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ABSTRACT
This paper presents two simple algorithms, TreeCount

and SenderCount, that detect a broad range of exploit-
based and email worms, respectively. These algorithms,
when combined with automated payload fingerprinting, gen-
erate precise worm payload signatures. We show that fun-
damental traffic properties of most worms, such as infected
hosts’ attempts to propagate the worm, can serve to detect
signatures of non-polymorphic worms reliably and rapidly.

Our prototype monitored over 200 Mb/s of university traf-
fic for 3 months. TreeCount generated new signatures dur-
ing the Zotob outbreak with no false positives, and also iden-
tified known worms like Sasser and Phatbot. SenderCount

identified email worms and a spam cluster, while generating
∼ 2 false positives/hour.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security
and protection; C.2.3 [Network Operations]: Network
monitoring

General Terms
Security

Keywords
network worms, worm signatures, traffic analysis

1. INTRODUCTION
Worms are stealthier and faster than ever. Some, like

Slammer, infected most of their vulnerable population in
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minutes. Moore et al. [13] show that effective containment
of a rapid worm can require reaction times as low as a cou-
ple of minutes, and that dropping packets that match worm
payload signatures—byte sequences in packet payloads that
identify the worm—is more effective than filtering individ-
ual IP addresses. Such signatures, if available, can be fed to
firewalls and other network filters to control worm propaga-
tion.

The first step in an automated worm defense system is
signature generation. Signatures should be precise: they
should identify only the parts of the worm payload that
characterize the worm and do not occur in legitimate traffic.
Filtering a benign or non-worm-specific signature may shut
down a critical service.

In this paper, we focus on detection and automatic genera-
tion of precise payload signatures of exploit-based and email
worms. We restrict ourselves to non-polymorphic worms,
ones whose payload is largely invariant, because polymor-
phic worms are not as amenable to payload filtering. While
polymorphic worms pose a growing threat, most worms to
date have been non-polymorphic. Despite their relative tech-
nical simplicity, non-polymorphic worms continue to cause
damage, and detecting them accurately and rapidly is a mat-
ter of practical importance.

Our work builds on the Earlybird system by Singh et
al. [18], as well as behavioral worm detection such as that
described by Ellis et al. [8]. We present two algorithms
that identify worms and their signatures by measuring traf-
fic properties of those signatures. For example, to detect
exploit-based worms, we first identify frequently occurring
signatures on the network; then, for each signature, we count
the number of unique destinations it was sent to and the
number of hops it has made (how far it has propagated).
We employ similar signature metrics in our email worm de-
tection algorithm.

Some researchers have proposed classifying flows as suspi-
cious and then extracting worm signatures. This method is
prone to false negatives caused by the classification process.
Like Earlybird and behavioral analysis, our algorithms use
the fundamental spreading dynamics of a worm and do not
depend on a priori classification of flows. However, Early-
bird’s authors report false positives, which they address us-
ing a signature whitelist. We describe a set of signature
metrics that isolate worm traffic accurately and require nei-
ther pre-classification nor whitelisting.

This paper makes several contributions. First, it identi-
fies the limitations of existing signature generation schemes.
Second, it highlights the differences between exploit-based
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and email worms, and explains why signature generation
should happen differently for these two classes of worms.
Third, it identifies signature metrics that enable precise sig-
nature generation for both types of worms. And finally, it
presents and evaluates algorithms that employ these metrics
to detect both exploit-based and email worms.

2. RELATED WORK
Recent research has produced both host-based and network-

based approaches to worm signature detection. Host-based
systems like TaintCheck [15] and Vigilante [7] benefit from
knowledge about the state of the host during an attack.
They perform dynamic dataflow analysis to track program
activity, including buffer overflows and control transfers.
Since they identify worm signatures in terms of program be-
havior rather than packet payload, they remain effective in
the presence of polymorphic worms. Despite this advantage,
host-based systems create overhead on their hosts and are
more difficult to deploy and administer than network-based
solutions.

Network-based signature detection systems attempt to iden-
tify characteristics uniquely associated with worm traffic.
Traditional firewalls and intrusion detection systems, such
as Snort [16], match packet payloads against a predefined
set of payload signatures. This approach is simple and fre-
quently effective, but suffers both from false positives (it
matches individual packets that look malicious, whether or
not the network is vulnerable to that particular exploit) and
from false negatives (new worms may not be in the signature
database yet).

A more recent and promising approach is behavioral anal-
ysis, explored by Ellis et al. [8] and developed independently
by several network security vendors. Behavioral signatures
describe patterns of network traffic that are common across
instances of a worm or class of worms, such as sending data
from one machine to the next, scanning, tree-like propaga-
tion, and servers becoming clients. Behavioral signatures
identify broad characteristics that almost any worm must
have in order to propagate, so they are less vulnerable than
traditional payload signature systems to false negatives in
the presence of new worms. Moreover, since they trigger on
worm-like traffic patterns rather than on the presence of a
single malicious packet, they are less likely to report false
positives when a network is not vulnerable to a particular
exploit.

Unfortunately, behavioral signatures are not a complete
solution. First, peer-to-peer and other common network ap-
plications (for example, Windows workgroups) can exhibit
worm-like communication patterns that decrease behavioral
signatures’ sensitivity. Second, the time necessary for a be-
havior to become detectable may allow the worm to propa-
gate more broadly. Furthermore, some worms, such as email
worms, do not have distinct transport-level behavior, and
require some amount of payload analysis. Finally, behav-
ioral signatures are not ideally suited for filtering; Moore
et al. [13] explain why filtering worm-specific payload frag-
ments is likely to be a more effective way of stopping worms.

Automated worm payload signature generation systems
strive to solve the problem of false negatives in the pres-
ence of new worms while retaining the filtering benefits of
payload signatures. Systems described in the literature in-
clude Honeycomb [12], Autograph [10], Earlybird [18], and
Polygraph [14]. The first three all focus on non-polymorphic

worms, which have at least some invariant payload or a lim-
ited number of payload variations. Honeycomb uses a hon-
eypot to gather suspicious traffic and searches least common
substrings to generate worm signatures. It assumes that all
the traffic it sees is suspicious. It operates on a host-based
context, rather than analyzing network-wide traffic. Auto-
graph is designed for larger-scale distributed deployments,
but relies on a pre-filtering step to identify flows with sus-
picious scanning behavior. It does not look for signatures
in packets that do not match this filter, so it cannot detect
certain types of worms, such as email worms and worms
that use hit-lists [20, 3]. Earlybird improves on Autograph
by eliminating the pre-filtering step and focusing on a scal-
able, high-performance implementation. We used Earlybird
as the basis and inspiration for our own work. Polygraph’s
ability to detect polymorphic worm signatures may become
critical in the future, but some of its more powerful signature
types, such as conjunction signatures and Bayes signatures,
are not supported on current firewalls, and its algorithms
are slower than Earlybird’s or those in this paper. For the
rest of this paper we will focus on non-polymorphic worms,
which continue to be a threat today.

Our work aims to improve Earlybird-like automated gen-
eration of worm payload signatures through the use of better
metrics for identifying potential worm traffic. Essentially, we
combine ideas from behavioral analysis with the signature-
generation approach developed in Earlybird to improve the
accuracy of our payload signatures and decrease false posi-
tives.

3. MOTIVATION
Worm payload signature detection systems face conflict-

ing challenges. They must not generate false positives on
legitimate traffic that frequently exhibits worm-like charac-
teristics, yet they must be sensitive to the start of a worm
outbreak. It is crucial, therefore, to pick good metrics by
which to determine the likelihood that a signature is worm-
related.

Earlybird introduces two good metrics, content prevalence
and address dispersion. A worm’s invariant content is likely
to be prevalent, or occur frequently, on the network. More-
over, it is likely to be dispersed—associated with many IP
addresses. If an invariant payload is prevalent, Earlybird
begins to track its address dispersion. If dispersion exceeds
a threshold, the payload is flagged as a worm signature.

However, Earlybird’s efficacy is limited by two drawbacks
of its metrics. First, legitimate traffic frequently exhibits
content prevalence and address dispersion. Headers in com-
mon protocols used by many clients and servers, such as
HTTP, may have these properties. Also, large networks
may have hundreds of mail servers and thousands of clients,
so mail headers and mass email payloads are prevalent and
highly dispersed. (Admittedly, when the mass email is spam,
the consequences of false positives are less problematic.) Ta-
ble 1 lists more examples. Second, prevalent and dispersed
signatures in worm traffic may be benign. For example, the
Zotob [2] worm uses SMB to connect to vulnerable hosts, so
SMB protocol strings are prevalent and dispersed on net-
works it infects. Yet the strings are common in benign
traffic, so filtering them would block Windows file sharing,
which uses the SMB protocol.

Earlybird’s authors acknowledge the potential false pos-
itives caused by content prevalence and address dispersion
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Service Signature # Srcs # Dsts Type
HTTP 1) Gecko/20060111 Firefox/1.5.0.1\015\012Accep 243 676 version numbers

HTTP late\015\012If-Modified-Since: Thu, 02 Mar 200 170 110 timestamps

HTTP \015\012Connection: Keep-Alive\015\012Cookie: RMID=8 72 53 identifier patterns

HTTP Yahoo! Slurp; http://help.yahoo.com/help 212 41 web crawlers

SMTP pest medications based LICENSED online p 96 34 spam mail

SMTP ny unauthorized review, use, disclosure 33 35 mail footers

SMTP SMSSMTP 4.1.11.41) with SMTP id M2006030 35 251 identifier patterns

SMB \002LANMAN1.0\000\002Windows for Workgroups 3.1a\000 196 76 version numbers

Table 1: Benign 40-byte strings that are both prevalent (> 8/min) and dispersed (associated with > 30 sources and

destinations), detected on the Stony Brook University network in under 10 minutes. The existence of many such

strings makes them hard to whitelist.

in legitimate traffic, and address them in part with static
signature whitelists. They use a protocol parser to whitelist
strings from well-known protocol headers (HTTP, SMTP)
procedurally. They also show that many frequent signatures
in common protocols can be whitelisted manually. How-
ever, in general, whitelists remain difficult to maintain and
require ad-hoc protocol analysis, time, and expertise. And
whitelisted signatures may vary with time. For example,
the If-Modified-Since HTTP header field, followed by to-
day’s date, is prevalent and dispersed on many networks,
but it cannot be statically whitelisted, because it will change
tomorrow. Moreover, some protocols have arbitrarily vari-
able signatures. For instance, payload strings generated by
Inktomi’s web crawler may appear dispersed because the
crawler consists of many hosts [1], and they vary from one
Inktomi customer to another (for example, Yahoo! Slurp)
in an undocumented manner, so comprehensive whitelisting
is difficult. Finally, whitelists provide a window of oppor-
tunity for worm authors, who can craft worm payloads to
match known protocol headers or other common strings that
are likely to be whitelisted.

Finally, although we have not measured this effect, it is
possible that Earlybird’s metrics and use of whitelists could
cause its detection speed to be inversely proportional to net-
work size. As the number of clients and servers for a protocol
increases, the dispersion of prevalent and invariant protocol
strings increases too: a larger network exposes more preva-
lent signatures that may need to be whitelisted. Since the
whitelist may not be updated for all signatures, one could
decrease false positives by increasing the dispersion thresh-
old. But increasing that threshold increases the number of
hosts that must be probed before the worm is detected, de-
creasing detection speed.

4. ALGORITHMS
Like Earlybird, we first identify prevalent signatures, us-

ing a scheme based on Rabin fingerprints [4]. Formally, a
signature is a tuple s = (d, p), where d is a destination port
that identifies the exploited service, and p is an invariant
payload substring.

We then apply TreeCount and SenderCount to the
prevalent signatures to identify worm signatures. We de-
signed the algorithms to meet three goals:

• Precision. Worm signatures should differentiate worms
from normal traffic, and not include benign substrings
of worm payloads.

• Detection speed. The algorithms should have speed
comparable to that of address dispersion.

• No signature whitelists.

The algorithms rely on traffic properties of worm signa-
tures to distinguish those signatures from benign prevalent
ones. We quantify these differences by means of signature
metrics, packet-based measurements associated with signa-
tures. Our algorithms use these metrics to decide whether
a signature is worm-related.

We address exploit-based worms—which propagate auto-
matically by searching for software vulnerabilities—separately
from email worms because they differ in 3 important ways.

First, they exhibit different connection behavior. Exploit-
based worms make many connection attempts to several
hosts, whether to search for new vulnerable hosts or to in-
fect known vulnerable hosts. Email worms, by contrast, do
not need to make direct connection attempts to their vic-
tims. They rely on users to activate them, and propagate
from inbox to inbox via mail servers, without opening direct
connections to new victims.

Second, the two types of worms propagate in different ad-
dress spaces. Whereas exploit-based worms propagate from
IP address to IP address, email worms propagate over an
overlay network of email clients and servers. This network
cannot be understood without application-layer analysis of
email headers: at the transport layer, the worm behaves
much like normal email traffic.

Finally, because they require human activity, email worms
operate on longer time scales than exploit-based worms. For
example, prevalent signatures may need to be measured over
an interval of hours, rather than minutes, before the payload
of an email worm is detected.

4.1 Signature Metrics for Exploit-Based Worms
First, note that once an exploit-based worm infects a host,

it either attempts to find new victims or connects to a hit-
list of known victims. In either case, the host tries to send
the worm payload or exploit to many other hosts (often, in
a short interval). This behavior is key to worm propaga-
tion. Hence, our first metric simply counts the number of
destinations for every packet with signature s sent by src,
including failed connection attempts, since not all infection
attempts may succeed past the target discovery phase.

Metric 1. For a given source address src and signa-
ture s = (d, p), the connection fanout, fanout(src, s), is the
number of distinct destination addresses that received ei-
ther packets matching s or unsuccessful connection attempts
from src.

Given a prevalent signature s, TreeCount measures the
fraction of hosts h that sent s for which fanout(h, s) exceeds
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fanout), hosts exhibiting both client and server behavior
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TCP and UDP services, on a 60,000-host enterprise net-

work. Fanout threshold is 5.

a threshold (FanoutThresh). TreeCount never considers s
part of a worm unless this fraction exceeds a second thresh-
old (FanoutRatioThresh).

Second, observe that a host becomes infected by acting as
a server on port d, but then infects other hosts by becoming
a client, attempting to connect to port d on those hosts. This
alternating client-server behavior is used by Ellis et al. [8]
to create behavioral signatures. It is common in exploit-
based worms, and we use it to detect the propagation of
non-polymorphic worms.

Consider the “first infection” directed graph G = (V, E)
for a signature s. V is the set of hosts that send or receive
s. A directed edge (i, j) exists if i is the first host observed
to send s to j, and j has not previously sent s to other
hosts. Since only the first infection attempt is recorded, G
is acyclic. The depth of a node i in a directed acyclic graph
(DAG) is the length of the longest path between i and a min-
imal node [17] (informally, a root of the DAG.) The DAG
construction ensures that the DAG’s depth is not arbitrar-
ily increased by duplicate infection attempts on nodes with
depth 0. This graph is a refinement of the “causal tree” in
the work of Xie et al. [22], because it is parameterized on s.

As infected servers become clients and infect other servers,
the number of nodes with depth greater than 1 increases
and the maximum depth across all nodes also increases. A
prevalent signature’s maximum depth, therefore, measures
the propagation of that signature in a network. This metric
is relatively low (1 or 2) for traffic where most hosts are
either clients or servers, such as HTTP, and higher than
normal (≥ 2) for worms:

Metric 2. For a given signature s = (d, p), the maximum
propagation depth, mpd(s), is the maximum depth of a node
in the DAG constructed by the first infection attempts with
packets matching s.

TreeCount never considers a signature s part of a worm
unless mpd(s) exceeds a threshold (DepthThresh). To avoid
rare false positives (for example, when hosts connect via a
proxy), it further qualifies the MPD metric with a minimum
breadth threshold inspired by worms’ connection fanout: there

must be at least BreadthThresh hosts at each level of depth
of the first-infection DAG.

Fanout and propagation depth must distinguish worm traf-
fic from benign, non-worm traffic. In particular, we expect
the fraction of hosts that have high fanout for any benign
prevalent signature s = (d, p) to be low, and the fraction of
hosts that exhibit both client and server behavior on port d
to be low also. Consequently, the fraction of hosts that ex-
hibit both properties for a benign signature should be even
smaller. Figure 1 shows that this is indeed the case, based
on flow records collected over a few weeks in early 2006 on
a busy enterprise network with over 60,000 hosts (including
55,000 HTTP clients and 37,000 SMB clients).

Of course, many worms are multimode: they attempt to
exploit multiple vulnerabilities, possibly on different ports.
However, they typically probe for vulnerabilities on all of
these ports, until an exploit succeeds, so we expect to de-
tect signatures with high fanout and high propagation depth
on each of these ports. Our algorithm will usually generate
multiple signatures in this case. We then consolidate the
signatures into fewer alerts based on the fraction of infected
hosts in common. This occurred, for example, during detec-
tion of an outbreak of Spybot, which propagates over ports
TCP/135 and TCP/445, among others.

Algorithm. The TreeCount algorithm operates on
packets that contain prevalent signatures. It takes as input
the prevalent signature, s, and the packet’s source and desti-
nation addresses. It measures the fraction of hosts that have
high fanout (fanout exceeding a given threshold) for s, and
updates a representation of the DAG that is used to mea-
sure s’s maximum propagation length. If both metrics ex-
ceed given thresholds, the algorithm classifies the signature
as worm-related and generates an alert. See Algorithm 4.1
for details.

Although the pseudocode contains some linear-time op-
erations for clarity, in real life TreeCount processes each
prevalent signature in a packet in constant time. The host
sets, including source and destination hosts, are implemented
as hash tables, and the fanout ratio and maximum propa-
gation depth are computed incrementally in constant time.

4.2 Signature Metrics for Email Worms
Many destructive email worms, such as Sobig, MyDoom,

and Netsky, were non-polymorphic. When such a worm in-
fects mail clients on a network, clients begin to send email
messages with similar bodies or attachments.

Our first metric for email worms, therefore, simply counts
the clients on the monitored network that send email
(TCP/25) packets with the same signature. We count only
internal clients on the monitored network to avoid detecting
incoming spam. In addition, note that a single mail message
may be relayed by several intermediate mail servers before
reaching its destination, so that one message may appear
to have many sources, though only one of these is the real
mail client and the others are relays. To count the real mail
clients, we resort to whitelisting the monitored network’s
SMTP servers and never count them as mail clients. (For
reasons that will become clear in Section 5, we also whitelist
legitimate automated mailers, such as library notification
systems.) Fortunately, even on large networks the set of
mail servers and automated mailers is known and manage-
able, so listing mail servers in this way does not violate our
requirement for practicality.
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Algorithm 4.1: TreeCount(s, src, dst)

procedure fanout(h)
return (|dsts(h, s)|)

procedure fanout-ratio()
f ← {h s.t. h ∈ srcs(s)∧ fanout(h) > FanoutThresh}
return (|f |/|srcs(s)|)

procedure mpd()
return (max({depth(h) s.t. h ∈ hosts(s)}))

procedure min-breadth()
return (min({|level(d)| s.t. 0 < d ≤ mpd()}))

procedure update-depth()
if src ∈ hosts(s)

then

j
if dst �∈ hosts(s)
then depth(dst)← depth(src) + 1

else

8<
:

depth(src)← 0
if dst �∈ hosts(s)
then depth(dst)← 1

hosts(s)← hosts(s) ∪ {src, dst}
level(depth(dst))← level(depth(dst)) ∪ {dst}

main
update-depth()
srcs(s)← srcs(s) ∪ {src}
dsts(src, s)← dsts(src, s) ∪ {dst}
if (mpd() > DepthThresh and

fanout-ratio() > FanoutRatioThresh and
min-breadth() > BreadthThresh)

then output (wormalert(s)))

Metric 1. Given a signature s = (TCP/25, p), its client
dispersion, cdisp(s), is the number of mail clients inside the
monitored network that send packets matching s and are
not well-known mail servers.

The second metric is based on the observation that most
email worms send many messages in a short time. In par-
ticular, possibly due to configurable limits on the number of
recipients, most email worms do not send a single message
to many recipients, but rather many messages at once. By
contrast, only a small fraction of normal mail messages are
sent at a high rate (> 1/min), and mail traffic is bursty,
with long periods of inactivity [21].

Algorithm 4.2: SenderCount(s, src, dst)

procedure cdisp()
return (|clients(s)|)

procedure avg-nsent()
return (average({nsent(s, h) s.t. h ∈ clients(s)}))

procedure avg-nservers()
return (average({|servers(s, h)| s.t. h ∈ clients(s)}))

main
clients(s)← clients(s) ∪ {src} − smtpservers
servers(s, src)← servers(s, src) ∪ {dst}
nsent(s, src)← nsent(s, src) + 1
if cdisp() > ClientsThresh and

(avg-nsent() > AvgNSentThresh or
avg-nservers() > AvgNServersThresh)

then output (wormalert())

Metric 2. Given a signature s = (TCP/25, p) and a mail
client src, the sent packet count, nsent(src, s), is the number
of packets sent by src that match s.

The third metric for detecting email worms stems from the
observation that most worms carry their own SMTP engines
and usually contact many SMTP servers, including external
ones. Carrying its own SMTP client allows a worm to spread
without relying on the infected machine’s software. But the
worm’s SMTP client must then learn about SMTP servers
on the network, and while it may be possible to examine
the local SMTP configuration, it is usually easier and more
effective to use brute force and attempt to contact numerous
(> 5) SMTP servers. By contrast, a normal mail client
typically contacts no more than 2 or 3 SMTP servers.

Metric 3. Given a signature s = (TCP/25, p) and a
mail client src, the SMTP server count, nservers(src, s), is
the number of SMTP servers to which src sends packets that
match s.

Algorithm. The SenderCount algorithm operates on
SMTP packets that contain prevalent signatures. Its inputs
are the signature and the source and destination addresses
of the packet. It tracks these three metrics and alerts when a
signature exceeds a combination of them. See Algorithm 4.2
for details.

Like TreeCount, SenderCount operates in constant
time on each signature. The clients, servers, and nsent sets
are implemented as hash tables, and the avg-nsent and
avg-nsevers counts can be computed incrementally, using
constant time for each signature.

5. EVALUATION
We implemented a prototype to evaluate our algorithms’

performance. The system ran at Stony Brook University,
for 3 months, seeing an average of 200 Mb/s. It obtained
data from mirror ports on two core campus switches, one
connected to the campus network and the other to the resi-
dential network (ResNet). It captured traffic between cam-
pus facilities, as well as ResNet traffic transiting into and
out of the campus network.

5.1 System Design and Tuning
Our prototype worm sensor sifts through packets to find

prevalent signatures, applies one of our two algorithms to
packets that contain prevalent signatures (SenderCount

for TCP/25 packets, TreeCount for all others), and con-
solidates worm signatures into alerts. It also compares sig-
natures against a list of Snort [16] rules to name known
worms.

The code is written in C++ as part of a single-threaded
user-level Click [11] configuration. We use a dual 2.6 GHz
Intel Xeon server with two Intel PRO/1000 ethernet cards,
running Linux 2.4.

We employ Broder’s version of the Rabin fingerprinting
algorithm [4] and value sampling like Earlybird to compute
signature prevalence [18]. We generate fingerprints of 40-
byte substrings for most packets, but fingerprints of 200-
byte substrings for SMTP traffic. (We refer to the length
of these substrings as the “fingerprint length”.) Given that
fingerprints are computed for all substrings of length l, each
packet with a payload of n bytes produces n − l + 1 fin-
gerprints. The longer substrings that we use for SMTP
traffic are more expensive to compute. However, SMTP
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is only a small fraction of traffic, and the longer substrings
reduce false positives caused by long invariant content, such
as SMTP headers, that appears both in email worms and
normal email.

We maintain two prevalence tables [18]: one for non-
SMTP fingerprints, garbage-collected after 3 minutes of in-
activity, and one for SMTP fingerprints, where the timeout
is 30 minutes. Each table stores up to 10 million fingerprints.
To implement prevalence tables, we evaluated both tradi-
tional Bloom filters [5] and the Click toolkit’s hashmap [11].
Our Bloom filter takes a 64-bit fingerprint as input and uses
2 independent hash functions. The filter has a false positive
rate of 0.5% and requires 256MB for 10 million fingerprints.
By comparison, a hashmap implementation requires 320MB
and is 5-10% slower. Nonetheless, we chose the hashmap
because it produces no false positives.

The algorithms measure each metric over discrete time pe-
riods: when a period ends, all metrics and associated data
are reset. This simple method works well in practice. We
ran experiments to pick practical values for the measure-
ment period: 20-30 minutes for TreeCount, and 2-3 hours
for SenderCount. The SenderCount period is longer
because email worms propagate more slowly than scanning
worms. The algorithms are not very sensitive to the exact
duration of these measurement windows. The choice of mea-
surement window is a function of the worm’s propagation
speed, the amount of packet sampling (if any) performed by
the system, and the memory available. Of course, if a worm
does not exhibit propagation behavior within the specified
measurement window, our algorithms will not detect it.

After picking reasonable thresholds, we refined them by
studying different types of traffic. For example, Figure 2(a)
shows the distribution of connection fanout for a Zotob-
specific signature and a benign SMB signature that also
appears in Zotob traffic. Since there is a large amount of
legitimate background SMB traffic, the benign SMB signa-
ture has fanout ≤ 5 on almost all (> 90%) hosts, whereas
the Zotob-specific signature has fanout ≥ 30 on over 60%
of hosts. Analyses such as this led us to pick FanoutThresh
= 5 and FanoutRatioThresh = 0.8. Likewise, after examin-
ing, among other things, hosts’ client-server behavior (see
Figure 1) and TreeCount’s false positive rate (discussed
further in Section 5.2), we picked DepthThresh = 2 and

BreadthThresh = 3. With these settings, it is theoretically
possible for TreeCount to detect a worm outbreak after as
few as 2 successful infections (A infects B, B infects C, and
both A and B scan other hosts that are not vulnerable). In
reality, the number of both scans and infections is likely to
be substantially higher in order for a signature of the exploit
to become prevalent.

Similarly, we studied email traffic to refine thresholds for
SenderCount. Figure 2(b) shows the 3 email metrics for
4 example signatures of different types: normal email, an
email worm (W32.Swen.A), outgoing spam, and automated
mailers. Benign signatures have high client dispersion in
normal email, but their average sent packet count (avg-
nsent) and SMTP server count (avg-nservers) are low. Email
worms frequently have high avg-nservers, but Swen in par-
ticular does not, so it is not distinguishable from automated
mailers in this example; hence the need to whitelist auto-
mated mailers, as mentioned in Section 4.2. Outbound spam
traffic is also not distinguishable from many worms, but this
is not a huge drawback: network administrators are happy
to detect spam clusters. (Note that inbound spam gener-
ates no alerts because cdisp counts only internal clients.)
Ultimately, we picked ClientsThresh = 5, AvgNSentThresh
= 10/hour, and AvgNServersThresh = 5/hour.

We are in the process of deploying this system on addi-
tional networks. While it is still early to say definitively,
we believe that the constants and thresholds that we have
picked reflect general properties of worm traffic, rather than
of specific networks. As a result, we do not expect to repeat
the same tuning process on other networks.

5.2 Experience and Measurements
In daily use, TreeCount and SenderCount have proved

reliable and effective. TreeCount ran for days during the
summer and fall of 2005 with no false positives. It caught
the first Zotob outbreak at Stony Brook University on Au-
gust 16-18, 2005, and much other worm activity, includ-
ing Sasser, Phatbot, and Spybot. SenderCount generated
some false alerts for mass email (department email, library
notifications), leading us to whitelist legitimate mass mail-
ers as well as local mail servers. But it also detected email
worms, such as Swen, as well as several hosts controlled by
a backdoor and used to send spam.
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We also used traces of Stony Brook University traffic to
evaluate different parameter values and compare our metrics
to the address dispersion metric used by Earlybird.

False positives. Figure 3(a) plots false positives over
time for several address dispersion and TreeCount thresh-
olds. (t in the legend denotes the address dispersion thresh-
old; f : fanout threshold; d: depth threshold; b: breadth
threshold.) The input traffic contains no worms to the best
of our knowledge, and the generated signatures match no
known Snort rule, so we believe they are all false positives.
In 15 minutes, address dispersion generates ∼ 180 signa-
tures using t = 10, and 35 signatures with t = 30. Using
propagation depth constrained by a breadth threshold of 2
(f = 0, b = 2), TreeCount produces 64 signatures. As
we increase b and then f , ultimately to our chosen values
of 3 and 0.8 respectively, the false positives decrease and
then disappear. Similarly, Figure 3(b) shows data for email
traffic, varying fingerprint length. With our chosen thresh-
olds for each metric, SenderCount outperforms address
dispersion. Moreover, with a longer fingerprint (200 bytes),
it generates no false positives. Of course, longer fingerprints
assume that malicious messages or attachments have consid-
erable invariant content, but (after checking against address
dispersion and shorter fingerprints) we are not aware of false
negatives.

Sensitivity. Figure 3(c) compares the performance of
address dispersion and TreeCount on SMB traffic that in-
cludes the Sasser/Korgo worm. Each point represents the
generation of one or more signatures. The y-axis denotes
sensitivity, a measure of the likelihood that the signature is
a true positive. Sasser scans at least 64 hosts at a time on
port TCP/445, so we (conservatively) define sensitivity as
the percentage of hosts associated with a signature that scan
more than 16 hosts on that port. TreeCount detects the
first true positive more slowly than address dispersion, but
address dispersion (especially with t = 30, the threshold rec-
ommended in the Earlybird paper) also detects several false
positives (low sensitivity), whereas TreeCount does not.

Detection speed. Relative to Earlybird, TreeCount

and SenderCount may sacrifice detection speed in favor
of fewer false positives: their metrics look for more struc-
ture in the traffic than just address dispersion. Preliminary
results from an analytical worm model [6] indicate that the
detection time for our algorithms is roughly constant, in-
dependently of the size of a worm’s hit-list. Earlybird, by
contrast, takes longer on worms with small hit-lists, and less
time on worms with large ones (a signature becomes highly
dispersed immediately). In practice, both schemes appear
to generate signatures very quickly, often within seconds of
the first infection.

6. DISCUSSION
Sensitivity analysis. Our empirical experience shows

that TreeCount and SenderCount are quite accurate:
they generate very few false positives and (as best we could
determine) false negatives. Nonetheless, several potential
issues bear further investigation.

First, peer-to-peer applications such as BitTorrent exhibit
behavior that might satisfy our metrics: hosts have many
peers, they act as both clients and servers, and payload
propagates in a chain from one host to the next. While our
system saw much BitTorrent activity at Stony Brook and
(correctly) never identified it as a worm, we must further
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characterize the differences between worms and P2P traffic
to ensure that false positives do not occur.

An opposite concern is false negatives caused by an incom-
plete view of the worm propagation tree, due to sampling or
patchy monitoring. We consider this problem to be unlikely
in practice. Any losses due to sampling are likely overcome
by the repetitive nature of worm traffic. And while a poor
choice of monitoring location may delay worm detection,
our threshold levels allow the algorithms to alert after see-
ing only a small subset of the worm propagation tree.

Finally, we are vulnerable to some of the same evasion
concerns raised by the Earlybird authors. A worm writer
may use well-known legitimate strings to create collateral
damage when a signature is used for worm containment. He
may use address spoofing to hide worm propagation when
only one packet is required for infection. And he may use IP
fragmentation and other IDS evasion methods to decrease
the prevalence of a signature.

Implementation alternatives. We focused on simplic-
ity and acceptable performance in implementing our proto-
type, but more sophisticated algorithms and data structures
may improve the performance of a mature system. For ex-
ample, threshold random walk [9] and fast algorithms for su-
perspreader detection [19] may help fanout detection scale
to higher traffic rates without a corresponding increase in
memory requirements.

7. CONCLUSION
TreeCount and SenderCount are two new, simple al-

gorithms that detect and generate worm payload signatures.
They use behavioral characteristics of worms’ prevalent con-
tent, such as connection fanout and propagation depth, to
decrease false positives without requiring whitelists of known
signatures. Prolonged experience on a campus network shows
that the algorithms have good performance and produce
fewer false positives than previous schemes. While we have
not addressed the challenging problem of polymorphic worms,
these algorithms are a pragmatic and effective solution to
today’s non-polymorphic worms.

Much work remains to be done to optimize our system’s
performance, to test the algorithms on more networks and
traffic types, and to evaluate their effectiveness more pre-
cisely. Over time, we may devise new, better metrics. We
also hope to apply a similar metrics-based approach to other
types of malware, such as botnets.
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