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Abstract

Using simulation and analysis we show that agent-based auction-clearectedomar-
kets can be stabilized usiranly completely myopic agents (without value traders), if these
naive agents are provided with a price signal that reflects order-béokmation. This
demonstrates that information in the order book is extremely valudidé¢ prediction can
be replaced by better instantaneous information about others’ bids, ggdsés new, more
stable algorithms for market-based control.

1 Introduction

1.1 The problem of market stability

The stability of prices in asset markets is clearly a central issue in econdnics a systems
point of view markets inevitably entail the feedback of informatiorhimform of price signals
and, like all feedback systems, may exhibit unstable behavior. Undeingariycumstances
we might expect convergence to some fundamental value, more or less resgiltions,
chaotic oscillations, sharp rises or falls followed by crashes or recoyanésso on. Many
writers have studied the effects of trading institutions, trader\iehaand feedback signals
on such complex dynamic behavior, but the general problem remaing/powtérstood. A
classic dialogue about this issue can be seen, for example, in the VibMvEnedman (1953)
who argues that rational profit-seeking trading will always tend to &tetal free market, and
a long succession of others (see for example Baumol 1957 and de Longlé©8). who
present models and accompanying arguments supporting the idea that spgtnaldérs who
seek to maximize their profit can in some natural circumstances destabilize emark

In this paper we study an agent-based simulation and focus on one partjogktion:
How is dynamic behavior affected when the price signal supplied to thasagechanged?
Briefly stated, our main result is that a signal that is apparently orgiatsyiricher in informa-
tion than the ticker price can dramatically stabilize our market — even wheertagerate
with no planning or foresight whatsoever.

In the next subsection we will briefly summarize the methods of attadkeoeral ques-
tions of market stability and review previous work using what areedaligent-based (or
microscopic) simulations. We will then describe the construction ameigal characteristics
of our own model.



1.2 Review of related work

The study of price movements in asset markets is remarkably complex: liicesthe prob-
lems of modeling human behavior with those of predicting the dyndmf@avior of very
large, very nonlinear systems. Current approaches to the problem can bé/rdagsified as
follows:

a Theoretical (Analysis of mathematical models, usually using differencditiatential
equations, and usually using aggregate variables);

b Empirical (Econometric studies using real data);
¢ Experimental (Laboratory studies using human subjects);

d Computational (Simulations modeling the actions of individual &gtenthe approach
of the present paper).

Each has its advantages and disadvantages, and in some sense they are compleoentar
tributing different and overlapping pieces to the puzzle. We next brieftynsarize previous
work in these areas with the goal of putting our own work in context.

Theory, the first approach, is the oldest and most traditional in ecasonti has the
important advantages of generality, and as all theory, it can guide imt@aisiovell as provide
special tools for prediction and institutional design. The limitasiof theory are equally
clear. Itis all too easy to formulate reasonable equations that are beyorehith of current
solution techniques. This is especially the case when studying markéth@erogeneous
agents and highly nonlinear trading rules. It is often necessary to §yngud aggregate
behavior to get results. The work of Caginalp and Balenovich (1994)19ich uses a set
of coupled nonlinear differential equations, is representative of thisoaph applied to the
study of market dynamics.

The second approach, empirical studies of asset prices, uses both convestitistadal
approaches and nonlinear dynamic models. The work centers on testing fxistence of
predictable structures in all kinds in time series. For a good reaspecially of the work
on chaotic models, see Brock et al. (1991). Specifically, a number of sindiesnophysics
(for example, Mantegna and Stanley 2000) have used concepts frorticgthphysics and
critical phenomena to study self-similarity and fat-tail distribotan empirical data.

The third approach, experimental economics, has the advantage of addrassandi-
rectly questions of human behavior. However, it is expensive, timewuomg, and it is
difficult to ensure that people behave the same way under laboratorytioosdis they do in
real markets. Perhaps the most influential work is that of Vernon Smithrl€s Plott, and
their coworkers (Forsythe et al. 1982, Smith et al. 1988, Smith 1P88er and Smith 1994,
Caginalp et al. 1998), which centers on the reproducibility of price mshAlong the same
lines, the collection of papers edited by Stiglitz (1990) on price legls revealing in its
diversity of perspectives on just how a price bubble might be defineavaether in fact one
can exist at all.

Large-scale agent-based simulation, the fourth approach and the one tisisdpaper,
has become possible only relatively recently with the advent of fast, chedpeadily avail-
able computers. It has been championed by physicists using the paradagmpéitational
statistical physics. For example, de Oliveira et al. (1999) reviewrséypapers over the past
few years that exemplify the methodology, especially the work of Legyy, and Solomon
(1994). The reader is also referred to the recent paper of LeBaron et al. (¥88&h),also
contains many references to other work in this emerging field. The definingatbsistic of
the methodology is that the actionsintlividualsare simulated, explaining the tenmicro-



scopic This opens the door to the study of the interaction of large nundférsterogeneous,
interacting agents.

An important theme that runs through much of the work in market dyosimithe inter-
action between two kinds of traders: those who trade on “fundamentalshasd who trade
on “technical” information. The former are often calledlue traders and the lattenoise
traders which include trend chasers (also called chartists). This interaction asdourhe
appearance of price bubbles in the simulations of Levy, Levy, and SwipMoussefmir, Hu-
berman, and Hogg (1996), and Steiglitz and his coworkers (1996, 19938), for example,
as well as the aggregate models of Caginalp and Balenovich.

We mention important applications of agent-based simulations that adéraotly eco-
nomic in nature: they can be translated literally into algorithms fetrithiuted control of
resources (see for example the book edited by Clearwater 1996). In these¢heaagents
may well be distributed software agents instead of humans. Exampledénamputing cy-
cles (Waldspurger et al. 1992), network bandwidth, computer memory,ielpotwer (Ygge
1998), or even thermal energy in a building. These applications neeccnessarily model
realistic markets, but stability is obviously a key issue. More rdgehtKephart et al. (1998)
anticipate the emergence of an open, free-market information economy of aetbaggnts
buying and selling a rich variety of information goods and services enrtternet. To char-
acterize and understand the dynamic behavior of such information econdmeiesery nat-
urally employ agent-based simulation, and also use game theoretic artalysiestigate
strategies and competition of software agents. As before, these marketd decessarily
behave the way human markets do, but an understanding of stabilitycialcru

1.3 Description of our model

The simulation model we use in this paper is a direct descendant of thessglied in Stei-
glitz et al., and we outline its features in this section. The philbgapto build the simplest
possible system that can reasonably be thought of @sveleteeconomy: in some sense
a minimal economy. Trade requires at least two commodities, so we use the minifnum o
two, which we callfoodandgold. Gold plays the role of numeraire, and the price of food is
therefore measured in units of gold.

In the general situation there are three types of agents: regular agenestrealers, and
trend traders. Regular agents can produce food or gold and consume dbgaltraders and
trend traders are solely speculators and play the roles of value and ramsestmentioned
above. The regular agents are completaljopic that is, they exercise no foresight or plan-
ning.

One trading period of the market simulation is executed as follows.c€h&al market
sends to each agent a Request For Bid (RFB) containing price signalsd@diirsit the case
when the price signal is simply the previous closing price. Based iersignal, the regular
agents decide on their levels of production for that time step, the waders update their
estimate of fundamental value, and the trend traders update their estimateseatfrend.
The agents then send bids to sell or buy according to their food inve(regular agent),
the difference between the market price and estimated fundamental price feales,tor
the direction of the trend (trend trader). Finally, the market treatstioeitted bids as a
sealed-bid double auction and determines a single price that maximizesaharhount of
food to be exchanged. This institution is sometimes calletbaringhouseor call market
as opposed to aopen-outcry markefFriedman and Rust 1993). The market-clearing price
(ticker price) becomes the next signal in the RFB. Note that in Steiglitz ancaliyGan
(1997) and Steiglitz and Shapiro (1998) the auctioneer determinesitieet@maximize the
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Figure 1: Generation of the supply and demand curves and marketiotparice in the double
auction.

total amount of gold to be exchanged. However in practice this differeasdittie effect on
the overall qualitative results. Fig. 1 shows the derivation of tigpl/-demand curves and
market-clearing price in such an auction.

Consider next the regular agents. They follow a simple dichot@madgorithm: In each
trading period they can produce either food or gold. They make thdugtmn decision to
maximize profit, but in a shortsighted way, based only on the currég®.pileterogeneity is
introduced by endowing agents with different “skills” — the amountarfd and gold they
can produce per period. In a similarly short-sighted way they detertingiebids to maintain
a fixed food inventory, based only on their current inventory. Theleeqgents therefore
have no memory or foresight. Their strategy is so simple and mybatdt often throws the
market into confusion, in a way reminiscent of the cobweb model (Carl86i)1

We note that our model has a natural equilibrium price, or fundamenta vddiermined
by the equilibrium condition that total food produced is equal to tieltfood consumed.
This is one way that our model is distinguished from that of Levyy.and Solomon, which
gives agents a choice between investments with certain and uncertain returns.

The remainder of the paper is organized as follows: In section 2 we deseelvedults
of simulations using the original model, with market-clearing pricéhassignal, illustrating
the stabilizing effect of value traders and the destabilizing effect of traiets. In section 3
we describe the effects of using other price signals, specifically stalilizaithout traders
using unweighted and inversely weighted bid averages. Then, after somadiogeemarks,
we present in the appendix a simplified model and its analysis, confirinéngesults of the
simulations.
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Figure 2:Price vs. trading period with regular agents only and usithgstng price as a signal.
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figure, illustrating the oscillation.
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Figure 4:Diagrammatic representation of price oscillations in arstable market in the plane of
food inventory vs. price.

2 Simulations

Markets with only such simple regular agents exhibit large price laticihs (see Fig. 2).
In these markets there is low trading volume, and most of the time thexdarge overall
surplus or shortage of food. This oscillation can be visualized eftgtlwy plotting a two-
dimensional graph of average food inventory vs. log-price. The resaldiamond-shaped
cycle whose center is the ideal (equilibrium) price and ideal (desiredvee¢eee Fig. 3).
This cycle starts close to the center and rotates counterclockwise withaiisaohcreasing
radius. We cannot expect efficient resource allocation in such markets.

Fig. 4 shows a typical cycle of the oscillation, sketched diagrammatigaltiie food
inventory—price plane. We divide the cycle into four regions. égion I, the low price
prevents agents from producing food and the resulting deficiency dfdaoses the price to
rise. In region Il, when the price gets high enough, agents begimtiupe food, but the price
keeps rising since there still is not enough food to satisfy demanikgion Ill, agents now
have enough food and the price begins to fall. However they contimur®duce food because
the price remains high for a time. In region IV, agents stop produciad because the price
finally becomes low. But the price continues to fall because of food ssirfilis therefore the
delay between the price movement and the size of the food inventory thgslihie system
into oscillation, as in the cobweb model. However this intuitivelaxption only goes so
far and does not enable us to predict, for example, the radius of the ayicldazt whether
a given system will be stable or unstable. One way to stabilize thiseh&rko introduce
value traders who estimate the fundamental price (Steiglitz et al. 18@6)bringing a kind
of foresight to market operations (see Fig. 5). As discussed aboveyttbduction of trend
traders can produce price bubbles, as illustrated in Fig. 6.

Until now we have described simulations with previous modelsclvimade available to
the agents only the auction market-clearing price (“ticker price”) as a sigmas. evidently
does not communicate enough information to stabilize the market witioone memory and
foresight, which is invested in the value traders, who use an expafigistinoothed estimate
of fundamental value. We next consider the possibility of usingadgother than the market-
clearing price to achieve stability.
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Figure 5:Price vs. trading period with value traders, showing howapators can stabilize the
market. Value traders are introduced after 100 trading pds.
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Figure 6: Price bubble caused by the introduction of trend traders.e Tindamental value is
exogenously driven up and down to produce a trend. Valuestsadre introduced at period 100,
after which the trading price remains close to the fundaralewlue until bubbles appear near
trading periods 530 and 610.
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Figure 7:Price vs. period with no traders, but using average W, as the signal.

3 Using other price signals

Consider again the market with only regular agents. After consumingeihef food, each
agent sends a bjd and a quantity:; to be traded, both depending on the price signal as well
as the difference between the agent’s food inventory and his desired resdiigehidding
process generates at any given trading periogtdar book comprising the agents’ bid prices
p; and amounts,;. This order book contains considerably more information about market
conditions than simply the most recent closing price. This suggesta/thcan derive signals
from the order book that can be more effective in stabilizing prices thawldsing price. In
practice it is this information that gives commaodity traders in thapiadvantage over remote
traders.

Consider first the simplest possibility: define the new sighato be the unweighted
average of all the bid prices:

POZ%ZIH (2)

Fig. 7 shows that the price is stabilized quite well, although the tiomconvergence is longer
than with value traders.

Having observed the effectiveness of the mean bid as a signal, it is nattrsaid improve
it further, and a natural choice is the average of the bids weighted tantbentsp; :

P = Zlai Zaipi ()

%

Fig. 8 shows the result, which is perhaps surprising: weightiedgtts by the amounts has
the effect of destabilizing, rather than further stabilizing the market.
Finally, this suggests moving in the opposite direction: weighthe prices by some
function that varies inversely with the corresponding amount. We tberelefineP; to be

1 1
P2:Zl/(c+ai)zc+aipi 3)

%
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Figure 8:Price vs. period with no traders, using the weighted avetaige P, as the signal.

wherec is a scaling parameter that determines the extent of inverse weightingvalie
¢ = 1 was used in the simulations in this paper. Fig. 9 shows that the maitkesignal P,
converges faster and better than with

The fact that weighting the bids with the amounts is destabilizing caexp&ained in-
tuitively as follows: The agents bidding for large quantities are galyefarther from their
desired reserves, and their bids are therefore farther from equilibriurarthef above for
buyers who have a severe deficiency, and farther below for sellers whalsavere surplus.
Their bids are therefore more likely to be far away from the actual equifibthan agents
bidding for small quantities.

4 Concluding Remarks

In this paper, we have considered the effects of different price sighatadret stability using
agent-based, microscopic simulations. Our models are practical foragiond of many hun-
dreds of time steps, allow arbitrary, heterogeneous trading strategiegant characteristics,
and use a closed economy with a naturally defined equilibrium price thatesgoratduction
and consumption. The simulations presented here were implementedatintava and Java
mobile agent#\glets(Lange and Oshima 1998). Implementations in C run many times faster
and make simulations for thousands of time steps practical if necessary.

Our results show that the average-bid price sighabtabilizes the market price effec-
tively, and stable resource allocation is approached as well, all withouicfivedtraders.
What is perhaps counterintuitive is that supplying the agents wéhwitighted averag®;
neither increases stability nor improves resource allocation, but in factesshlittle im-
provement over using the closing price. Moreover, the inversely weigivexdger, yields
the greatest improvementin stability and resource allocation. It iswootey that this method
for stabilization and control requires no increase in traffic, computatiomymber of agents.
These results suggest stabilization strategies for any applicationssthatgent-based tech-
nology, such as market-based distributed resource allocation or autorr@iathgerce on the
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Figure 9:Price vs. period with no traders, using the inversely wetghaverage bid priceP,, as
the signal.

Internet.

We have also investigated analytically the dynamics of a simplified mbdélcbncen-
trates on out-of-equilibrium price movements with small liquid#ge appendix). Figures 11,
12, and 13 show the reduction of the cycle after one period vs. indii.r The results
are consistent with our simulations, showing that weighted, formezidhted, and inversely
weighted price signals result in slowly converging, unstable, andglystable behavior, re-
spectively. This analysis has so far been able to verify these resultsarlyef two-agent
case with idealized dynamics and price signals. Although these modelsiamely simpli-
fied they still exhibit the complex behavior of the full system aei@in its qualitative stability
properties. More accurate analysis for more agents and more realistonseo$ithe weighted
and inversely weighted price signals is left for future work.

Finally, we can try to derive some insight into market mechanism fraengtinalitative
results, one of the main motivations for agent-based simulatiors dbimewhat surprising
that an artificial market with no memory or foresight on the part of its agean in some
sense “learn” the equilibrium price and find an efficient equilibrium witty@ slight amount
of information beyond the most recent closing clearing-price. Thieismbres the crucial
importance of information flow in all markets, a fact well recognized of cebssreal-world
traders. The fact that inversely weighting the bid information by gtiainicreases stability
may be a consequence of our particular market structure: those agents wiaobloig or
sell small quantities are closer to their desired reserves, so their bidseftegt the true
equilibrium price more accurately. Perhaps also there is a sense in wiigketh signal
prices represent gradients when the market is viewed as an optimizatioemrodoh idea
related to the work of Ygge that deserves further study.
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A Appendix

Exact theoretical analysis of the markets studied here is very difficult bechtise highly
nonlinear nature of the agent interactions mediated by the auctionitStitluld be helpful to
verify to any extent possible the general results we have obtainedryation. To this end
we present in this section an analysis of a highly simplified model thatitédts simplicity
retains the essential properties of interest.

A.1 The simplified model

In this appendix, we consider the following dynamical equations fgtddce-signal; and
the centered food inventory variablesof two agents:

qt+1)—q(t) = —bEy(ai(t)) (4)
[ Sitt+ D 4wl (f ala(t) > 0)
at+l) = {Si(t—i—l) (it ao()as(t) < 0),

where the food production and consumptinis given by

oi (it q(t+1)>0)
5i<t+1):{ 1 (if Z(t+1)<0), ®)

andFE,, denotes the weighted average corresponding to the particular defirfis@gmnal. For
concreteness we assume the condiartlog(16)/17.5, but the results do not depend bn
because we can eliminate it by scalipg

This simple dynamic model was obtained using a number of approxinsaiod assump-
tions:

e We omit any dependence of the bidding function and auction on gold iosieat

e We consider only two regular agents in the market, and define the centessddny
variablesi; to be the difference between actual inventory and the desired reserve. Thus,
a; > 0 ora; < 0 depending on whether agenexperiences an excess or shortage of
food. In each trading period agentan either produce; units of food (his “skill”) or
consume one unit of food.

e Agents trade as follows: Hy < 0 anda; > 0, there is a trade and we sgt = a; = 0.
e Finally, we setry < o1, and choose the initial condition so that < a;.

Using these simplifications, the use-e§E,, (a;(t)) for the log-signal can be justified by sim-
ulations as a good approximation, using the exponential biddimgfifun which Steiglitz et al.
(1996) introduced, with dependence on gold suppressed.

Despite the somewhat drastic simplifications, this model exhitgtsavior in simulations
that is similar qualitatively to the full model: the price oscillates 9, diverges forP;, and
converges foiP, (see Fig. 10). The goal of this analysis is to verify this analyticalhg we
discuss this in the subsections below for different price signals.

A.2 Simplified model with signal P,

The price signaP, corresponds to the choice

Ey(ai) = (ao + a1)/2, (6)

11
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just the average of all bids. The initial conditions for time 1 are chosen as follows:

ao(l) = al(l) =—1. (7)
We next calculate the price and the stock movement for the four periotteinycle
described in Fig. 4. The boundary of each period is given bytq, t2, t3, andty. Let the

average productiofi = (o¢ + 01)/2 and the time intervel’,, = ¢,, — ¢,—1. Our objective is
to obtain the following state after one cycle:

qta+1) = —Q—-AQ <0,
ao(t4+1) = al(t4+1) = —1. (8)

After straightforward but lengthy calculations we obtain the follogvconditions forty,
15, T3, andT4:

bt? + bt; —2Q >=0,
T2 > tl/al,

2
T;+Ts + 7= Q= t1(tr +1)b/2 = (26t — b6(T5 + 1)) T3/2] > 0,

T4 > T30'0. (9)

Using the minimum positive integers for, 15, T3, andT, satisfying these conditions,
we obtain the differencAQ in the log-price after one cycle,

—AQ = ti(t 4+ 1)b/2 4 [2bt; — b6 (Ts + 1)] To/2
—b6 (T + 1)Ts/2 — bTsTu6 + bTu(Ty + 1) /2. (10)

The radius of the cycle decreases-iAQ > 0 and increases AQ < 0. Fig. 11 shows
the dependence of AQ on the initial value of with o9 = 0.3, ando; = 0.6. For large
values of), the variance tends to decrease. For relatively small valu@s thfe variance may
decrease or increase. For very sn@@Jlthe variance tends to increase. Thus we can say for
the signalP, that the price oscillates to some extent but neither diverges nor convétges
coincides with the results obtained by simulating the simplified model

A.3 Simplified model with other signals

We next consideAQ for two other simple signalsP,., which corresponds to the closing
market price, andP;, a simpler version of the inversely weighted averaye In particular,
for P, the weighted averag®,, (a;) is defined to bey if |ag| > |a1]| anda; otherwise. For
P;, the weighted averagl,, (a;) is defined to be; if |ag| > |a1| andag otherwise. We also
modify the dynamical equations for simplicity. df(¢t) < 0 < a1 (t), there is a trade: we set
a;(t + 1) = S; and assume that there is no change in the prigef 1) = ¢(t)).

Simulation results shows that the price diverges with sighand converges with signal
P3. We can study the system analytically for these sigialand P; in much the same way
as we did forP,. Fig. 12 shows the reduction values-eAAQ vs. the initial value). We see
strong divergence from the dominating negative values. Fotthe graph indicates strong
convergence except whéhis very small (see Fig. 13).

13
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