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ABSTRACT 

It is shown that, unless P=NP, local 

search algorithms for the Traveling 

Salesman Problem having polynomial time 

complexity per iteration will generate 

solutions arbitrarily far from the optimal. 

The [raveling Salesman Problem is also 

shown to be NP-Complete even if its 

instances are restricted to be realizable 

by a set of points on the Euclidean plane. 

1.Introduction 

The Traveling Salesman Problem (TSP) 

can be stated as follows : Given r cities 

and (r-1) r/2 nonnegative integers denoting 

the distances between all pairs of cities, 

we are reauired ~o find a tour, that is a 

closed path passing through each city 

exactly once, so that the total traversed 

distance is minimal. Despite the 

simplicity of its statement , the TSP is 

apparently a very hard problem and has 

attracted a large number of researchers. 

Although no efficient algorithm for its 

solution has been found (and no nontrivial 

lower bound of its complexity has been 

proved) a number of different lines of 

attack have been proposed A class of 
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heuristics known as Local Search Algorithms 

([Li],[LK],[RS],[SW]) have been 

particularly successful in generating Good 

solutions for large problems by a 

reasonable computational effort. A local 

search algorithm (to be more formally 

defined later) starts with an essentially 

random tour and, by searching a set o~ 

tours which are considered "neighbors,, of 

the former , either finds a neighbor with 

improved cost and uses it as a new starting 

point or, if this is not possible , 

terminates The solution generated by 

this technique is called a local optimum. 

Tours of minimum length are referred to as 

global optima. Local optima may or may not 

necessarily be global optima, depending on 

the particular neighborhood structure used 

by the algorithm. Local search algorithms 

generating only global optima are called 

exact. 

We will be particularly interested in 

t h e  complexity of the problem of searching 

the neighborhood of a tour in order either 

to find an improvement or show this tour to 

be a local ODtimum. By "complexity of 

local search" the above mentioned 

complexity is understood -and not the 

complexity of the whole algorithm ,which 

heavily depends on the number of iterations 

necessary. In particular we will examine 

the computational requirements of local 



search algorithms for the TSP, when certain 

restrictions are imposed on the quality of 

the obtained local optima . 

The notion of a Combinatorial 

Optimization Problem with a Numerical Input 

(COPNI) is introduced. This class , which 

appears to be a restriction of the Subset 

Problems discussed by [SWK] ,includes 

several well-known problems such as the TSP 

and instances of the problem of Job 

Scheduling with Deadlines (JSD). A 

particular COPNI is exhibited in which the 

minimal exact neighborhood although 

exponential in size , can be searched in 

linear time. This counterexgmple shows 

that the cardinality of the minimal exact 

neighborhood is not , as [WSB] suggest , a 

lower bound for the complexity of exact 

local search. 

In fact , if the exact local search 

problem were of provably exponential 

:omplexity ,this would be a rather 

remarkable result,since exact local search 

for the TSP is one of those tasks that are 

made very easy if non-deterministic 

computations are allowed. In the light of 

this observation we can think of the 

question , whether exact local search for 

the TSP can be done in a polynomial amount 

of time per iteration , as a part of the 

presently unsettled P=NP auestion. In fact 

it is shown that: ,unless P=NP, each 

iteration of an exact local search 

algorithm for the TSP requires more than a 

polvnomial number of steps. 

A stronger result is also shown along 

the same lines. It is proved that ~ if a 

local search algorithm requires only 

polynomial amount of time per iteration , 

the local optima thus obtained can be 

arbitrarily far from the optimum, unless, 

of course , P=NP. The above result 

suggests that a large class of efficient 

heuristics ([ Li ],[ LK ],[ RS ],[ SW ]) yield 

local optima of no guaranteed accuracy 

whatsoever. 

In Section 4 we report some further 

results concerning the complexity of the 

TSP. Two equally natural (and practical) 

versions of the TSP are shown to have 

essentially the same complexity. We also 

show that an important restriction of the 

TSP (the "Euclidean" fSP) is not much 

easier than %he general problem. 

2.Combinatorial Optimization Problems 

With Numerical In~.ut. 

The set of nonnnegatiwe integers is 
÷ ÷ 

denoted by Z . For net by m we shall 

denote the set [I,2,...,n}. 

Def: R Combinatorial Optimization 

Problem with N~Jmerical Input (COPNI) is a 
+ 

pair (n,F) , where neZ is the size of the 

problem and F, a subset of 2 , is the set 

of feasible soll,tions. We will require 

that there exists at least one feasible 

solution and that no feasible solution is 

properly contained in another. 

An instance of the COPNI (n,F) is a 
÷ 

function (numerical input) c : m-) Z . In 

order to solve an instance c of the COPNI 

(n,F) we are req,aired to find a feasible 

solution feF such that c (f) -j~fc~ (j) is 

minimal. 

Note that the size of a COPNI , as 

defined above , is not necessaril~ equal to 

the length of a string in (0,1) required 

to describe an instance of the problem 

Also note that the feasibility of a 

solution is not affected by the namerical 

input. On the other hand the 

non-containment i reauirement for the 

feasible solutions can be easily seen to be 

equivalent to the condition , that for each 

feF there exists an instance c for which f 

is uniquely optimal. 

_zxa_~!es. 

The TSP with r cities is a COPNI with 



r 
n = ( ) and with F being the set of all 

2 
possible tours represented as sets of r 

intercity links. 

The problem of Job Scheduling with 

Deadlines (JSD) [Ka] is a COPNI. Here we 

have a set n of jobs and for each job jen 

we have the deadline D and the execution 
J 

time T . A subset f of , is feasible if 

all jogs in ,-f can be executed on a single 

processor within their deadlines, and no 

subset of n properly containing ~-f enjoys 

this property. In the case of JSD the 

values of c can be thought of as rewards 

obtained for eKecutinq a job within its 

deadline, and our goal is to minimize the 

rewards lost. It should be emnhasized 

that, unlike the formulation in [Ka], the 

numbers fD } and [T } are not considered as 
J 3 

a numerical input here. 

The Steiner Tree Problem, the Max Flow 

Problem, the Minimal Spanninq Tree Problem 

and many others can be formulated as 

COPNI's. 

~i A neighbourhood structure for the 
F 

COPNI (n,F) is a function N:F-)2 . 

Informally, N assigns to each feasible 

solution f its neighbourhood N(f). We will 

also informally describe a local search 

algorithm for the COPNI (n,F) and the 

neiuh~ourhood structure N as a 

deterministic algorithm with input (to;C) , 

where f ~F and c is an instance of (n,F). 
Q 

The algorithm is described below in terms 

of the function IMPROVE (f,c) which, when 

invoked , returns some sen(f) such that 

c(s)<c(f), if such an s exists, and returns 

'no' otherwise~ 

f:=f ; 
0 

while IMPROVE (f,c).=,no, do 

f:= IMPROVE (f,c) ; 

return f 

The output of this algorithm is called 

a local optimQm wrt N for the instance c of 

(n,F) The oerformance of a local search 

aloorithm depends on the complexity of the 

functlon IMPROVE , the number of iterations 

(executions of the while loop) and the 

oualitv of the local optima. The 

neighbourhood structure affects all the 

above factors, in particular N is exact if 

all local optima wrt N are also qlobal 

optima. For example, if g(f) =F for all 

feF, ~ is trivially exact. 

The followin~ characterization has 

been adapted from [SWK]: 

Theorem I In a CUPNI (n,F) there 

exists a unique minimal exact neiqhborhood 

structure given by 

for some instance c ) 
~(f)= seF:s is uniquely optimal I.// 

with f second to oDtima~ 

~he exact nature of the set ~(s) for a 

tour s in the case of the TSP is not known. 

In fact it has been recently shown [Pa2] 

that, unless P=NP, no Concise, 

algorithmic-oriented characterization of 

this set exists. However [~SB] have shown 

that for an r city TSP ,~ consists of sets 

of cardinalitv at least ((r-2)/2) !. They 

continue by arguing that the exponential 

site of ~ implies that exact local search 

for the TSP must be inefficient. The 

following fact demonstrates that this 

argument is not generally valid: 

Fact: There exists a COPNI (n,F) and 

feF such that ~(f) is exponential in size 

but can be searched in O(n) time. 

Proof: Consider the JSD with n odd, 

D.= (n-l)/2 for i=1,2,...,n, T =(n-l) /2, 
I 

and T =I, j=2,3,...,n. 

The s~t of feasible solutions is 

F={f}U F' , where 

f={2,3 .... ,n} and 

F B consists of all subsets of m of 

cardinality (n+1)/2 containing I. 

Consider any seF'. We can define an 

instance c as follows 
s 

c [j)= if j ~=~ and. jeS 
s 1 otherwise. 



It can be easily verified that, for 

this instance, s is uniquely optimal (with 

cost (n-3) /2) with f second to optimal 

(cost (n-I)/2). Hence by Theorem I, s6~(f) 

and consequently ~ (f) =g'. The cardinalitv 

of ~(f) is approximately e~ual to 
- 1 / 2  n 

.Sn 2 . 

Yet for any instance c, ~(f) can be 

searched in linear time. To see this, let 

t be the set of jobs in {2,3,...n} having 

the (n-I)/2 largest costs. The optimum is 

either f or m-t, depending on whether or 

not 5c(J) <c(!) . Consequently in order to 
jet 

search ~ (f) we only need to find the 

(n-I)/2 jobs in {2, 3,...,hi having the 

largest cost, and compare the sum of their 

costs to c(I). But this can be done in 

O(n) time by using the median algorithm of 

[BFPRT].// 

~he idea behind this counterexample is 

that ehe minimal exact neighborhood is a 
° 

data indeDedent set, whereas data can be 

used very efficiently in order to 

facilitate its search. As we will see in 

the next sectiorl there is little hope that 

something similar can be done in the case 

of the TSP. 
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3. The C o m ~ l e x i t ~ _ ~ f _ E x g c t  and 

A~proximate Local Search. 

For the purpose of relating the 

complexity of local search to the P=NP 

question, we now show certain related 

languages to be NP-Complete. We assume the 

existence of a function e mapping graphs, 

digraphs, paths, ~SP tours and instances to 

strings in (0,1) A wide variety of 

"reasonable" encodings would suffice for 

our purposes. 

~fl Let V be the set of nodes of a 

graph (~, E~ (resp~ a digraph (V,E')) and 

let (v ,v ,~..[+~ ~ , be a permutation of V 

such that (v ,v ) is an edge (resp. a 

directed egde) for i=I,2,...n-I. If 
n I 

(v ,v ) is an edge (resp. directed edge) 

then (Vl''''Vn'Vl) is an undirected 

Hamiltonian circuit (HHC) (resp. directed 

Hamiltonian circuit (DHC)). Otherwise, if 
n I 

(v , v ) is not an edge (resp. directed 
I n 

edge) then (v ,...,v ) is an undirected 

Hamiltonian path (U~P) (resp. directed 

Hamil%onian path (DHP)). Note that, by the 

above definition, no part of a Hamiltonian 

circuit is a Hamiltonian path. 

In [Ka] the problems of determining 

whether a given graph (directed or 

undirected) has a Hamiltonian circuit are 

shown to be NP-Complete. We show that they 

remain NP-Complete even if a serious 

restriction is imposed on their domains. 

In particular one would expect that the 

search for a Hamiltonian circuit in a graph 

would be facilitated considerably, if we 

were given a Hamiltonian path . The next 

two Theorems suggest that this is not the 

case. 

The restricted directed Hamiltonian 

circuit problem is the recognition problem 

• o~ the following language: 

P is a DHP in G 
RDHC= { e(G) ;e(P) : } 

and G has a DHC 

Theorem_~ RDHC is NP-Complete. 



For the proof of the Theorem the 

following Lemma is needed: 

lemma Let the digraph H (shown in 

Fig. 1) De a subgraph of a digraph G, such 

that edges of G-H enter H only at v or v 
I 3 

and leave H at v or v only. Then, if G 
4 6 

has a DHC C, one of the paths 

(Vl,V3,v2,v5,vg,v6) or (v3,v6,Vs,V2,Vl,V) 

is a part of C. 

':he proof of the Lemma is an 

exhaustive case by case analysis and is 

omitted. 

Proof of Theorem 2 By reducing 

the DHC Problem to RDHC. Let G = (V,E) be an 

instance of the DHC Problem. We will 

construct a digraph G'=(V',E') with a DHP 

P, such that G, has a DHC iff G has a DHC. 

I 2 n 
we let V={v ,v ,...v } and V'= 

1 1 I 2 n 
[Vl,V2,...,V6,Vl,...,V6}. For each j<n we 

J'vJ2 .... V~} aS ConnECt the nodes [v I . 

[Vl,V2,...,v6] are connected in H, and we 

call th~ ~ resulting subgraph H . Moreover 

for each edge (vl,v3) 9. E we add the edge 

(v6, Vl) to E'. We also add the edges 

i i+I 
(v ,v 3 ),i=I,2,...n-1 to E'. 

Obviously G' has a DHP, namely P= 

1 1 I I I I 2 2 n n 

(v3,v6,v5,v2,vl, V ... V , 3 , V 6 ,  , V l , V 4 ) .  

Moreover if the original graph G has a DHC 

I 2 3 n I 
(w ,w ,w ,...,w ,w ) , then the resulting 

graph G' also has a DHC, 

1 1 1 1 1 1 2 n 1 

( " i " w 3 ' U 2 ' ' 5 ; U " " w 6 ' w l '  . . . .  W6'Wl )°  

namely 

Conversely, suppose that G' has a DHC 

i 
C. Suppose that for some i, C enters H at 

i i i i i i i 
v . P7 the Lemma, v 5 v I is a 3 (V3,V6,  ,V 2, ,V ) 

i * 1  
part of C. Since v is the only node in 

3 

i i 
G'-H which succeeds v , it follows that C 

i+1 i+I 
will enter H at v Hence the same 

3 
i+I 

argument can be applied to H 

n 
Inductively, we can assume that C enters H 

n n n n n n n 
at v . By the Lemma, (v3,v ,v5,v ,Vl,V ) 

3 6 ~ 

will be a part of C. But there is no node 

n n 
in G-H , which succeeds v . Conseg~lently C 

is not a DHC as supposed. 

From the above contradiction we 
1 

deduce, that for no i~n will c enter H at 
i 

and hence C is egual to 
v3' I 1 1 1 n 1 

(w 1,w3,w2,w5,...w6,w1 } for some DHC 

(w1'w~'''''w~ n'Wl)°f G. Consequently G has 

a DHC iff G' has a DHC, and the proof is 

completed. (The straight-forward 

verification of the facts that the problem 

is in NP and that the reduction is a 

polynomial-time one has been omitted).// 

Similarly we define the restricted 

undirected Hamiltonian circuit problem to 

be the recognition problem of the language 

RUHC ={e(G) ;e(P): P i:~ an UHD in G and G 

has an UHC. } 

Theorem 3 RUHC is NP-Comulete. 

Proof. By reducing the EDHC to it. 

The construction is identical to the one 

used in the PrOof of the NP-Completeness of 

the ordinary UHC problem ([Ka],[AHU]) It 

is an elementary observation that the 

construction preserves the existence of a 

Hamiltonian path.// 

An interesting side problem of the T5P 

is the following: Given an instance c and 

an edge (i,j), does (i,j) appear in some 

optimal tour? This problem is also 

NP-Complete . To show this, we define the 

language 

M={e (c) ;e(i, j) :the edge (i,j) does not 

appear in any optimal tour of the instance 

c of the /fSP}. 



Theorem u M is NP-Complete. 

~9~- By reducing the RUHC to it. Let 

(G;P) be an instance of the RUHC, where 

P=(Wl,W2,...,Wn) is an UHP. Let c be an 

instance of the TSP s~lch that c(w.,w.)=2 if 
x ] 

(w.,w.) is not an edge of G, and c(w ,w )=I 
z l i j 

otherwise. If (G,P) eRUHC, then G has an 

UHC and hence (Wl,Wn) (which, by definition 

of an UHP corresponds to a missing edge of 

G) will not appear in any optimal tour of 

c. Conversely, if (Wl,Wn) does not appear 

in any optima] tour of c, then the tour 

corresponding to P is suboptimal and hence 

G has an UHC. Conseg~lently (c,(i,j))eM iff 

(G,P)eRUHC.// 

We now define the following language 

f is a suboptimal 
= e(c);e(f): 

L0 tour for the instance c 

It can be argued that L adequately 
0 

captures the complexity per iteration of 

the exact local search problem for the TSP, 

since the recognition problem for L can be 
0 

.solved by one call of the function !MP~OVE 

(c,f) of any exact local search alqorithm. 

Hence the following result suqgests that 

exact local search for the TSP Drobably 

requires iterations of complexity more than 

polynomial: 

Theorem 5 L is NP-Complete. 
0 

Proof. By reducing R[IHC to it. Let 

(G=(9,E) ;P) be an instance of the RUHC 

problem. Let c be an instance of the TSP 

with IVI cities, such that c(v,u)=l if 

(v,u)eE and c(v,u)=2 otherwise. Let f be 

the tour corresponding to the path P. Then 

(G,P) eRUHC iff(c,f)eLO.// 
Let ~ be any positive real number, and 

c an instance of the COPNI (n,F),with 

optimal feasible solution s . A feasible 

solution feF is called e-approximate [SG] 

if (c(f)-c(s))/c(s) ~ e. 9therwise f is 

called c-suboptimal. In a similar way to 

L , the following language is defined for 
0 

e>0: 

f is an e-suboptimal 
L = e(c);e(f): 
e tour for the instance c 

Theorem 6. L is NP-Complete for all 

~>0. 

Proof: Let (G=(v,e) ,P) be an instance 

of the RUBC pro01em. Let c be the instance 

of the | Vl-city TSP with c(v,u)=1 if 

(v,u)eE and c(v,u)=2+ |{V{~ otherwise, f 

is again the tour corresponding to P. It 

can be easily seen that (G, P) eRUHC iff 

(c,f) eL . // 

Similarly to the exact case, the 

complexity of the recognition problem for 

L is a ~lower bound for the complexity per 

iteration of any local search algorithm for 

the TSP, the local optima of which are 

guaranteed to De ~-~pproximate (since one 

call of the function IMPROVE of any such 

alaorithm would solve the RUHC problem via 

the reduction outlined in the proof of 

Theorem 6). Hence Theorem 6 implies that, 

unless P=NP, all local search algorithms 

(such as the ones proposed by 

[Li],[LK ],[RS ],[SW]) whose iterations 

require only a polynomial amount of time, 

will yield local optima that can be 

arbitrarily far from the global optimum. 

It should be emphasized that Theorem" 6 

and its implications are valid when no 

additional restrictions are imposed on the 

instances of the TSP considered. For 

example, if a "natural,, constraint -the 

triangle inequality- holds among the 

intercitv distances, [~SL] have shown that 

l-approximate solutions can be obtained by 

algorithms (not necessarily iterative) of 

polynomial time complexity. 

We also note that the methCdology Use@ 

in the proofs of this Section appears to be 

a fairly strong tool for understanding the 

nature (and limitations) of local search. 

For example we can construct an instance c 

of the TSP, in which two disjoint tours s 

and t satisfy seN(t). This settles (for 

the directed case) a conjecture by [Li]. 



On the other hand by similar methods we can 

construct a family of pathological 

instances of the TSP, on which any local 

search algorithm should perform arbitrarily 

badly. These instances (defined on r 

cities) have (r/18) ! tours that are 

(r/3)-optimal (in the terminology of iLl]), 

and a global optimum which is arbitrarily 

better. For the non-symmetric case these 

parameters can be improved to (r/6) ! and r 

respectively. 

Q- ~h~ ~R~R!~i~ of the Euclidean TSP 

Although the motivation for the TSP 

can probably be traced back to the 

Euclidean case (the cities are points on 

the two-dimensional Euclidean spase with 

integer coordinates and the distances are 

the usual Euclidean metric) there is little 

known about the complexity of the Euclidean 

5SP. There is a qeneral feeling in t5e 

literature (eg FLK]) that the Euclidean TSP 

is considerably easier than the general 

case, either because the he~lristics seem to 

perform better or because special methods 

of attack are applicable. For example it 

is almost always easy in the Euclidean TSP 

to exhibit edges that are not contained in 

any optimal tour (namely the chords of the 

convex hull of the cities), whereas the 

same task s~ems to be considerably harder 

in the general case the same task seems to 

be considerably harder in the qeneral case 

(see for eKample Theorem 4). Nevertheless 

in this Section it is shown essentially 

that the Euclidean TSP cannot be "much" 

easier than the general problem. 

In fact we are dealing with two 

problems. The first, the tour-TSP, is the 

ordinary TSP. The other, the path-TSP, is 

the problem facing traveling salesmen who 

can start from any city and are not 

particularly interested in returning to the 

starting city of their tour. The path-TSP 

can be especially useful as a more precise 

model for some problems arising in 

applications, like the hole drilling 

problems F LK]. 

The following suggests that the 

computational requirements of these 

problems are closely related to each other: 

Theorem 7 The problems tour-TSP and 

path-TSP reduce to each other in linear 

tire. 

Proof: Starting with the path-U~P, 

create a new city with equal distances from 

all other cities. An optimal tour in the 

resulting TSP corresponds in a natural way 

cities. An optimal tour in the resulting 

TSP corresponds in a natural way to an 

optimal path in the oriqinal. 

For the opposite direction suppose 

that we have n cities c ,...,c and that k 
I n 

equals n times the largest distance between 

any two cities. Let d be the distance 

function (generalized to denote the length 

of paths and tours). We create a new copy 

c' of c , and modify d as follows: 
! I 

d' (c ,c.)=d(c ,c ) if i,j/1 

d ' I ] (c~,c!) +2 (cl,cj)=d k for all j 

d' (c~,c.)=d (cl,c~)+2k for all j 

d' (Cl,C~) =3k 

It is not hard to see that in th~ 

resulting instance all optimal paths must 

have c and c' as endpoints. Hence all 
I I 

such paths correspond to a tour in the 

original instance, and minimizinq paths in 

the resulting TSP is equivalent to 

minimizing tours in the original.// 

~t is tlot clear ~hough how the 

Euclidean cases of these problems relate to 

each other. Obviously the above reductions 

do not work. Of course one way to reduce 

the Euclidean cases to each other is to 

show that both are NP-Complete(Theorems 8 

and 9). 

We will now give a more precise 

definition of the Euclidean TSP. The 



cities can be given in terms of a list of 

pairs of integers denoting the coordinates 

with respect to some coordinate system. It 

is not clear what the distance matrix 

should be. If we take it to be the 

(infinite precision) real-valued Euclidean 

metric, it is a nontrivial task to show 

that the resulting plroblem is in NP, since 

there is no obvious UDDer bound for the 

precision required in order to compare the 

length of a tour or Path with a qiven 

integer. In what follows we will assume 

that the elements of the distance matrix 

are the integral Darts of this metric. Any 

desired precision can be thus obtained by 

increasing the scale accordingly. 

. . . . . . . . . . . .  Theorem 8: The Euclidean Dath-~SP is 

NP-Complete. 

The proof of this Theorem is a 

reduction of the exact cover problem [ ~a ] 

to the Euclidean path-TSP. The 

construction is essentially an elaboration 

on the one [Ised in [GJS ] for the proof of 

the NP- Completeness of the planar 

Ha~iltonian path problem for digraphs. 

Since the whole construction is rather 

complicated, it will not be detailed here 

(for the comDlete description of the proof 

see[Pall). By a similar construction we 

can show that the Euclidean version of the 

tour-~SP problem is also NP-Complete. 

[heorem 9: The Euclidean tour-TSP is 

NP-Co,Dlete . 

The same technique can be used in 

order to prove that another restriction of 

the TSP, the "rectilinear" (or "Manhattan") 

TSP is also NP-Complete. 

*Garey. and Johnson [Jo] have independently 
reacne~ the same conclu~lon. 
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