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Abstract

Using simulation and analysis we show that agent-based auction-cleared automated mar-
kets can be stabilized usingonly completely myopic agents (without value traders), if these
naı̈ve agents are provided with a price signal that reflects order-book information. This
demonstrates that information in the order book is extremely valuable, that prediction can
be replaced by better instantaneous information about others’ bids, and suggests new, more
stable algorithms for market-based control.

1 Introduction

1.1 The problem of market stability

The stability of prices in asset markets is clearly a central issue in economics. From a systems
point of view markets inevitably entail the feedback of information in the form of price signals
and, like all feedback systems, may exhibit unstable behavior. Under varying circumstances
we might expect convergence to some fundamental value, more or less regularoscillations,
chaotic oscillations, sharp rises or falls followed by crashes or recoveries, and so on. Many
writers have studied the effects of trading institutions, trader behavior, and feedback signals
on such complex dynamic behavior, but the general problem remains poorly understood. A
classic dialogue about this issue can be seen, for example, in the views of M. Friedman (1953)
who argues that rational profit-seeking trading will always tend to stabilize a free market, and
a long succession of others (see for example Baumol 1957 and de Long et al.1990) who
present models and accompanying arguments supporting the idea that speculating traders who
seek to maximize their profit can in some natural circumstances destabilize a market.

In this paper we study an agent-based simulation and focus on one particularquestion:
How is dynamic behavior affected when the price signal supplied to the agents is changed?
Briefly stated, our main result is that a signal that is apparently only slightly richer in informa-
tion than the ticker price can dramatically stabilize our market — even when traders operate
with no planning or foresight whatsoever.

In the next subsection we will briefly summarize the methods of attack ongeneral ques-
tions of market stability and review previous work using what are called agent-based (or
microscopic) simulations. We will then describe the construction and general characteristics
of our own model.
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1.2 Review of related work

The study of price movements in asset markets is remarkably complex: it combines the prob-
lems of modeling human behavior with those of predicting the dynamicbehavior of very
large, very nonlinear systems. Current approaches to the problem can be roughly classified as
follows:

a Theoretical (Analysis of mathematical models, usually using difference anddifferential
equations, and usually using aggregate variables);

b Empirical (Econometric studies using real data);

c Experimental (Laboratory studies using human subjects);

d Computational (Simulations modeling the actions of individual agents — the approach
of the present paper).

Each has its advantages and disadvantages, and in some sense they are complementary, con-
tributing different and overlapping pieces to the puzzle. We next briefly summarize previous
work in these areas with the goal of putting our own work in context.

Theory, the first approach, is the oldest and most traditional in economics. It has the
important advantages of generality, and as all theory, it can guide intuition as well as provide
special tools for prediction and institutional design. The limitations of theory are equally
clear. It is all too easy to formulate reasonable equations that are beyond the reach of current
solution techniques. This is especially the case when studying markets with heterogeneous
agents and highly nonlinear trading rules. It is often necessary to simplify and aggregate
behavior to get results. The work of Caginalp and Balenovich (1994, 1996), which uses a set
of coupled nonlinear differential equations, is representative of this approach applied to the
study of market dynamics.

The second approach, empirical studies of asset prices, uses both conventionalstatistical
approaches and nonlinear dynamic models. The work centers on testing for the existence of
predictable structures in all kinds in time series. For a good review,especially of the work
on chaotic models, see Brock et al. (1991). Specifically, a number of studiesin econophysics
(for example, Mantegna and Stanley 2000) have used concepts from statistical physics and
critical phenomena to study self-similarity and fat-tail distributions in empirical data.

The third approach, experimental economics, has the advantage of addressingmore di-
rectly questions of human behavior. However, it is expensive, time-consuming, and it is
difficult to ensure that people behave the same way under laboratory conditions as they do in
real markets. Perhaps the most influential work is that of Vernon Smith, Charles Plott, and
their coworkers (Forsythe et al. 1982, Smith et al. 1988, Smith 1989,Porter and Smith 1994,
Caginalp et al. 1998), which centers on the reproducibility of price bubbles. Along the same
lines, the collection of papers edited by Stiglitz (1990) on price bubbles is revealing in its
diversity of perspectives on just how a price bubble might be defined andwhether in fact one
can exist at all.

Large-scale agent-based simulation, the fourth approach and the one used inthis paper,
has become possible only relatively recently with the advent of fast, cheap, and readily avail-
able computers. It has been championed by physicists using the paradigm ofcomputational
statistical physics. For example, de Oliveira et al. (1999) review several papers over the past
few years that exemplify the methodology, especially the work of Levy,Levy, and Solomon
(1994). The reader is also referred to the recent paper of LeBaron et al. (1999),which also
contains many references to other work in this emerging field. The defining characteristic of
the methodology is that the actions ofindividualsare simulated, explaining the termmicro-
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scopic. This opens the door to the study of the interaction of large numbersof heterogeneous,
interacting agents.

An important theme that runs through much of the work in market dynamics is the inter-
action between two kinds of traders: those who trade on “fundamentals” and those who trade
on “technical” information. The former are often calledvalue traders, and the latternoise
traders, which include trend chasers (also called chartists). This interaction accounts for the
appearance of price bubbles in the simulations of Levy, Levy, and Solomon, Youssefmir, Hu-
berman, and Hogg (1996), and Steiglitz and his coworkers (1996, 1997,1998), for example,
as well as the aggregate models of Caginalp and Balenovich.

We mention important applications of agent-based simulations that are not directly eco-
nomic in nature: they can be translated literally into algorithms for distributed control of
resources (see for example the book edited by Clearwater 1996). In these casesthe agents
may well be distributed software agents instead of humans. Examples include computing cy-
cles (Waldspurger et al. 1992), network bandwidth, computer memory, electric power (Ygge
1998), or even thermal energy in a building. These applications need not necessarily model
realistic markets, but stability is obviously a key issue. More recently, J. Kephart et al. (1998)
anticipate the emergence of an open, free-market information economy of automated agents
buying and selling a rich variety of information goods and services on the Internet. To char-
acterize and understand the dynamic behavior of such information economies, they very nat-
urally employ agent-based simulation, and also use game theoretic analysisto investigate
strategies and competition of software agents. As before, these markets donot necessarily
behave the way human markets do, but an understanding of stability is crucial.

1.3 Description of our model

The simulation model we use in this paper is a direct descendant of those described in Stei-
glitz et al., and we outline its features in this section. The philosophy is to build the simplest
possible system that can reasonably be thought of as acompleteeconomy: in some sense
a minimal economy. Trade requires at least two commodities, so we use the minimum of
two, which we callfoodandgold. Gold plays the role of numeraire, and the price of food is
therefore measured in units of gold.

In the general situation there are three types of agents: regular agents, value traders, and
trend traders. Regular agents can produce food or gold and consume food; value traders and
trend traders are solely speculators and play the roles of value and noise traders mentioned
above. The regular agents are completelymyopic; that is, they exercise no foresight or plan-
ning.

One trading period of the market simulation is executed as follows. Thecentral market
sends to each agent a Request For Bid (RFB) containing price signals. Consider first the case
when the price signal is simply the previous closing price. Based on this signal, the regular
agents decide on their levels of production for that time step, the valuetraders update their
estimate of fundamental value, and the trend traders update their estimates ofprice trend.
The agents then send bids to sell or buy according to their food inventory(regular agent),
the difference between the market price and estimated fundamental price (value trader), or
the direction of the trend (trend trader). Finally, the market treats thesubmitted bids as a
sealed-bid double auction and determines a single price that maximizes the total amount of
food to be exchanged. This institution is sometimes called aclearinghouseor call market
as opposed to anopen-outcry market(Friedman and Rust 1993). The market-clearing price
(ticker price) becomes the next signal in the RFB. Note that in Steiglitz and O’Callighan
(1997) and Steiglitz and Shapiro (1998) the auctioneer determines the price to maximize the
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Figure 1: Generation of the supply and demand curves and market-clearing price in the double
auction.

total amount of gold to be exchanged. However in practice this difference has little effect on
the overall qualitative results. Fig. 1 shows the derivation of the supply-demand curves and
market-clearing price in such an auction.

Consider next the regular agents. They follow a simple dichotomous algorithm: In each
trading period they can produce either food or gold. They make this production decision to
maximize profit, but in a shortsighted way, based only on the current price. Heterogeneity is
introduced by endowing agents with different “skills” — the amount of food and gold they
can produce per period. In a similarly short-sighted way they determinetheir bids to maintain
a fixed food inventory, based only on their current inventory. The regular agents therefore
have no memory or foresight. Their strategy is so simple and myopicthat it often throws the
market into confusion, in a way reminiscent of the cobweb model (Carlson 1967).

We note that our model has a natural equilibrium price, or fundamental value, determined
by the equilibrium condition that total food produced is equal to the total food consumed.
This is one way that our model is distinguished from that of Levy, Levy, and Solomon, which
gives agents a choice between investments with certain and uncertain returns.

The remainder of the paper is organized as follows: In section 2 we describe the results
of simulations using the original model, with market-clearing price asthe signal, illustrating
the stabilizing effect of value traders and the destabilizing effect of trend traders. In section 3
we describe the effects of using other price signals, specifically stabilization without traders
using unweighted and inversely weighted bid averages. Then, after some concluding remarks,
we present in the appendix a simplified model and its analysis, confirmingthe results of the
simulations.

4



P
ri

c
e

o
f

F
o

o
d

Time

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

p rprice.dat �

Figure 2:Price vs. trading period with regular agents only and using closing price as a signal.

13

14

15

16

17

18

19

20

21

22

-3 -2 -1 0 1 2 3 4 5

A
v
e

ra
g

e
F

o
o

d
In

v
e

n
to

ry

Logarithm of Price

Figure 3: Average food inventory vs. logarithm of price in the same simulation as the previous
figure, illustrating the oscillation.
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Figure 4:Diagrammatic representation of price oscillations in an unstable market in the plane of
food inventory vs. price.

2 Simulations

Markets with only such simple regular agents exhibit large price oscillations (see Fig. 2).
In these markets there is low trading volume, and most of the time thereis a large overall
surplus or shortage of food. This oscillation can be visualized effectively by plotting a two-
dimensional graph of average food inventory vs. log-price. The resultis a diamond-shaped
cycle whose center is the ideal (equilibrium) price and ideal (desired) reserve (see Fig. 3).
This cycle starts close to the center and rotates counterclockwise with gradually increasing
radius. We cannot expect efficient resource allocation in such markets.

Fig. 4 shows a typical cycle of the oscillation, sketched diagrammaticallyin the food
inventory–price plane. We divide the cycle into four regions. In region I, the low price
prevents agents from producing food and the resulting deficiency of food causes the price to
rise. In region II, when the price gets high enough, agents begin to produce food, but the price
keeps rising since there still is not enough food to satisfy demand. Inregion III, agents now
have enough food and the price begins to fall. However they continueto produce food because
the price remains high for a time. In region IV, agents stop producingfood because the price
finally becomes low. But the price continues to fall because of food surplus. It is therefore the
delay between the price movement and the size of the food inventory that brings the system
into oscillation, as in the cobweb model. However this intuitive explanation only goes so
far and does not enable us to predict, for example, the radius of the cycle or in fact whether
a given system will be stable or unstable. One way to stabilize this market is to introduce
value traders who estimate the fundamental price (Steiglitz et al. 1996),thus bringing a kind
of foresight to market operations (see Fig. 5). As discussed above, the introduction of trend
traders can produce price bubbles, as illustrated in Fig. 6.

Until now we have described simulations with previous models, which made available to
the agents only the auction market-clearing price (“ticker price”) as a signal. This evidently
does not communicate enough information to stabilize the market without some memory and
foresight, which is invested in the value traders, who use an exponentially smoothed estimate
of fundamental value. We next consider the possibility of using signals other than the market-
clearing price to achieve stability.
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Figure 5:Price vs. trading period with value traders, showing how speculators can stabilize the
market. Value traders are introduced after 100 trading periods.
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Figure 6: Price bubble caused by the introduction of trend traders. The fundamental value is
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Figure 7:Price vs. period with no traders, but using average bid,P0, as the signal.

3 Using other price signals

Consider again the market with only regular agents. After consuming oneunit of food, each
agent sends a bidpi and a quantityai to be traded, both depending on the price signal as well
as the difference between the agent’s food inventory and his desired reserve. This bidding
process generates at any given trading period anorder book, comprising the agents’ bid prices
pi and amountsai. This order book contains considerably more information about market
conditions than simply the most recent closing price. This suggests that we can derive signals
from the order book that can be more effective in stabilizing prices than the closing price. In
practice it is this information that gives commodity traders in the pitan advantage over remote
traders.

Consider first the simplest possibility: define the new signalP0 to be the unweighted
average of all the bid prices:

P0 =
1

n

∑

i

pi (1)

Fig. 7 shows that the price is stabilized quite well, although the time to convergence is longer
than with value traders.

Having observed the effectiveness of the mean bid as a signal, it is natural to try to improve
it further, and a natural choice is the average of the bids weighted by theamountsP1:

P1 =
1

∑

ai

∑

i

aipi (2)

Fig. 8 shows the result, which is perhaps surprising: weighting the bids by the amounts has
the effect of destabilizing, rather than further stabilizing the market.

Finally, this suggests moving in the opposite direction: weighting the prices by some
function that varies inversely with the corresponding amount. We therefore defineP2 to be

P2 =
1

∑

1/(c + ai)

∑

i

1

c + ai

pi (3)
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Figure 8:Price vs. period with no traders, using the weighted averagebid, P1, as the signal.

wherec is a scaling parameter that determines the extent of inverse weighting. Thevalue
c = 1 was used in the simulations in this paper. Fig. 9 shows that the market with signalP2

converges faster and better than withP0.
The fact that weighting the bids with the amounts is destabilizing can beexplained in-

tuitively as follows: The agents bidding for large quantities are generally farther from their
desired reserves, and their bids are therefore farther from equilibrium — farther above for
buyers who have a severe deficiency, and farther below for sellers who havea severe surplus.
Their bids are therefore more likely to be far away from the actual equilibrium than agents
bidding for small quantities.

4 Concluding Remarks

In this paper, we have considered the effects of different price signals onmarket stability using
agent-based, microscopic simulations. Our models are practical for simulations of many hun-
dreds of time steps, allow arbitrary, heterogeneous trading strategies and agent characteristics,
and use a closed economy with a naturally defined equilibrium price that equates production
and consumption. The simulations presented here were implemented usingboth Java and Java
mobile agentsAglets(Lange and Oshima 1998). Implementations in C run many times faster
and make simulations for thousands of time steps practical if necessary.

Our results show that the average-bid price signalP0 stabilizes the market price effec-
tively, and stable resource allocation is approached as well, all without predictive traders.
What is perhaps counterintuitive is that supplying the agents with the weighted averageP1

neither increases stability nor improves resource allocation, but in fact achieves little im-
provement over using the closing price. Moreover, the inversely weightedaverageP2 yields
the greatest improvement in stability and resource allocation. It is noteworthy that this method
for stabilization and control requires no increase in traffic, computation,or number of agents.
These results suggest stabilization strategies for any applications thatuse agent-based tech-
nology, such as market-based distributed resource allocation or automated e-commerce on the
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Figure 9:Price vs. period with no traders, using the inversely weighted average bid price,P2, as
the signal.

Internet.
We have also investigated analytically the dynamics of a simplified model that concen-

trates on out-of-equilibrium price movements with small liquidity(see appendix). Figures 11,
12, and 13 show the reduction of the cycle after one period vs. initial radii. The results
are consistent with our simulations, showing that weighted, forwardweighted, and inversely
weighted price signals result in slowly converging, unstable, and strongly stable behavior, re-
spectively. This analysis has so far been able to verify these results only for the two-agent
case with idealized dynamics and price signals. Although these models are extremely simpli-
fied they still exhibit the complex behavior of the full system and retain its qualitative stability
properties. More accurate analysis for more agents and more realistic versions of the weighted
and inversely weighted price signals is left for future work.

Finally, we can try to derive some insight into market mechanism from the qualitative
results, one of the main motivations for agent-based simulation. It is somewhat surprising
that an artificial market with no memory or foresight on the part of its agents can in some
sense “learn” the equilibrium price and find an efficient equilibrium with only a slight amount
of information beyond the most recent closing clearing-price. This underscores the crucial
importance of information flow in all markets, a fact well recognized of course by real-world
traders. The fact that inversely weighting the bid information by quantity increases stability
may be a consequence of our particular market structure: those agents who bidto buy or
sell small quantities are closer to their desired reserves, so their bids may reflect the true
equilibrium price more accurately. Perhaps also there is a sense in which the new signal
prices represent gradients when the market is viewed as an optimization problem, an idea
related to the work of Ygge that deserves further study.
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A Appendix

Exact theoretical analysis of the markets studied here is very difficult becauseof the highly
nonlinear nature of the agent interactions mediated by the auction. Still,it would be helpful to
verify to any extent possible the general results we have obtained by simulation. To this end
we present in this section an analysis of a highly simplified model that despite its simplicity
retains the essential properties of interest.

A.1 The simplified model

In this appendix, we consider the following dynamical equations for log-price-signalq and
the centered food inventory variablesai of two agents:

q(t + 1) − q(t) = −bEw(ai(t)) (4)

ai(t + 1) =

{

Si(t + 1) + ai(t) (if a0(t)a1(t) ≥ 0)
Si(t + 1) (if a0(t)a1(t) < 0),

where the food production and consumptionSi is given by

Si(t + 1) =

{

σi (if q(t + 1) ≥ 0)
−1 (if q(t + 1) < 0),

(5)

andEw denotes the weighted average corresponding to the particular definition of signal. For
concreteness we assume the constantb = log(16)/17.5, but the results do not depend onb
because we can eliminate it by scalingq.

This simple dynamic model was obtained using a number of approximations and assump-
tions:

• We omit any dependence of the bidding function and auction on gold inventories.

• We consider only two regular agents in the market, and define the centered inventory
variablesai to be the difference between actual inventory and the desired reserve. Thus,
ai > 0 or ai < 0 depending on whether agenti experiences an excess or shortage of
food. In each trading period agenti can either produceσi units of food (his “skill”) or
consume one unit of food.

• Agents trade as follows: Ifa0 < 0 anda1 > 0, there is a trade and we seta0 = a1 = 0.

• Finally, we setσ0 < σ1, and choose the initial condition so thata0 ≤ a1.

Using these simplifications, the use of−bEw(ai(t)) for the log-signal can be justified by sim-
ulations as a good approximation, using the exponential bidding function which Steiglitz et al.
(1996) introduced, with dependence on gold suppressed.

Despite the somewhat drastic simplifications, this model exhibitsbehavior in simulations
that is similar qualitatively to the full model: the price oscillates for P0, diverges forP1, and
converges forP2 (see Fig. 10). The goal of this analysis is to verify this analytically,and we
discuss this in the subsections below for different price signals.

A.2 Simplified model with signalP0

The price signalP0 corresponds to the choice

Ew(ai) = (a0 + a1)/2, (6)
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just the average of all bids. The initial conditions for timet = 1 are chosen as follows:

q(1) = −Q < 0,

a0(1) = a1(1) = −1. (7)

We next calculate the price and the stock movement for the four periods inthe cycle
described in Fig. 4. The boundary of each period is given byt = t1, t2, t3, andt4. Let the
average production̂σ = (σ0 + σ1)/2 and the time intervalTn ≡ tn − tn−1. Our objective is
to obtain the following state after one cycle:

q(t4 + 1) = −Q − ∆Q < 0,

a0(t4 + 1) = a1(t4 + 1) = −1. (8)

After straightforward but lengthy calculations we obtain the following conditions fort1,
T2, T3, andT4:

bt2
1
+ bt1 − 2Q >= 0,

T2 > t1/σ1,

T 2

3
+ T3 +

2

bσ̂
[Q − t1(t1 + 1)b/2 − (2bt1 − bσ̂(T2 + 1))T2/2] > 0,

T4 > T3σ0. (9)

Using the minimum positive integers fort1, T2, T3, andT4 satisfying these conditions,
we obtain the difference∆Q in the log-price after one cycle,

−∆Q = t1(t1 + 1)b/2 + [2bt1 − bσ̂(T2 + 1)]T2/2

−bσ̂(T3 + 1)T3/2 − bT3T4σ̂ + bT4(T4 + 1)/2. (10)

The radius of the cycle decreases if−∆Q > 0 and increases if−∆Q < 0. Fig. 11 shows
the dependence of−∆Q on the initial value ofQ with σ0 = 0.3, andσ1 = 0.6. For large
values ofQ, the variance tends to decrease. For relatively small values ofQ, the variance may
decrease or increase. For very smallQ, the variance tends to increase. Thus we can say for
the signalP0 that the price oscillates to some extent but neither diverges nor converges. This
coincides with the results obtained by simulating the simplified model.

A.3 Simplified model with other signals

We next consider∆Q for two other simple signals:Pr, which corresponds to the closing
market price, andP3, a simpler version of the inversely weighted averageP2. In particular,
for Pr the weighted averageEw(ai) is defined to bea0 if |a0| > |a1| anda1 otherwise. For
P3, the weighted averageEw(ai) is defined to bea1 if |a0| > |a1| anda0 otherwise. We also
modify the dynamical equations for simplicity. Ifa0(t) < 0 < a1(t), there is a trade: we set
ai(t + 1) = Si and assume that there is no change in the price (q(t + 1) = q(t)).

Simulation results shows that the price diverges with signalPr and converges with signal
P3. We can study the system analytically for these signalsPr andP3 in much the same way
as we did forP0. Fig. 12 shows the reduction values of−∆Q vs. the initial valueQ. We see
strong divergence from the dominating negative values. ForP3, the graph indicates strong
convergence except whenQ is very small (see Fig. 13).
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