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the previous example is 

Then it is clear that the oriented communication net 
corresponding to this branch capacity matrix B has the 
terminal capacity matrix which is equal to T. For example 
the oriented communication net corresponding to B in 
the previous example is shown in Fig. 5. Notice that the 
communication net whose terminal capacity matrix 

4 8 6 7 

Fig. 5-Communication net corresponding to R. 

satisfies Theorem 5 contains at most 2(v - 1) different 
terminal capacities, where v is the number of vertices 
in the net. 

One of the future problems in this field is to find a 
sufficient condition for realizability of a terminal capacity 
matrix in which there are k different elements for a fixed k. 
Another problem is to define the optimum oriented com- 
munication net and to obtain a method of synthesizing 
such a net whose terminal capacity matrix satisfies 
Theorem 5. 
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I. INTRODUCTION 

HE RATIONAL, positive-real functions are those 
rational functions W(s) of the complex variable 
s = u + jw that are real-valued for real s and 

have a non-negative real part whenever the real part 
of s is positive. Well-known necessary conditions on the 
pole and zero locations for such functions are that there 
can be no poles or zeros in the open right-half s plane 
and that any imaginary poles and zeros must be simple. 
Furthermore complex poles and zeros must occur in 
complex-conjugate pairs. The converse problem of de- 
termining sufficient conditions on the pole and zero 
locations, which insure that W(s) is positive-real, has 
been an outstanding one in circuit theory. A number of 
specialized results have been known for some time. For 
instance if the poles and zeros are simple and alternate 
on the real, negative axis or on a vertical line in the 
closed left-half s plane, W(s) is certainly positive-real.’ 
A more recent result is given by F. M. Reza,’ who shows 

i E. A. Guillemin, “Synthesis of Passive Networks,‘.’ John Wiley 
and Sons, Inc., New York, N. Y.; 1957. 

2 F. M. Rena, “RLC canonjc forms,” J. Appl. Phys., vol. 25, 
pp. 297301; March, 1954. 
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among other things that the same conclusion holds if 
the poles and zeros are simple and alternate on a circle 
that lies in the left-half s plane and has its center on the 
real axis. This result can be obtained by making a bilinear 
transformation from a vertical line to a circle and using 
the fact that a positive-real function of a positive-real 
function is again positive-real. 

In this paper some new conditions on the pole and zero 
locations are developed which insure the positive-reality 
of W(S). For instance, assuming that W(S) has exactly 
n poles and n zeros, certain regions of the left-half s 
plane are constructed which have the following property: 
If these poles and zeros are placed in one of these regions 
in any arbitrary manner (with the restriction, of course, 
that complex elements appear in complex-conjugate pairs), 
the resulting W(s) will be positive-real. Furthermore 
other regions are developed for which the magnitude of 
the phase angle of W(jw) never exceeds a given quantity 
0 for - ~0 < w < Q, . Moreover these results are extended 
to the cases where the number of poles and the number 
of zeros of W(s) differ by one. 

In addition certain paths in the left-half s plane are 
derived which allow one to place any number of poles 
and zeros into any of the aforementioned regions. In 
particular, if the poles and zeros alternate in groups of 
n elements on any such path in a given region, W(S) 
will again be positive-real. The simple alternations of 
poles and zeros on the real, negative axis and on a vertical 
line or circle in the closed left-half s plane are special 
cases of these considerably more general conclusions. 

Throughout this paper it is assumed that the constant 
multiplier of the rational function is positive and that 
the complex poles and complex zeros appear in complex- 
conjugate pairs. These conditions will not be explicitly 
stated in the forthcoming theorems. 

If W(s) is a rational function having all its poles and 
zeros in the closed left-half s plane, the phase function 
a,(w) of W(j,) will be measured in the conventional 
way. That is, the phase function of any factor jw + r, 
where Re rl > 0, is restricted to its principal branch: 

Iarg(jw+d I <r/2. 

In particular, if Re v = 0, arg (j, + v) is taken to be 
zero at the point j, = -7). Because of this at any imagi- 
nary pole or zero (say at s = j,,) of W(s) we always have 

%(w,> = %[a&, + 0) + %r4Wl - ON. (0 

Under the assumptions of the previous paragraph W(s) 
will be real and positive for real positive values of s, 
and &(w) will be an odd function of w. In addition we 
may state 

Lemma 1: Let W(s) be a rational function having all 
its poles and zeros in the closed left-half s plane. If 
! %4w> I I r/2 f or w > 0, then W(s) is positive-real. 

Proof: The fact that @&w) is bounded by &r/2 im- 
plies that Re W(ju) > 0 and that each pole on the jw 

axis is simple and has a positive residue. This insures 
the positive-reality of W(s) .3 

Actually, under our hypothesis on the pole and zero 
locations of W(s), the converse of this lemma is also true. 

We shall refer to the number of poles and zeros in a 
region and to their multiplicities in the following way. 
The number of such elements in a given region is obtained 
by counting the elements according to their multiplicities. 
As an example, if a certain region contains only a triple 
pole at one point and a double pole at another point, we 
shall say that it contains five poles. In referring to the 
number of poles or the number of zeros of a rational 
function, we shall be referring to the number of finite 
poles or zeros; the poles or zeros at s = a, will not be 
counted. 

II. P PATHS AND N-FOLD ALTERNATION ON P PATHS 

In this section we shall define a certain class of paths 
which reside entirely in the closed left-half s plane and 
have the following property: If the zeros of a quadratic 
polynomial are moved along these paths, the phase 
function of this quadratic will either increase everywhere 
on the positive s = jw axis or decrease .everywhere on 
this axis, depending on the direction in which the zeros 
are moved. As will be shown later, these curves enable 
us to define certain classes of rational functions whose 
phase function on the ju axis is bounded in magnitude by 
some prescribed angle. 

To make these ideas more concrete, consider a quadratic 
polynomial Qt(s) whose zeros lie on some circle C which 
resides entirely within the closed left-half s plane. Let us 
move the zeros of Ql(s) some distance to the left on C, 
as shown in Fig. l(a), and investigat,e the behavior of 
the phase function on the positive ju axis. The phase 
function of the new quadratic QZ(s) will be equal to that 
of QI(s) plus the phase function of the rational flmction 
QZ(s)/Ql(s) which has poles at the original location of 
the zeros and zeros at the final location. Thus the change 
in the phase function on the jw axis due to the shift in 
zeros will be given by the phase function of Qz(s)/Q,(s) 
on the jw axis. This phase function is negative for w > 0 
and positive for w < 0. To see this consider the root 
locus defined by 

Im [Ql(s)/Q2(41 = 0. 

(bl 

Fig. l--(a) The zeros of &I(S) moved on C. (b) The poles and zeros 
of &2(~xh(S). 

3 Guillemin, op. cit., see p. 15. 
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It is well-known4 that this locus consists of the real in LY and p can be computed to be 
axis plus the circle C, which does not intersect the jw 
axis. Therefore arg [Ql(jw)/Q2(jw)] changes sign only at 
w = 0 and is of one sign for w > 0 and the opposite sign 
for w < 0. As can be seen from the construction in Fig. l.(b), 
the phase function of Ql(s),/Qz(s) is negative at the point 
W on the positive jw axis. We then have the desired result: 

=- 
[a2 + (w - g$ + (w + PYI 

. [(a2 + w2 - p”) da + ~CYP db], (4) 
(w > 0) 

w [Q~(j4/Q2(k41 = 0 

I 

<O 

(w = 0) (2) 
If w 2 0, daQ < 0 if and only if 

>o (w < 0). 

This means then that as the zeros of Ql(s) are moved 
to the left on the circle C, the phase function decreases 
everywhere on the positive jw axis and increases every- 
where on the negative jw axis. It is clear that moving the 
zeros to the left on a path consisting of segments of many 
such circles will have the same effect. We may in fact 
consider paths with tangent circles in the left-half plane 
as being made up of an infinite number of such circles. 
This suggests the following definition: 

Definition: Consider two points s, and T, which need 
not always be distinct. A P path is generated by moving 
these complex-conjugate points from s = 0 to s = ~0 
in such a way that Re s, is nonincreasing and, wherever 
Re s, remains constant on any portion of this path, Im s, 
increases. We also require that a circle whose center is 
on the negative-real axis and which lies entirely within 
the closed left-half s plane can be drawn tangent to the 
P path at all but a finite number of points on any finite 
portion of this path. By including the limiting cases 
where the radii of these circles are either zero or infinity, 
we admit portions of the negative-real axis or vertical 
lines in the closed left-half s plane as possible parts of 
these paths. 

(a2 + w2 - /3”) dot + 2cvp clj3 2 0 (5) 

for all W. 

We shall now show that (5) holds at every point, 
--a! f jp on a P path. First assume that Q is increasing 
as we move along the P path. If 0 = 0, (5) certainly holds. 
If p > 0, a circle can be drawn tangent to the P path 
with center at s = --a < 0 and radius b, where 0 < b 5 a 
(see Fig. 3). The equation of this circle is 

(--a + a)” + 0” = b’. (6) 

We shall assign an orientation to every P path. In 
particular the direction taken by the generating points 
s, and S, a,s they move from s = 0 to s = ~0 will be taken 
as the negative direction on the path. Examples of P 
paths, with the negative orientation indicat.ed, are shown 
in Fig. 2. 

We can now state the following lemma: 

Lemma 9: Let Q(s) = (s + CY)’ + p” be a real quadratic, 
having zeros in the left-half s plane at s = --a! f j/?(a, p 2 0). 
Then as the zeros of Q(s) traverse a P path in the negative 
direction, the phase function of Q(s) on the jw axis, a*(w), 
decreases monotoniaally for every *fixed, positive W. 

Proof: The phase function of Q(jw) is given by 

Fig. 2-Examples of P paths with the negative directions indicat.ed. 

(3) 

As the zeros of Q(s) move on a P path, CY and p change. 
The total change in phase due to an infinitesimal change 

4 K. Steiglitz, “An analytical approach to root loci,” IRE TRANS. 
ON AUTOMATIC CONTROL, vol. AC-6, pp. 326-332; September. 1961. - 

Fig. 3-A circle drawn tangent to a P path at the points 
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Differentiating (6), we have 
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--a + a 
d/3 = p dcr. (7) 

Substituting (7) into (5) we obtain 

(w” - a2 + 2aa - /3”) da! 2 0. (8 

But from (6) 

-a2 + 2aa - p” = a2 - b” 2 0. 

Hence (8) and therefore (5) holds when da: > 0. 

(9) 

In the case when (Y is constant on the P path, p must 
increase, so that da! = 0, d/3 > 0, and (5) again holds. 
Q.E.D. 

We shall now define certain ways of placing the poles 
and zeros of a rational function on a P path to obtain a 
certain type of alternation. This alternation, plus the 
property of P paths shown to hold in the previous lemma, 
will serve to bound the phase angle of this rational function 
on the jw axis. In the following definition we shall traverse 
a P path and count the number of poles and zeros occurring 
on it in the following way. For those sections where the 
P path has two complex-conjugate branches, the complex- 
conjugate pairs of poles and zeros will be counted simul- 
taneously. In other words we shall always count the poles 
and zeros for both branches rather than for just one of 
them. 

DeJinition: We shall say that there is n-fold alternation 
of poles and zeros on a P path if, while traversing it in 
the negative direction, we encounter first n poles, then 
n zeros, then n poles, etc., or first n zeros, then n poles, 
then n zeros, etc., where there are an equal total number 
of poles and zeros. If poles are encountered first we shall 
say that the poles are the starting elements, and similarly 
for zeros. We shall allow some of the poles and zeros to 
become coincident. 

Examples of 3-fold, 4-fold and B-fold alternat,ion on a 
P path are shown in Fig. 4. 

Lemma 3: Let W(s) have lcn poles and kn zeros which 
possess n-fold ulternation on a P path. Let the contribution 
to the phase function of the jirst group of n elements be 
denoted by Cal(w), of the second group by %(w), etc., up to 
Gzk(w), and let the total phase function be Q&w) = arg W(jw). 
Then on the positive jw axis 

if zeros are the starting elements, and 

+ I GM I I %i44 I 0 (11) 

if poles are the starting elements. 
Proof: hssume that zeros are the starting elements. 

ON CIRCUIT THEORY September 
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Fig. 4-Examples of a-fold, 4-fold,. and B-fold alternation on P 
paths. All poles and zeros are simple unless otherwise noted. 
In (c), 5 poles and 5 zeros in set A are coincident whereas 2 poles 
and 2 zeros in set B are coincident. These poles and zeros cancel 
each other and hence are not shown. 

Then for w > 0 

%&J) = %(w) + @.2(w) + - * * + @2!%(W) 

= I M4 I - I @a4 I + I M4 I - * . * - I @&I I 
= [I w.4 i - I hi4 Ii - [I ~(4 I 

- I %-16-4 II + * * * . (12) 

Because of the property of P paths stated in Lemma 2, 
each of the bracketed terms is positive and each is less 
in magnitude than its predecessor. A series of terms which 
alternate in sign and decrease in magnitude can be no 
larger in magnitude than its first term and must have 
the same sign as its first term. Hence for w > 0 

0 5 ~4~) 5 I +d4 I - i h(4 I. - 
Again, by Lemma 2, I %(w) 1 2 I (hZk(w) / for w > 0. 
But I %(w) I 5 na/2 because %(w) is the phase con- 
tribution of n zeros in the left-half s plane. Thus for 
w > 0 we have’ arrived at (10). A similar argument 
yields (11). 

In the special Case when n = 1 and the P path is the 
real nonpositive axis, we have the familiar simple alterna- 
tion of an RL or RC driving-point impedance. As we 
shall show later, if this l-fold alternation starts with a 
zero (pole), we may add a real pole (zero) anywhere on 
the real nonpositive axis and still have a positive-real 
function. 

With 2-fold alternation, Lemma 3 bounds a(w) be- 
tween 0 and ?r for a starting zero (and between 0 and -?r 
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for a starting pole). By adding a pole (zero) between the 
origin and the rightmost starting zero (pole) of the func- 
tion W(s), the phase function is shifted in the appropriate 
direction to ensure positive-reality, as we shall now show. 
This will be our first sufficient condition for a positive- 
real function. 

Theorem 1: Let W(s) = F(s) (s + o~)*l, where the poles 
and zeros of F(s) have 2-fold alternation on a P path. 
Furthermore let (II be real and nonnegative; let the root --a! 
be no smaller (i.e.. not more negative) than the rightmost 
element of F(s); also, let -01 be a pole if the starting ele- 
ments of F(s) are zeros, and a zero if the starting elements 
of F(s) are poles. Then W(s) is positive-real. 

Proof: Assume without loss of generality that F(s) 
has starting zeros and that we add a pole. If necessary 
shift the pole-zero pattern of W(s) to the right so that 
the added pole is at the origin. The shifted function is 

j,qs - a) = F(s - 4, 
S 

By Lemma 3, for w > 0 

0 5 a.rg F(jw - a) 5 a. 

Therefore 

-i I arg W(jw - 0) 2 z , 

and by Lemma 1, W(s - a) is positive-real. Shifting a 
positive-real pole-zero pattern to the left will not disturb 
the positive-real property. Hence TV(s) is also positive- 
real. Q.E.D. 

When the P path of Theorem 1 is a vertical line in 
the closed left-half s plane and when the added real ele- 
ment is on this vertical line, Theorem 1 yields the familiar 
LC (or uniformly dissipative LC) case, which can be 
converted to Reza’s result by a bilinear transformation. 

III. REGIONS GENERATED BY P PATHS 

The results of Section II may be used to generate 
certain regions of the left-half s plane into which n poles 
and n zeros may be placed in any fashion to generate 
positive-real functions. In order to develop some of these 
regions we shall need to know under what conditions on 
the real positive quantities y and p the following function 
is positive-real: 

F(s) = &)‘. 

It is clear that for y sufficiently close to p, F(s) will be 
positive-real, while for y sufficiently far from p it will 
not be positive-real. We need merely ascertain under 
what conditions the phase function of F(jw), denoted 
by +PF(~), satisfies 

I @‘F(W) I I ; b > 0). (14) 

For (13) we have 

@F(u) = n tan-’ y - n tan-’ w_. 
P 

05) 

@a,(w) is an odd function of w. Clearly if y < p, +g(~) > 0 
for w > 0, and if y > p, ap(w) < 0 for w > 0. Computing 
the maximum value aLnaX of @p(m) in t,he standard way, 
we find 

and by Lemma 1 this implies 
Lemma 4: Let the fur&ion F(s) be de$ned by (13) where 

y and p are real positive quantities. F(s) is positive-real 
if and only if 

07) 

Now given an n, consider any interval of the real 
negative axis in the s plane whose endpoints -y and -p 
satisfy (17). Let, us assume for definiteness that y < p. 
Also consider any rational function W(s) having n poles 
and n zeros all of which lie on this interval. This function 
can be obtained from F(s) by moving the zeros of F(s) 
to the left and the poles of F(s) to the right. When these 
poles and zeros are moved the entire length of the interval 
we shall obtain l/F(s). Since these poles and zeros are 
moving on a P path, it follows that for any positive w, 
the phase function a,(w) of W(jw) decreases monotonically 
from +r(~), which is the phase function of F(jw), to 
-aF(w). Hence for all w 

and therefore W(s) is also positive-real. This means that 
if we place n poles and n zeros on this interval in any 
fashion we will always generate a positive-real function. 

Actually we need not restrict the poles and zeros to 
the real negative axis. If we move the poles and zeros 
along P paths that extend from s = -y to s = -p, the 
same argument shows that the W(s) is again a positive- 
real function. In other words any region, each of whose 
points lies on some P path connecting s = --y and 
s= -p, has the property that every rational function 
obtained by putting n poles and n zeros anywhere in 
this region in any fashion will be positive-real. Given 
n and y, the largest such region is obtained as follows: 
Choose p greater than y and such that equality is achieved 
in (17). Construct a circle C with center on the real axis 
and passing through s = -p and s = 0. Finally draw a 
vertical line L through s = -7. The closed region whose 
interior is to the left of L and inside C is the largest region 
that can be generated by P paths. We shall denote this 
region by X( -7, r/2n). The regions S(-1, ?r/2n) for 
n = 2, 3 and 4 are illustrated in Fig. 5. 

Thus we have arrived at 
Theorem 3: The rational function W(s), having n poles 
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Fig. 5-The regions S( -1, O/n) for various values of B/n; n poles 
and n zeros placed anywhere in X( -1, O/n) will determine a 
function for which ! @(CO) 1 < 8. 

and n zeros all of which lie in a region S( - y, r,/2n), is 
positive-real. 

In Section IV we shall obtain larger regions which 
generate positive-real functions by employing a somewhat 
different, technique. However these larger regions will not 
be so easily constructed as the X(-r, r/2n). 

Actually we may place any number of pole-zero pairs 
into a given X(-r, r/an) region to generate a positive- 
real function if these poles and zeros possess n-fold alter- 
nation on P paths. More precisely we may state 

Theorem 3: Let W(s) have m poles and m zeros, all occur- 
ring in S( - y, a/2n). Of these m poles and m zeros, let q 
poles and q zeros (0 5 q < m) possess n-fold alternation 
on a P path starting with poles and let the rest of them 
(m - q poles and m - q zeros) possess n-fold alternation on 
the same or another P path starting with zeros. Then W(s) 
is positive-real. 

Proof: For the q poles and q zeros let -t be the pole 
farthest in the positive direction on its path and let -v 
be the zero farthest in the negative direction. (If ,$ is 
complex take any one of these complex-conjugate ele- 
ments, and similarly for v.) Let *(w) be the phase function 
corresponding to 

By Theorem 2, -r/2 5 *(CO) < 0 for o > 0. Now the 
q poles and q zeros generate a rational function whose 
phase function @a(w) satisfies *k(o) < Qjp(o) < 0 for w > 0, 
according to (11) of Lemma 3. Hence -?r/2 5 CJ~(W) 5 0 
for w > 0. 

By precisely the same argument, the phase function 

@,,&w) for the remaining m - 2 poles and m - q zeros 
satisfies 0 I %m-u(w) I 7r/2 for o > 0. Finally the phase 
function %(w) of W(jw) equals +),(a) + +‘m-,(w). There- 
fore 1 @W(~) 1 I 7r/2 for w > 0, and by Lemma 1 W(s) 
is positive-real. Q.E.D. 

The number of poles and the number of zeros of a 
positive-real function may differ by one and this situation 
has not yet been discussed in this section. For such a 
case there must be at least one real pole or one real zero. 
This consideration leads to 

Theorem 4: Let F(s) have m poles and m zeros, all occurring 
in S( - y, n/2n), and let these poles and zeros possess n-fold 
alternation on a P path starting with zeros. Let 

G(s) = f;: 

g (8 + 6,) ’ 
08) 

where q 2 0, the vi and 6; are real, and 0 5 6, < ql < 
6, < 112 < . . . < 7je < 6,+,. Then F(s) G(s) is positive-real. 
On the other hand, if the n-fold alternation for F(s) starts 
with poles, then F(s)/G(s) is positive-real. 

Note: If q = 0, G(s) = l/(s + 6,). 
Proof: Let the n-fold alternation for F(s) start with 

zeros. As in the proof of Theorem 3, we can show that 
the phase function @p(w) of F(jw) satisfies 0 < @P(u) 5 
r/2 for o > 0. We also have that the phase function 
@.o(w) satisfies --r/2 5 +o(o) 5 0 for w > 0. Hence 
by Lemma 1, F(s)G(s) is positive-real. The rest of the 
theorem can be proven in the same way. 

In this discussion we have taken the upper bound on 
@(w) to be a/2 so as to generate positive-real fun&ions. 
However we may choose other bounds .9 on &(w) and 
construct other regions S(-7, e/n). More precisely let 
the positive integer n and the positive numbers y and 0 
be given. Let p be the real number larger than y satisfying 

tan-’ P-y = s. 
22/rp n 

(1% 

Since c?~(w) for (13) can never be greater than n?r/2, 
(19) provides a solution for p only when 0/n 5 r/2; 
therefore, we shall restrict 8/n to such values. Denote 
by S(-7, e/n) the region of the s plane that is the inter- 
section of the half-plane given by Re s I -y, with the 
circular region given by 1 s + p/2 1 I p/2. The regions 
X(-l, e/n) for e/n = r/4, 7r/6 and ?r/8 are shown in 
Fig. 5. 

We may now state 
Theorem 5: Let W(s) be a rational function having n 

poles and n zeros all lying in a region S( - y, e/n). Then 
the phase function &(w) of W(ju) satisfies 

I h44 I i e (-a <w< a). cm 

Proof: Each pole and each zero of W(s) can be placed 
on a P path that passes through s = -y and s = -p. 
If F(s) is given. by (13), the phase function @F(m) of 
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F(jw) satisfies 

Steiglitz and Zemanian: Pole and 

as can be seen from (16) and (19). Now W(s) can be ob- 
tained from F(s) by moving the poles of F(s) in the positive 
direction on the stated P paths and moving the zeros 
of F(s) in the negative direction on these P paths. While 
doing this the phase function of the varying function at 
any given value of w will vary monotonically from GP(w) 
to - @)F(w), the latter value being achieved w&en the 
poles reach s = -y and the zeros reach s = -p. Hence 

I @b(w> I i I %4Q) I 5 0. 

Q.E.D. 
Obviously if we place m poles and m zeros into 

X(-y, e/n), the bound on 1 @(w) 1 for all w will be me/n. 
A result that is analogous to Theorem 3 also holds for 

the S( -y, 0/n) regions and it can be proven in the 
same way. 

Theorem 6: Under the hypothesis obtained by replacing 
X(-y, a/2n) by S( -y, e/n) in the hypothesis of Theorem 3, 
we haoe that the phase function 8+(w) of W(jm) satisfies 
1 *w(~) 1 I e for all W. 

The results obtained thus far can be combined into a 
more general criterion which permits us to ascertain 
whether certain rational functions are positive-real. This 
may be accomplished by factoring the given rational 
function. In short we have 

Theorem 7: Let 

wh,ere each W<(s) satisfies the hypothesis of either Theorems 
5 or 6 and let the corresponding bound on each ] arg Wi(jw) 1 
be ei. If 

jh$, 
i=l 

then W(s) is positive-real. 
As an example of the application of Theorem 7 consider 

the function 

KS + 1Y + ll(s + 3)” W(s) = ___ 
[(s + 2)” + O.lG](s + 5)“’ 

The poles and zeros of this function do not fit inside 
any X(-y, a/10) region no matter what value for y is 
tried. However the zeros at s = -1 -I j and the poles 
at s = -2 f j 0.4 fit inside S( - 1, 7r/8) whereas the 
triple zero at s = -3 and the triple pole at s = -5 fit 
inside X(-3, ?r,/l2). Consequently by Theorem 7 W(s) 
is positive-real. 

We can again include the case where the number of 
poles and number of zeros differ by one in the following 
way. 

Corollary 7(a) : In addition to the hypothesis of Theorem 7, 
let (21) be such that the phase functions for all the W<(jw) 
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The ReqionT(-l+j.-a+ja,lr/4) 

Fig. 6-The region !/‘( -1 + jt --LY + jq ~r/4). 2 poles and 2 zeros 
placed anywhere in this region will generate a positive-real func- 
tion. 

are non-negative for w > 0. Also let G(s) be given by (18) 
and its associated restriotions. Then W(s)G(s) is positive- 
real. On the other hand, if the phase functions for all the 
Wi(jm) are nonpositive for w > 0, then W(s)/G(s) is 
positive-real. 

In developing the S( -y, e/n) regions we started from 
(13), where y and p are both real. If we remove the 
restriction that y and p are real, we may generate other 
regions which we shall denote by T( -y, -p, e/n), having 
the property that n poles and n zeros placed anywhere 
within them will produce a function whose phase function 
is bounded in magnitude by e for all W. For instance let 

F(s) = (s + l>? + 1 
(s + a)” + a2 (a = 2 + x4$. (22) 

This is a positive-real function; moreover, the phase 
function (a,(~) of F(jw) achieves 7r/2 at some value of w. 
Define T(- 1 + j, -Q: + j,, a/4) as the largest closed 
region each of whose points lies on a P path that con- 
nectseithers = -1 fjtos = -arfjarors = -1 -j 
to s = --a: - j,. The boundary of this region is indicated 
in Fig. 6. By precisely the same argument that established 
Theorem 2, we can conclude that if W(s) has 2 poles 
and 2 zeros appearing anywhere in T( - 1 + j, -or+ 
ICY, a/4), then W(s) is positive-real. 

.More generally the region T( -y, -p, e/n) will be 
defined as follows. Let JP be the maximum value of the 
phase function for 

F(jw) = <J- + Y)(iCO + r) 
(PJ + p)(j~ + i3 

(Im y 2 0, Im p > 0). (23) 
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The region T(-7, -p, \E/2) = T(-7, -p, 19/n) consists 
of all points that lie on a P path connecting either s = -y 
to s = -p, or s = -7 to s = -p. It should be noted 
that for certain choices of p and y this region will not 
exist. When the region does exist, its boundary will 
consist of portions of straight lines and circles, as for 
example in Fig. 6. 

September 

All the results obtained previously for the X(-r, 0kn) 
regions may be extended to the T( - y, - p, e/n) regions 
where y and p are in general complex. However we shall 
not pursue this approach any further since all- these 
results can be obtained as special cases of the more general 
conclusions of Section IV. 

IV. LARGER REGIONS 

In this section we shall develop regions in the left-half 
s plane which include both the X(-r, e/n) and the 
T(-7, -p, e/n) as proper subregions. As a first step 
consider again the function 

F(s) = (s + r)(s + r> = s” + UlS + &I 
(s + P)cs + ,$ s2 + b,s + b, ’ 

(24) 

where y and p are in general complex but may be real. 
Also let Re p and Re y be positive. Computing the Re F(jw) 
we see that the Re F(jw) is non-negative if and only if 
the polynomial 

P(c!J”) = cd4 + (&bl - a, - b&d2 + a& (25) 

is non-negative. The critical case occurs (i.e., F(s) is just 
on the borderline of being a positive-real function) when 

a, + b, - Ulbl 2 0 (26) 

and 

[a, + b, - UlbJ2 - 4u,b, = 0. (27) 

Combining (26) and (27) and using a, = 2 Re y, a, = 1 y I’, 
b, = 2 Re p, b, = 1 p 12, we obtain 

Rep = (lyi;ejyp I)“. (28) 

For a fixed value for y, (28) defines a locus of values 
for -p. For y = 1, 1 + j, and 1 + 2j, these loci are 
illustrated in Fig. 7. We shall designate such loci by 
L,(-7, a/2). They have the property that, for the given 
value of y and for -p on L,(-y, r/2), the peak value 
of I arg F(jw) 1 corresponding to (24) equals 7r/2. 

Similarly given y, we can compute the locus of -p 
for which the peak value of I arg F(jw) I equals 0 where 
0 _< r/2. More generally given y let L2(-y, 0) be the 
locus of - p for which the peak value of the phase function 
@)F(~) of F(jw) equals 0 where e 5 ?r/2 and F(s) is given 
by (24). The loci L2(--y, t9) were computed in several 
typical cases by using an analog computer and the results 
are shown in Figs. 8, 9, and 10. 

Fig. 7-The loci Lz( -7, ?r/2) for -y = -1, -1 +j, and -1 + 2.j. 

Iii ! i i I i i i i i -pl 
Fig. 8-The loci Lp( -1, IJ) for $ = r/4, r/3, and 7r/2. 
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’ ’ ’ ’ ‘i’ 

-I 

-12 

-j3 

Fig. g--The loci Lz( -1 + j, $) for $ = r/4, 7r/3, and 7r/2. 

Fig. lo--The loci L$( -1 + j2, $) for $ = r/4, r/3, and s/2. 

Fig. 11-The regions S( -1, r/4), U( -1, r/4), and V( -1, r/4). 
Note: V( -1, r/4) includes S( -1, r/4). 

Fig. 12-The regions T( -1 + j, -4.7 + j3.3, r/4), U( -1 -I- j, 
s/4), and V( -1 + j, */4). Note: V( -1 + j, r/4) includes 
T( -1 + j, -4.7 + j3.3, r/4). 
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We are now ready to define the regions that we seek. 
Let n be a positive integer no less than 2 and let y be 
given. U(-r, 0/n) is the largest closed region within 
L2(-y, 20/n) having the property that each of its points 
can tie reached by tracing in the positive direction on a 
P path that starts either at s = --y or s = -7. Similarly 
V( -y, 0/n) is the largest closed region within L,( -y, 20/n) 
having the property that each of its points can be reached 
by tracing in the negative direction on a P path that 
starts either at s = -y or s = -7. The regions U( -7, a/4) 
and V(-y, 7r/4) for y = 1 and y = 1 + j are shown 
in Figs. 11 and 12. 

Remembering that X(--r, e/n) and T(-y, -p, e/n) 
are the largest regions that can be covered by tracing 
on P paths in the appropriate directions from s = -y 
and s = -p, it is clear that X(--r, e/n) is a subregion 
of V(-y, e/n), whe?e y is real, and that T(-y, -p, e/n) 
is a subregion of either U( -7, e/n) or V( -y, 0/n), where 
y and p are now in general complex. For T( -y, -p, e/n), 
p is some point on L2( -7,20/n) that also lies on the bound- 
ary of either U( -7, e/n) or V(-y, e/n.) The subregion 
S( - 1, s/4) of V( - 1, r/4) is shown in Fig. 11 and the 
subregion T(-1 + j, -4.7 + j 3.3, 7r/4) of V(- 1 + j, 
7r/4) is shown in Fig. 12. 

The important thing about the regions U(-7, 0/n) 
and V( -y, e/n) is that all the properties that were 
developed for S( -y, 0/n) also hold for these regions, 
as we shall now show. Corresponding to Theorem 5 ,we 
have that if W(s) is rational with n poles and n zeros 
and all the poles and zeros lie in V( - y, e/n), then 
I arg W(jw) 1 _< e for all w. A similar comment holds 
for U( -y, e/n). (A special case of this is the property 
for U( -y, ?r/2n) and V( -7, 7r/2n) corresponding to 
Theorem 2.) 

To prove this fact we shall show that 1 arg [W(&J)]~ 1 
is bounded by 28 for all w. The demonstration will be 
for V( -y, e/n), the one for U( - y, e/n) being essentially 
the same. Let s = -v be any zero of W(s) and let s = - [ 
be any pole of W(s). Then [W(jw)]” is a product of terms 
each of which has the form 

= &J + 4 (6 + $ 
ha + Y> (6 + -7) I[ (ju + Y> (6 + 4 1 &J + ‘9 ($ + D ' 

(29) 
where v and .$ may be either real or complex. The phase 
funct,ion @.1(~) of the first bracketed factor on the right- 
hand side of (29) satisfies 

-as/n _< @‘,(u) I 0 (30) 

as we shall now show. By definition of 17(--y, e/n), a 
P path may be drawn from s = -y through s = -v and 
finally through some point s = - < on L,( - y, 20/n). (Here 
we assume without loss of generality that (Imy) (Im v) 2 0.) 
By the property of P paths a.nd by the definition of 

LA-Y, 2eln) 

-20/n I arg 
[ 

($J + .r) (G + r) 
(jw + YGJ + 7) 1 5 0 

for u > 0. We can generate the function in the first 
bracket in (29) by moving the zeros from -{ and -S 
to -V and --P. But this is a translation in the positive 
direction on a P path and therefore the phase function 
increases for each positive u. This establishes (30). 

Similarly the phase function @~~(a) of the second 
bracketed factor on the ‘right-hand side of (29) satisfies 
0 5 &(w) < 20/n for all w. Hence the phase function 
@1(~) + &(a) of (29) is bounded above and below by 
+20/n and, since there are n factors such as (29) in 
[W(jw)]‘, 1 arg [W(j,)]” 1 5 28 for all w, which is what 
we wished to prove. 

Having this result we may extend Theorems 3, 4, 6 
and 7, and Corollary 7 (a) to the larger regions U and 1’ 
by repeating their proofs after replacing S(-7, e/n) by 
either U( -y, e/n) or V( - y, e/n). The same may be 
said for T( -y, -p, e/n). This is the principal conclusion 
of this paper and it is subsumed by the following theorem: 

Theorem 8: Theorems ,% through 7 and Corollary 7 (a) 
still hold when S( - y, e/n) is replaced by either U( - y, e/n>, 
V-Y, e/n), or U-Y, -P, e/n>. 

V. LARGEST REGIONS 

In the previous sections we have defined regions which 
have the following property: If n poles and n zeros are 
placed within one of these regions, then the phase function 
of the resulting rational function is bounded in magnitude 
on the j, axis by some angle, say 0. The question arises 
as to whether we can define regions, say R,(B), which 
are largest in the sense that they are not proper subsets 
of other regions which also have the desired property. 
Although the possible variety of such regions would seem 
to be limitless, the authors have been able to find but 
one example of them, and that only for n = 2 and e = a/2. 
For further details about this result see Steiglitz and 
Zemanian.5 

VI. C PATHS 

Up to now we have placed poles and zeros in n-fold 
alternation only on P paths. This suggests the question 
as to whether any other paths can be defined with similar 
properties. In this section we shall develop such paths; 
they are related to the P paths but are not exactly the 
same. 

Consider a circle whose center is on the real axis and 
which lies partly in the left-half s plane and partly in 
the right-half s plane. We shall define a C path as that 
part of the circle which lies in the closed left-half s plane. 

5 K. Steiglita. and A. H. Zemanian,, “Sufficient conditions on pole 
and zero locations for rational posltlve-real functions,” Dept. of 
Elect. Engrg., New York University, N. Y., Tech. Rept. 400-34; 
August, 1961. 
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The negative direction on a C path always points toward 
the left. Fig. 13 illustrates a C path. 

Fig. 13-A C path. The arrowheads point in the negative direction. 
The center of the circle is at w = - a and its radius equals b. 

Corresponding to Lemma 2, we have 
Lemma 5: Let Q(s) = (s + CX)” + ,6” be a real quadratio 

having zeros in the left-half s plane (01, ,6 2 0). Also, let 
these zeros move in the negative direction on a C path that 
interseots the s = jw axis at s = =tjx (x > 0). Then the 
phase fun&ion @o(w) of Q(jw) decreases monotonically for 
every fixed o in the interval x < w < m and increases 
monotonioaily for every fixed u in the interval 0 < w < x. 

Proof: Letting da, be the increment of @.a at a fixed 
w as the zeros of Q(s) move on the C path, we have as 
in the proof of Lemma 2 that for w > 0 the sign of d%o 
is the same as the sign of 

(p’ - cY= - w”) dcr - 2c@ d/3. (31) 
Assuming that the circle which defines the C path has a 
center at u = -a and a radius equal to b and noting 
that p # 0 we may convert (31) into 

(b2 - a2 -w”)dol= (x2-~‘)dol. (32) 

Hence for w = x, d%,, = 0; for 0 < w -c x, d+* > 0; 
for w > x, da, < 0. QED. 

Let us define n-fold alternation of poles and zeros on 
a C path in precisely the same way as we did for P paths. 
We may now extend Lemma 3 to C paths as follows. 

Lemma 6: Let W(s) have kn poles and kn zeros which 
possess n-fold alternation on a C path that intersects the 
s = jw axis at &jx. Let (a,(w), a2(w), . . . , azk(w) denote 

the same phase contributions as they did in Lemma 3 and 
let tbrv(w) = arg W(jw). If zeros are the starting elements, 
then 

--nrlZ I - I @l(w) I I - I % b) I 

+ j %k(W) I i ai I 0 (0 < w < x), 

0 I h44 I I %b> I - I %!k(W) I 

i I %(w) I I n&/2 (x < w). 

If poles are the starting elements, then 

i l%(4! Inn/2 (0 < w < x), 

+a/2 I - 1 @l(W) I I - 1 @a,(w) / 

+ I +2,(w) I I %f4w) 5 0 (x < w). 

This lemma is proven in precisely the same way as 
was Lemma 3 except that the two intervals 0 < w < z 
and x < w are considered separately. 

Armed with Lemmas 5 and 6 we can now extend 
Theorem 3 as follows: 

Theorem 9: Let W(s) have m poles and m zeros all occurring 
in either S(-7, r/an), T(-7, -p, ?r/2n), U(-7, r/an), 
or V(-7, a/2n). Of these m poles and m zeros, let q poles 
and q zeros (0 I q I m) possess n-fold alternation on a 
C path that passes throu.gh s = &jx and let this alternation 
start with poles. Let the rest of the poles and zeros possess 
n-fold alternation on the same or another C path that passes 
through s = &jx where the alternation now starts with 
zeros. Then W(s) is positive-real. 

The proof of this theorem is almost identical to that 
of Theorem 3 and will not be given. 

Because the behavior of the phase function depends 
on the point w = x, Theorem 4 cannot be extended to 
C paths. We can however obtain extensions of Theorems 
6 and 7 by replacing the regions stated in Theorem 9 
by X(-r, e/n), V-r, -pj e/n!, UC-r, e/n>, and 
V(-7, e/n>. 
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