left: The zigzag technique in a one-dimensional (PAM)
constellation visits constellation points (×) in increasing distance
from the received symbol (◦). Right: Dividing a 16-QAM constella-
tion into four 4-PAM subconstellations.

them, a highly inefficient process, since we will spend processing
power calculating distances for many nodes that we will never need
to expand.

3. DESIGN
This section presents the design of Geosphere, starting from the
enumeration technique we use in order to efficiently sort children of
a node in the sphere decoder (§3.1), and continuing to describe an
improved, novel, pruning technique (§3.2). Later (§5), we experi-
mentally evaluate the relative gains of each to highlight the different
roles the two techniques play under varying channel conditions.

3.1 Constellation point enumeration
The goal of Geosphere’s enumeration technique is to determine the
order that the sphere decoder should explore the set of constella-
tion points O, when it is considering which branch to expand at a
particular node in the tree shown in Figure 3. We wish to explore
constellation points in order of increasing branch cost, but the only
soft information at our disposal is the received symbol.

However, since constellation distance is related to partial Eu-
clidean distance by

c
(

s(l)
)

= |rll|2 |ỹl − sl|2 (8)

(where ỹl =
ŷl−

∑nc
j=l+1 rljsj

rll
), it suffices to explore the constellation

points in increasing Euclidean distance from the received symbol
in the constellation itself, rather than as measured indirectly by the
partial Euclidean distance metric.

If we were sending constellation points in one dimension (this
is known as pulse-amplitude modulation, or PAM), the task is sub-
stantially easier, so we discuss this case first. Figure 4 (left) shows a
PAM constellation comprised of four constellation points (×) and a
received symbol (◦). To find the closest constellation point to the re-
ceived symbol we compare the received symbol against the decision
boundaries indicated by the vertical dotted lines in the figure (this
procedure is called slicing the received symbol), and therefore order
constellation point (a) first. The zigzag rule tells us to visit the next
closest, unvisited constellation point from (a) in the direction of the
received symbol; this is (b) in the figure. Subsequent applications
of the same rule take us to (c) and then (d).

3.1.1 Two-dimensional zigzag enumeration
Now let’s consider the two-dimensional case. We are in fact seeking
an approximation of an expanding ring search, starting at an arbi-
trary, continuous-valued received symbol point ◦. One inexact way
of accomplishing this would be to partition the QAM constellation
into PAM subconstellations as shown in Figure 4 (left), and then
zigzag “vertically” within each subconstellation. But this approach
neglects the in-phase component of the received symbol.

Algorithm (two-dimensional zigzag)
1. Initialize a sorted priority queue Q = ∅, comprising con-

stellation points (maintain Q sorted by Euclidean distance
to ◦ at all times).

2. Find the closest constellation point a to the received sym-
bol by slicing ◦ on the constellation’s decision boundaries.
constellation’s decision boundaries). Calculate a’s Eu-
clidean distance and enqueue a→ Q.

3. Dequeue Q → x and explore x’s children in the sphere
decoder.

(a) Zigzag vertically from x with respect to ◦: call the
result zv. Calculate zv’s Euclidean distance to ◦ and
enqueue zv → Q.

(b) Zigzag horizontally from x with respect to ◦; call the
result zh. If no other constellation point in zh’s PAM
subconstellation is in Q, calculate zh’s Euclidean dis-
tance to ◦ and enqueue zh → Q.

4. Go to Step 3.

Figure 5: Two-dimensional zigzag algorithm pseudocode.

So instead Geosphere first slices the received symbol to find the
closest constellation point (call it a), and begins the two-dimensional
zigzag from that exact constellation point. Note that the sphere
decoder will then expand the branch corresponding to a and search
that subtree. Once the sphere decoder returns to the node whose
constellation points we are sorting, should we zigzag horizontally or
vertically? We try both, since we are trying to find the next-closest
constellation point in (two-dimensional) Euclidean distance, with
the exception that we avoid a horizontal zigzag if a constellation
point from the target PAM subconstellation is already in our list of
outstanding constellation points to explore. This ensures that we
have at most one candidate constellation point per (vertical) PAM
subconstellation.

Figure 5 shows the pseudocode for the algorithm. Notice that as
a consequence of the two-dimensional zigzag rule, the algorithm
needs a priority queue of length at most

√
|O|. By only taking

zigzag steps one constellation point at a time, the algorithm defers
the Euclidean distance computation until as late as possible, often
by which time the sphere decoder has pruned the relevant subtree
(we demonstrate this later in the experimental evaluation).
Example. Figure 6 shows an example of the two-dimensional zig-
zag algorithm working in a 16-QAM constellation. In each frame,
we show the 16-QAM constellation points (×) alongside the re-
ceived symbol (◦), above the priority queue Q. In Step (i), the slicer
finds the closest constellation point to the received symbol, a. The
sphere decoder explores a, zigzags vertically and horizontally, and
enqueues b and c, respectively in Step (ii). Since b is closer of b
and c to ◦, in Step (iii) the algorithm explores and zigzags from b.
But notice that a horizontal zigzag step from b to e would land in
the same PAM subconstellation as a previously-explored constel-
lation point (c). Consequently, we only zigzag vertically from b,
enqueuing d. In Step (iv), we explore and zigzag from c, picking up
e and visiting all four constellation points surrounding the received
symbol (the closest to ◦) in Step (v). Subsequent steps continue in
the same manner, filling in the “expanding ring.”

3.2 Geometrical pruning
We now turn to Geosphere’s approach to pruning off whole sections
of the sphere decoder’s search tree, a key step in making the search
process tractable in practice.
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Figure 11: Experimental testbed throughput comparison between zero-forcing MIMO and Geosphere for different numbers of clients, number
of AP antennas and SNRs.

Would this be a net benefit to throughput? We next examine this
question in close detail.

5.2 System throughput
We now measure the uplink throughput that zero-forcing serving a
network of clients, in comparison with Geosphere. The previous
discussion shows that due to characteristics of the channel there is
an opportunity for throughput improvement; we now test whether
Geosphere can realize these gains in practice.

Methodology. We position clients and APs in a subset of the posi-
tions used for channel measurements, denoted by hollow circles and
hollow squares respectively in Figure 8. We send data to the APs
using various modulations to characterize performance at different
transmission rates: we transmit 4-, 16- and 64-QAM constellations.
We note that the channel is changing due to people walking nearby.
We also note that for this subset of positions the condition number
and the Λ values of the links are smaller than those when all posi-
tions are included. Therefore, we are evaluating here a particularly
challenging case for Geosphere.

We consider three SNR ranges, 15 dB ±5 dB, 20 dB ± 5 dB, and
25 dB ±5 dB, where the quoted SNR is the average SNR over all
transmitted streams. Selecting users in a small SNR range around
a specific value is a practical user selection method to keep the
condition number small. Larger gains are expected for Geosphere’s
if the users are selected randomly. In addition, in lieu of implement-
ing a rate adaptation algorithm, we show throughput results for the
constellation that achieves the best average throughput for the corre-
sponding range; this emulates ideal bit rate adaptation and makes
the results independent of the rate adaptation method employed.

Results. In Figure 11 we show achieved throughput for different
numbers of clients and receive antennas. We can see that Geosphere
consistently provides better throughput than zero-forcing. Moreover,
as expected, Geosphere’s throughput gains increase with the con-
dition number and Λ. In particular, for the 2× 2 case, Geosphere
can provide a throughput increase of up to 47%, while for the 4× 4
case it can be more than two times faster.

Even in the most challenging case of two and three clients and
an AP with four receive antennas (where channels are most often
well-conditioned) Geosphere provides average gains of 6%. These
throughput gains are consistent with what we expect from our chan-
nel characterization.

Since the condition number of a matrix becomes smaller with
decreasing numbers of concurrently transmitting clients, another
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Figure 12: Experimental testbed throughput comparison between
zero-forcing MIMO and Geosphere for different numbers of users
accessing a four-antenna AP at the same time, at 20 dB SNR.

question we may ask is whether zero-forcing and an appropriate
time-division scheduling strategy could equal Geosphere’s perfor-
mance, with fewer clients per timeslot. But Figure 11 shows that this
is not in fact true. Geosphere with four clients and four receive an-
tennas consistently provides better performance than a zero-forcing
scheme which three transmitting clients, with throughput gains that
can be up to 36% (at 20 dB SNR).

Figure 12 shows the achievable uplink throughput of zero-forcing
and Geosphere for a four-antenna AP when we increase the number
of clients at 20 dB. We see Geosphere achieves linear gains in
throughput with the number of clients while zero-forcing does not.
Therefore, with Geosphere we can increase the number of clients
while keeping the throughput of each client unaffected, which is not
feasible with zero-forcing.

5.2.1 Comparison with MMSE-SIC detection
The same effect can be seen in Figure 13, where we simulate a ten-
antenna AP with different numbers of clients, again at 20 dB SNR.
In these experiments we also consider MMSE-SIC receiver process-
ing which orders users by descending SNR, then performs MMSE
detection and interference cancellation successively for each user,
an approach known to be capable of reaching multi-user capacity
[59].

In Figure 13 we see that as long as we operate far from the max-
imum achievable throughput and only a limited number of clients
are transmitting, all methods have similar performance. However,
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Figure 13: Simulation-based throughput comparison between zero-
forcing MIMO, MMSE-SIC and Geosphere for different numbers of
users accessing a ten-antenna AP at the same time over a Rayleigh
fading channel.

for numbers of clients similar to the number of antennas, where the
throughput becomes maximum, the performance difference between
Geosphere and the other approaches increases, and Geosphere is
almost two times faster for the 10 × 10 case.3 We can also see
that MMSE-SIC significantly outperforms zero-forcing, but despite
its good information theoretical properties, in practice, it cannot
optimize throughput due to error-propagation. In addition, SIC
methods have a significant drawback compared to zero-forcing and
Geosphere that limit their practicality. The decoding of the different
users needs to be performed sequentially which linearly increases
decoding latency.

5.3 Computational complexity
We now quantify the computation Geosphere requires. To this end,
we compare Geosphere against the most efficient known depth-first
sphere decoder implementation able to achieve maximum-likelihood
performance; we denote this system ETH-SD in the following ex-
perimental results.

We base our implementation of ETH-SD on the VLSI implementa-
tion of Burg et al. [10], but instead of decomposing the constellation
into a set of constant-amplitude phase-shift keying subconstella-
tions as they do, we use the superior method of Hess et al. [25].
To determine the node to visit next, Hess’ method splits the QAM
constellation into horizontal subconstellations, performs an one-
dimensional zigzag, and then compares Euclidean distances across
all subconstellations. This approach is more efficient since for dense
constellations it involves partitioning into fewer sub-constellations,
hence is a more challenging comparison design point for Geosphere.

One frequently-used measure of computational complexity in the
literature is the number of visited nodes in the sphere decoder tree.
However since Geosphere performs some additional computation
to avoid visiting nodes, we require a metric that captures this ad-
ditional computation. Since the dominant part of the additional
computation is partial Euclidean distance calculations, this metric
tracks overall complexity accurately, and so we primarily use this
metric in our evaluation, as is also common in the literature [40]. For
3The authors of BigStation [67] note a similar trend in their experi-
mental results.

completeness and additional insight into why Geosphere improves
performance, we also report number of visited nodes.

Since in an OFDM system, MIMO processing takes place on a
per subcarrier basis, we report the preceding metrics as needed per
subcarrier, averaged across all subcarriers.

5.3.1 Testbed-based complexity evaluation

Methodology. First we compare the complexity of Geosphere and
ETH-SD for the live testbed experiments of the previous subsection.
These complexity results measure the corresponding amount of
computation required to obtain the throughput results we show in
Figure 11.

Results. In Figure 14 we show the average number of partial Eu-
clidean distance calculations for all experiments. We see that Geo-
sphere is consistently less computationally demanding than ETH-
SD, and the gains increase when SNR increases, due to fact that
Geosphere is more efficient in dense constellations. In the 25 dB
range, our computational savings can be up to 63%.

As noted above, the throughput gains of Geosphere are modest
for well-conditioned channels. One might therefore be tempted
to argue in favor of a system that switches back to zero-forcing
when faced with a well-conditioned wireless channel. However, the
above results show that Geosphere actually adjusts its computational
complexity to the current SNR, and so complexity at high SNR is
actually very small, obviating the need for a hybrid system.

5.3.2 Simulation-based complexity evaluation
We now quantify the computation Geosphere requires with the
purpose of convincing the reader that our system can achieve 256-
QAM, 4× 4 MIMO performance with a computational demand on
par with 64-QAM sphere decoders currently implemented in ASIC.
We also break down the complexity of each of Geosphere’s two
main components: two-dimensional zigzag enumeration (§3.1.1),
and geometrical pruning (§3.2).

Methodology. Since the WARP platform’s analog front end limits
it to a maximum SNR of approximately 30 dB over the links in our
testbed, for the following computational complexity experiments we
perform simulations. To analyze the source of Geosphere’s gains,
we run the following two variants of our system:
1. 2D zigzag only: Geosphere, running two-dimensional zigzag

enumeration sorting without geometrical pruning.
2. Full: Geosphere’s full design, including two-dimensional zigzag

enumeration sorting and geometrical pruning.
We present both (a) trace-based simulation, driven by empirical
MIMO channel measurements collected from our WARP testbed,
and (b) simulation over a MIMO Rayleigh fading channel with
independent, identically-distributed channel realizations sampled on
a per-frame basis.4

Results. In Figure 15 we show complexity for an SNR such that
each constellation reaches a frame error rate of approximately 10%
(e.g., approximately 27, 33 and 39 dB for the 2× 4 measured chan-
nels and 16-, 64- and 256-QAM constellations, respectively). We
examine two MIMO cases: In Figure 15(a) we show complexity
for two clients and four AP antennas. In this case, complexity is
relatively low, due to favorable MIMO channel conditioning, but at
the cost of reduced throughput, since only two users transmit. We
note that the complexity of ETH-SD increases with constellation

4This accurately quantifies performance over channels whose co-
herence times are greater than the time for one frame, i.e. driving
speeds and slower.
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Figure 14: Complexity comparison between ETH-SD and Geosphere for different numbers of clients and AP antennas.

size, while the complexity of Geosphere is substantially smaller,
independent of the constellation size, and comparable to the com-
plexity of zero-forcing.5 For the Rayleigh channel, Geosphere is
81% less complex than ETH-SD for the 256-QAM case, while the
full Geosphere (with 2D zigzag and geometrical pruning) provides
complexity gains of 27% compared to 2D-zigzag-only Geosphere.

Figure 15(b) shows complexity for four clients and four AP anten-
nas, where we need to cope with more challenging MIMO channel
conditions. For the 4×4 case we see that the complexity of ETH-SD
(but not Geosphere) greatly increases with constellation size. As a
result Geosphere is up to 70% less complex than ETH-SD for the
Rayleigh channel. In addition we see that the zigzag algorithm is
the main source of complexity improvement for large constellations,
while early pruning provides complexity gains of 13–17%.

Discussion. In general, the effect of geometrical pruning becomes
more apparent for better SNRs and channel conditions. For example,
in any depth-first sphere decoder, we need nt partial Euclidean dis-
tance calculations to find the distance of the first candidate solution
(first leaf). If this is the correct solution and it has a small Euclidean
distance (as in the case of high SNR), a typical sphere decoder
would require at least another nt − 1 partial distance calculations to
prune the rest of the tree. In contrast, geometrical pruning prunes
the rest of the tree without any additional calculation. Therefore, if
in the simulations above, we increase the SNR to reach target packet
error rates of 1%, geometrical pruning reaches a 47% improvement
compared to Geosphere with zigzag only.

Another significant characteristic of Geosphere is that since it
and all leading practical sphere decoders (including ETH-SD) use
the Schnorr-Euchner enumeration (§6), the number of visited nodes
is the same for all of them. Therefore, Geosphere maintains the
processing throughput of hardware architectures that process one
node per clock cycle [10].

Finally, we also observe that while the collected channels are not
Rayleigh distributed, the complexity results are in very good agree-
ment. Empirically, this suggests that only the target bit error rate
(and not channel fading statistics nor the operating SNR) determines
the amount of computation required to decode.

6. RELATED WORK
Work on the sphere decoder has been extensive, and we are not the
first to note the importance of and experimentally measure the con-
5Zero-forcing requires nt×nr = 8 complex multiplications, whereas
Geosphere requires at most 10 complex multiplications (assuming
that each partial distance calculation requires nt +1 multiplications).

dition number of the MIMO channel, or propose solutions for noise
amplification. Here we discuss related work in these areas, in both
the networked systems and communications theory communities,
placing Geosphere into context and highlighting our contributions.

Linear filtering. We note that the classical minimum mean-squared
error (MMSE) detector is an improvement on zero-forcing of sim-
ilar complexity that balances between completely decoupling the
interfering streams and amplifying noise. However, MMSE cannot
provide substantial throughput gains compared to zero-forcing in
the medium and the high signal-to-noise ratio regime [59]. Artés et
al. [3] note the effect of the condition number on the zero-forcing
decoder, and propose a linear filter that compensates for the dis-
tortion the zero-forcing decoder introduces, but their method does
not maintain performance in larger constellations. Leveraging the
power of the sphere decoder, Geosphere maintains performance
while scaling to 256-QAM.

SIC. Successive interference cancellation (SIC) methods decode
signals from the strongest interferers and subtract their effect on the
other signals [69]. However, the efficacy of SIC is contingent on
the information transmitted between users being sent at a rate that
allows correct detection in the presence of uncancelled interference,
a requirement which does not hold for a sphere decoders. Sayana
et al. [45] use successive interference cancellation [59] and soft
information to reduce the effects of noise amplification in a MIMO
system, but their design is tied to a specific type of coding and mod-
ulation (bit-interleaved coded modulation), whereas Geosphere is
generalizable to many different coding schemes, because it operates
under the coding layer.

Scheduling and user selection. When the number of users is very
large, zero-forcing combined with a user-selection strategy becomes
asymptotically optimal [61]. Yoo and Goldsmith note the optimality
of zero-forcing beamforming and propose a scheduling algorithm for
a large number of users [68]. Chen and Wang analyze the interaction
of zero-forcing and time-division scheduling techniques, propos-
ing to select and schedule users so that noise amplification due to
zero-forcing is lessened [12]. However, such approaches require a
number of clients needing to send data that is orders of magnitude
greater than the number of AP antennas, making them of limited
applicability in a common case where a small number of clients
(less than 10) saturate the wireless medium. With extremely large
user numbers, the process of estimating and tracking the wireless
channel to each also incurs non-negligible overhead. Furthermore,



(a) Two clients and four AP antennas. (b) Four clients and four AP antennas.

Figure 15: Simulation-based complexity comparison between ETH-SD and Geosphere. Solid bars: Simulated Rayleigh channel; striped
bars: empirically measured channel. N.B.: each of the above sphere decoders visit the same number of nodes.

we have experimentally shown that Geosphere improves throughput
consistently for both small and middling numbers of clients.

6.1 Sphere decoder optimizations
There is a large body of prior work that optimizes the performance of
the sphere decoder. It roughly breaks down into proposals that sim-
plify the Euclidean distance calculation (discussed next), optimize
the order of visiting nodes, and prune the tree more aggressively.

Simplified distance measures. These proposals approximate Eu-
clidean distance in the constellation with computationally simpler
but less precise distance measures, to incrementally lower process-
ing overhead [10, 25, 62]. However, such approaches increase the bit
error probability while remaining impractical when sending dense
constellations, and so Geosphere outperforms these approaches.

Node ordering-based optimizations. Chan and Lee [11] first pro-
posed the frequently used radius update approach. However, their
proposal doubles the height of the tree, making it impractical for
implementation [10]. Zhao and Giannakis [70] generalize Schnorr-
Euchner enumeration probabilistically, but by their own admis-
sion, their techniques are only beneficial in the high-SNR regime
(> 22 dB). By comparison, Geosphere’s techniques are effective
over the entire common SNR range. Ghasemmehdi and Agrell [20]
minimize the number of visited nodes, but also double tree height
and require impractical amounts of memory.

Some prior work takes constellation geometry into account. Men-
nenga and Fettweis [37] propose an enumeration method that geo-
metrically splits the I-Q space into sectors. However, their algorithm
can accurately sort only the first eight nodes, resulting in decode
errors and decreased throughput. As part of a K-best sphere decoder,
Shabany et al. [48] propose an enumeration method superficially
similar to Geosphere’s two-dimensional zigzag. However, Geo-
sphere’s algorithm is superior, enumerating in Step 3(b) only if no
other constellation point in zh’s PAM subconstellation is in Q, yield-
ing a significant reduction in partial distance calculations for dense
constellations and depth-first sphere decoding. For example, when
expanding a node to identify the child with the third smallest Eu-

clidean distance, Geosphere needs four partial distance calculations
while Shabany’s needs five (25% more).

Pruning-based optimizations. Many proposals attempt to reduce
complexity by probabilistically pruning tree branches unlikely to
survive pruning. Work by Shim and Kang [50, 51] doubles decoder
tree height and requires cumbersome tuning to tradeoff complexity
with performance. Cui et al. propose statistical node pruning strate-
gies [14, 15], but incur a significant loss of performance in order
to achieve non-negligible complexity gains, making their proposals
unsuitable for practical use. Stojnic et al. propose a pruning tech-
nique that requires solving a semi-definite problem on top of the
usual sphere decoder search tree [52], but their technique is only
appropriate for very low SNR (less than 6 dB), whereas Geosphere
targets relatively higher SNR ranges and larger numbers of users.
Gowaikar and Hassibi propose a related probabilistic pruning tech-
nique [22], but it achieves worst performance than the preceding
proposal of Shim et al. [50].

Breadth-first sphere decoders. In contrast to depth-first sphere
decoders, breadth-first sphere decoders have average complexity typ-
ically higher than depth-first approaches [10]. The fixed-complexity
sphere decoder [5] is a specific type of breadth-first sphere decoder
that initially searches the first p levels of the tree, then plunges depth
first, but using a branching factor of only one. Jaldén et al. show that
the fixed-complexity sphere decoder can only asymptotically reach
maximum-likelihood performance at high SNRs [30], with higher
computational complexity than a depth-first approaches. Geosphere,
on the other hand, reaches maximum-likelihood performance while
significantly reducing computational complexity.

K-best sphere decoders. K-best sphere decoders [13, 24, 34, 39,
47, 48, 63, 66] are depth-first sphere decoders that select the K
best branches at each level of the tree regardless of the sphere
constraint or any other distance control policy. However, the choice
of K is speculative and increases with the order of the constellation,
making K-best inappropriate for dense constellations. Furthermore,
K must be increased to accommodate the worst MIMO channel,
making such schemes inefficient. To reduce complexity and increase
parallelizability, Azzam and Ayanoglou [4] propose to reorder the



channel matrix, but double its size (and thus the height of the sphere
decoder tree) to accommodate practical QAM channels. Thus, the
required complexity is is still very high.

Channel condition-aware sphere decoders. Maurer et al. pro-
pose a system that switches between zero-forcing and maximum-
likelihood decoding via a threshold test on the channel condition
number [36]. However, unlike Geosphere, they do not present exper-
imental results with a real sphere decoder, and use random matrices
rather than real MIMO wireless channel matrices, calling into ques-
tion the practical applicability of their simulation-based results; also
missing is a means of choosing the switching threshold. In a similar
vein, Roger et al. [44] propose a sphere decoder that expands at
most K branches of each node in the decoding tree, varying K based
on κ(H). Geosphere alleviates the need for such complex designs
since it can automatically adjust its complexity to the condition of
the channel, and can reduce it down complexities similar to zero-
forcing. In addition, we present a full working system design and
experimental evaluation in real indoor office conditions.

Su and Wassel [55] use a geometrically-inspired ordering of
the MIMO channel matrix H before performing sphere decoding.
However, the resulting computational savings vanish for average
and high SNR values of practical interest.

The generalized sphere decoder. Generalized sphere decoders
[16, 18, 19] are designed for situations where the number of trans-
mit antennas exceeds the number of receive antennas, and so the
MIMO channel matrix is rank deficient (as opposed to merely
poorly-conditioned). However, these techniques don’t increase ca-
pacity, since capacity increases with min {na, nc}. But since these
techniques use Schnorr-Euchner enumeration, Geosphere improves
throughput and computational complexity synergistically.

6.2 MIMO channel condition measurements
While the MIMO channel condition number has been previously
measured, published measurements are mostly associated with mo-
bile cellular systems, and thus often taken outdoors (e.g., Teague
et al. [57], in the 2.16–2.18 GHz frequency band), indoors, but in
a mobile cellular frequency band (e.g., Kita et al. [32]), or in an
unspecified environment (e.g., Agilent Corp. [1]). Nonetheless, we
note that the MIMO channel condition number distributions obtained
in this related work are roughly comparable to our measurements
(§1, §5), suggesting that the problem of poor channel conditioning
occurs in general, in outdoor as well as indoor environments, and
across the range of microwave frequencies.

Channel hardening [26, 29] refers to the linear increase in through-
put possible in zero-forcing multi-user MIMO systems, when the
number of antennas increases dramatically. This is due to the abil-
ity of the access point to select a set of antennas that results in a
well-conditioned MIMO channel matrix. Among its results, this
theoretical work shows that many more antennas than users are
required to achieve linear throughput gains.

6.3 Downlink beamforming
In the downlink, sphere decoder-based techniques can be used at the
transmitter in lieu of zero-forcing based precoding; this is known
as sphere encoder precoding [6, 27, 38, 41]. This precoding, how-
ever, requires that APs track the wireless channel as they move,
which adds complexity and becomes harder with increasing mobil-
ity. Nonetheless, since Geosphere’s techniques are receiver-based,
Geosphere is complementary to precoding: the two can achieve
complementary performance gains if implemented together.

6.4 System designs
The Spinal codes [42] decoder resembles a breadth-first sphere
decoder with a bounded branching factor at each level. However,
Spinal codes uses a novel encoder design that improves performance.
With regards to Geosphere, Spinal codes are designed for a point-to-
point wireless channel, not the multi-antenna MIMO channel, but
they may be extended to the MIMO channel in the future.

The authors of BigStation [67] have speculated that their zero-
forcing multi-user MIMO access point may require more than 40 an-
tennas (or 2× the number of users) in order to mitigate the problem
of a MIMO channel hardening. In this context, our work on Geo-
sphere offers an alternative solution to using many antennas and
radios (with their associated costs) at the AP.

7. CONCLUSIONS AND FUTURE WORK
We have described Geosphere, a wireless multi-user MIMO system
that consistently achieves higher uplink throughputs than similar
systems based on zero-forcing. Geosphere makes the sphere decoder
practical in real high-rate wireless systems (using dense constella-
tions) with a geometrical approach based on soft information.

While Geosphere increases throughput, iterative soft receiver
processing is required to reach MIMO capacity [28]. Such “soft-
detectors” consist of several constrained maximum-likelihood prob-
lems and therefore the sphere decoder can be of use [9, 60]. State-of-
the-art soft-input, soft-input sphere decoders [7, 8, 54, 65] are based
on the ETH-SD approach, but their complexity remains prohibitive
under dense constellations. Since Geosphere outperforms ETH-SD,
a promising next step is to extend our techniques to this setting.
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