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ABSTRACT

It is shown that, unless P=¥P, local

search algorithms for the Traveling
Salesman Problem having polynomial time
complexity per iteration will generate

solutions arbitrarily far from the optimal.

3alesman Problem 1is also

NP-Complete

The 7Traveling
shown to be aven if its
instances are restricted to be realizable

by a set of points on the Euclidean plane.

1.Introduction

The Traveling Salesman DProblem {Z5P)

can be stated as follows : Given T cities
and (r-1Y r/2 nonnegative integers denoting
the distances between all pairs of cities,
we are reguired to find a tounr, that is a

passing through each city
so that the total traversed
Despite the
the TSP is

and has

closed path
exactly

distance is

once,
minimal.

simplicity of its statement ,

apparently a very hard problem

attracted a large number of researchers.

Although no efficient algorithm for its

splution has been found {and no nontrivial

lower bound of 1its complexity has been

proved) a number of different 1lines of

attack have been proposed . A c¢lass of

*This vwork was supportpd by W§SP Grant
GR-420u8 ’ the U.S .,rmg aeqearch
Office-Durham undexr Grant DAHCQ4-T75-G-0192,
and an IBM Fellowship.

heuristics knovn as Local Search Algorithms
(fLi],[LK],FRS],[SKY
particularly successful in qenerating

have Deen

good

solutions for larae problems hy a
reasonable computational offort. A2 1local
search algorithm (to be mors formally

defined later)
tour

starts with an essentially

random and, by s=searching a set of

tours which are considered ‘*neighbors" of
the former , either finds a neighbor with
improved cost and uses it as a new starting
this 1is not

point or, if possible ’

terminates . The sclution generated by

this technique is called a local optimum.
Touts of minimum length are referred to as
global optima. Local optima may or may not
necessarily be global optima, depending on
the particular neighborhood sStructure used
Local search

global

bv the algorithm. algorithms

generating only optira are called

exact.

We will be particularly interested in
the complexity of the problem of searching
the neighborhood of a tour in order aither
to find an improvement or show this tour to

aptimum, Ry

be a local "complexity of
local search” the above mentioned
complexity is understood =-and not the

complexity of the whole algorithm ,which

heavily depends on the number of iterations
Nnecessary. In particular we will examine

the computational reguirements of local



search algorithms for the TSP, when certain
restrictions are imposed on the quality of

the oktained local optima .

The notion of a Combinatorial
Optimization Problem with a Numerical Input
(COPNI) is introduced . This class , which
be a restriction of the Subset
{(sWK}

saveral well-known problems such as the TSP

appears to

Problems discussed by ,includes
and instances of the problem of Job
with Deadlines (JSD) . A
COPNI is exhibited in which the
although
size , can be searched in
This

cardinality of the minimal exact

Scheduling
particular
minimal exact neighborhood
exponential in
shows

linear time.

that the

counterexample

neighborhood is not , as [WSB] suggest , a
bound for the
local search.

lover complexity of exact

In fact , if the
problem

exact local search
were of

ythis

provably exponential

complexity would be a rather

remarkable result,since exact local search
for the TSP is one of those tasks that are
made non-deterministic
In the light of

think of the

very easy if

computations are allowed.
this observation we can
question , whether exact local search for
the TSP can be done in a polynomial amount

of time per iteration , as a part of the

presently unsettled P=NP gquestion. 1In fact
it is shown that ,unless P=NP, each
iteration of an exact local search

algorithm for the TSP requires more than a
polynomial number of steps.

A stronger result is also shown along
the same lines. It is proved that 3 if a

local search algorithm reqnires only a

polynomial amount of time per
the local thus
arbitrarily far from the

iteration ,
optima obtained can be
optimum,
P=NP. The

suggests that a large

unless,

of course . abovg result
efficient
((Lil,(LK],{RS],[SW])

optima of no quaranteed

class of
heuristics yield

local accuracy

what soever.

In Section 4 we report some further
results concerning the
TSP. Two

versions of the TSP are

complexity of the
equally natural (and practical)
shown to have

essentially the same complexity. #e also
show that an important restriction of the
TSP (the I'SP) is not

easier than the general problem.

"Buclidean" much

2.Combinatorial Optimization Problems

With Numerical Input.

The set of nonnnegative integers is
+ +

by 2 . For n€Z

denote the set {1,2,...,n}.

denoted by n we shall

Def: A Combinatorial

with Numericgl Input (COPNI) is a

Optimization

pair (n,P) , where n€Z 1is the size of the
n

problem and F, a subset of 2 , is the set

will

at least one feasible

of feasible solutions. Ve
that there

solution and that no feasible

require
exists
solution is
properly contained in another.

An instance of the COPNI (n,g) is a
function (numerical input) c : n-> 2 . In
order to solve an instance c of the COPNI
find a feasible

f€F such that c(f)= 3 ¢ is
1 (f) et (N

(n,F) vwe are reguired to
solution

miniral.

Note that the size of a COPNI , as
defined above , is not necessaril; equal to
the 1length of a string in (0,1) reguired
to describe an instance of the

Also that the

problem .
note feasibility of a
the numerical
hand the

. regquirement for the

solution is not affected by
input. on the other
non-containment
feasible solutions can be easily seen to be
equivalent to the condition , that for each
f€EF there exists an instance c for which £

is uniquely optimal.
Exarples.

The TSP with r cities is a COPNI with



r
n = { 5 ) and with F being the set of all

possible tours represented as sets of r

intercity links.

The problem of Job Scheduling
(JSD) [Ka] is a COPNI.
have a set n of jobs and for each job Jen
the deadline D

with
Deadlines Here we

we have and the execution

time T . A subset f of n is feasible if

L
all jobs in m-f can be executed on a single
processor within their deadlines, and no
subset of n properly containing m-f

this

enjoys
case of JSD the
values 0of ¢ can be thought of as

property. In +the
revards
obtained for executing a dob within its
deadline, and our goal is to minimize the
lost. It should be

that, unlike the formulation in

rewards emphasized

[Ka), the
numbers {D } and (T} are not considered as

. . )
a numerical input here.

The Steiner Tree Problem, the Max Flow
Problem, the Minimal Spanning Tree Problem
and rmrany

COPNI's.

others can be formulated as

Def: A neighbourhood structgte for the
COENI (n,F) is a function N:F->»2 .

Informally, N assigns to each feasible
solution £ its neighbourhood ¥(f). We will
also describe a local search
algorithm for the <COPNI (n,F) and the
structure N as a
(fO;C),
and ¢ is an instance of (n,F).

informally

neightourhood
deterministic algorithm with input
f ep
The algorithm is described below in
of the
invoked , returns

where
terms
function IMPROVE (f,c) which, when
SEN (£) that
c(s)<c(f), if such an s exists, and returns

some such

'no' otherwise.

IMPROVE (f,c)-~='no' do
f:= IMPROVE (f,c);
Letyrn f

The output of this algorithm is called
a local optimum wrt N for the instance ¢ of

(n,P) . The performance of a local search

algorithm depends on the complexity of the

function IMPROVE , the number of iterations

(executions of the while 1loop) and the
guality of t he local optima. The
neighbourhood structure affects all the

above factors. In particular N is exact if
all local

For example, if N(f) =P for all

optima wrt N are also glokal
optima.

fEF, K is trivially exact.

The following characterization has

been adapted from [ SWK ]:

In a CuPNI (n,F) there

exists a unigue minimal exact neighborhood

Theorem 1

structure given by
for some instance c
R(f)=) s€F:s is uniquely optimal e//
with f second to optima
The exact nature of the set N(s) for a
tour s in the case of the TSP is not known.
fPaz)

concise,

In fact it has been shown
that,
algorithmic-oriented
this
that for an r city TSP ,¥ consists of
of cardinality at least ((r-2)/2)!.

that the

recently
P=NP, no
characterization of

unless
set exists., However [ WSB] have shown
sets
They

continue by arquing exponential

size of 8 implies that exact local search
for the TSP must be inefficient. The
following fact demonstrates that this

arqument is not generally valid:

{n,?) and
that T (f) is exponential in size

Fact: There exists a COPNI
fEF =such
but can be searched in O(n) time.

Proof: <Consider the JSD with n odd,

l=(n—1)/2 for 1i=1,2,...,n, T1 ={n-1) /2,
and T =1,9=2,3,...,n.
The sgt of feasible solutions is
F={f}y F' , where
f=§{2,3,...,n} and
P! consists of all subsets of n of
cardinality (n+1)/2 containing 1.
Consider any s€F'. We can define an

as follows

n-3) /2 1f j=1
{6 )/ ]1 and jes
othervlse.

instance c

c ()=
s



It can be ecasilv verified that, for

this instance, s is uniquely optimal (with
{(n~3) /2) with f
(cost (n-1)/2).
and consequently X (f)=f'.
P

cost second to optimal
Hence by Theorem 1, s€% (f)
The cardinality
approximately equal to

Yet for anv 1instanca ¢, R(f) can be

searched in linear time. To see this, let
t be

the {n=1)/2 largest costs.

the set of Fobs in (Z,3,...n1n} having
‘The optimum is
aither f or wn-t, dapending on whether or

not gc(i)<c(1). Cansequently in order to
AR

saargh F{f} we only need to find the
(n=1y,2 Hobs in {2,3,...,n} having the
largest cost, and compare the sum of their

costs to c(1). But this can be done in

O(n} time by using the median algorithm of

{ BFPET1.//

The idea behind this counterexample i

s
that t+he minimal &xact neighborhood is a

data indepedent set, whereas data can be

used very ef ficiently in order to

&s we will se2 in
that

facilitate its search,
the next section thera is littla hope

similar c©an be done in the case

somet hing
aof the 757,

3. The_ Complexity of Exact and
Approximate local Search.

For the nbpurpose of relating the
complexity of local search to the P=KP
question, we now show Certain related

langquages to he NP-Complete. We assume the

axistence of a function 2 mapping graphs,
digraghs, paths, TﬁP tours and instances to
{0,1 . A

"reasonable" encodings

strings in wide variety of

wauld suffice for

QUL purposes.

Def: Let ¥ be the set of nodes of a
{(V,E*)) and

permutation of ¥

graph (V,E) {resp. a digqraph
12 n

lat  {v ,v ,...¥ )} be a
1147
such that (v ,v } iz an

edge {resp., a

di;ecged eagde) for 1=1,2,eeen-1, If
{(v .v) is an edge [(resp. directed edge)
then (v1,...vn,v1) is an undirected
Hamiltonian circuit (UHC) (resp. directed
Haﬁiltonian circuit (DHC)). Othervise, if

(v ,v ) is not1 an edga {resp. directed
n

edge} then (v ,...,v ) 1is an undirecteqd
Hamiltonian path (U4P) {(resp. directed
Hamiltonian path (DHP)}. Note that, by the

above definition, no part of a Ramiltonian

circuit is a Hamiltonian path.

In [Ka] the
whet her a

problems of determining

given graph {directed or

undirected) has a Hamiltonian circuit are

shown to be NP-Complete. We show that they

remain NP-Complate even if a serious

restriction is impesed on their domains.

In particular one would expect that the
search for a Hamiltonian circuit in a qraph
would be facilitated considerably, if we

were given a fHamiltonian path . The next
tvo Theorems suggest that this is not the

case.

The vrestricted directed Hamiltonian
circuit problem is the recognition
Tor the following language:

P is a DHP in G
RDEC={f e(G) ;e (P}

and 3 has a DHC

RDHC is NP-Complete.

probliem



For tne preoof of the Theorem the

following Lemma is nceded:

lemma

Fig. 1) ne a subqraph of a digraph G, such

Let the digraph H {shown in
that edges of G-H enter H only at v oaor v

Then, if G
has a DHC C, ane of the

and leave H at v or v_ only.
paths
V oV 4V ¥ 4V ¥

( _1' _{I 2' 5' u' 6)

QY (V L,V LV _,V Vv ,v )
) : 36" 5T 2 1
is a part of ¢

The proof of the Lemma is an
exhaustive case by case analysis and is

omitted.

Proof of Theorem_ 2 3y
the DHC Problem to RDHC.
instance of the DHC

reducing
Let G=(V,E) be an
Problem, We will
construct a digraph G'=(¥*',B') with a DHP
P, such that G' has a DHC iff G has a DHC.

1 2 n
We let V={fVv ,V ,...¥ ]} and yi=

( LI 1 2 n
V oV genesV 3V ,e0e,¥ }a
17z e ar

<

For each j<n we

1.3 1
{v1:v2r-<-rv6} as

[v1,v2,...,v6] are connected in H, and we

connect the nodes

— . 3
call the” resulting subgraph 8 . Moreover

i 3
for each edge {v ,v })2E ve add the edge
-i

(v;,v1) to E'. We also add the edges
i i+
(Vu-v3 Y,i=1,2,...n-1 to E'.
Obvicusly 6' has a DHP, namely P=
I S B | T 1 2 2 n n
L AR LA T PL AR A PTA ML
Moreover if the original graph G has a DHEC
1 2 3 n 1
(W ,8 ;¥ ,s0.,w ,¥ ), then the resulting
graph Gt alsec has a DEC, namely
LR N S N B n
("1r"3"'2'“51"ur'61“1u--- '“6'“1).

Conversely, sSuppose that G' has a DHC

i
C. Suppose that for some i, C enters H at

By the L ( i i i 1 1 i |
v . e Lemma V_ ,¥ ,¥Y v ,V v is a
3 y . 3P 6! 5' 2 _! )
i+l
part of C.

Since v3 is the only node in

i i
G'-H which succeeds vu, it follows that C

i+1 i+1
will enter H at v3 . Hence the same
X i+l
arqument c¢an he applied to H .

n
Inductively, we can assume that C enters H

n n n n n T n
: v
at va. By the Lemma, (v3,v&,v5,v2, 1,vu)

will be a part of C, But there i3 no node

n n
in G-¥ , which succeeds vu. consequently C

is not a DHC as supposed.

From the above contradiction we

1
deduce, that for no i<n will I enter H at

1 a
v . and hence C is eqaal to
1 1 1 1 n ¢ come DH
(w ,w3,u2,w5,...u WY or som C

(W o ¥ peees¥ ,w1)of G. Conseguently G has
z n

a DHC iff G' has a DHC, and +he

corpleted. (The

verification of the facts that the

proof 1is
straight-forward
problem
is in NP and that the <zxeduction is a

polynomial-time one has been omitted).//

similarly we define the rvestricted

undirected Hamiltonian circuit preblem to
he the racognition problem of tho langyuage
RURC =fe(G)ie(P): P is an UAP in G and G

has an UHC. }

RUAC is NPp-Completa.

the HEDHT to it.

Froof. By reducing
The construction is identical to *+he ons
used in the vreoof of the HpP-Completeness of
the ordinacy !THC problem {[Kal,fRHUD . Tt
is an elementary observation tha% the
construction preserves the existence of a

gariltonian path.//

En interesting side oroblem of ¢the TsD
iz the following:; Given an instance ¢ and
an edge (i,j}, does {(i,j} appear in some

optimal tour? This problem is also

Ne~Complete . 7o show this, we define the

lanquage

#={e [¢) ;e (1,9) s the adge (i,7) does not
appear in any optimal tour of the instance

c of the TS5P).



Theorem 4

M is Np-Complete.

Propf. By reducing the RUHC to it. Let
{(G;P) be an instance of the RUHC, where
P=[H1,w2,...,wn) is an UHP, Let ¢ be an
instance of the TSP such that c(w_,v )=2 if
(v ,v ) is not an edg= of G, and c(u?,u_)=1
{G,P) €ERUHC, then Glha% an
THC and hence (w1,un) (which, by definition

i 7,
othervise. Tf

of an JHP corresponds to a missing edge of
G} will not appear in any cptimal tour of
c. Conversely, if (w _,%w ) does not appear
in any optimal tour of c, then the tour
corresponding to P is suboptimal and hence
G has an UBC. Conseguently (c,(i,d))enm iff
(G,P)ERUHC.//

ke now define the Eollowing lanquage

f
L ={e(c);e(f):
0 tour for the instance ¢

is a suboptimal }

It can be arguned that 1 adeagunately
captures the complexity per igeration of
the exact local search problem for the T3P,
since the recognition problem for L can be
snlved by one call of the function IMPROVE
(c,f) of any exact local search alqorithm,
Hence the following result syggests that
exact local seavrch for the ISP nrobably
requires iterations of complexity more than

polynomial:
Theorem_ 5 LO is NP-Complete,

Froof. 8y reducing RNEC to it, Let
[G=(V,E) ;P) ba an instance of the &HUEC
orobliem. Let ¢ be an instance of the TSP
with V| «cities, such <that c(v,u)=1 if
(vou)€E and c(v,u)=2 otherwvwise. TLet f he
the tour corrasponding to the path P. Then
(G,P) €ERUHC iff(c,f)eLO.//

Let = be any positive real number, and
¢ an instance of the COBNI  (n,P),with
optimal feasible solution s . 1 feasible
solution fEF is called e-approximate [SG]
if (c(f)-c(s)}y/c(s) £ e, ODtherwise f is
called e-suboptimal. In a similar way to
+ the following language is defined far
e>0:

f 15 an e-syhoptimal
L =qe(e)self): . }
tour for the instance ¢

Theorem 6. 1L 1is NP-Complete for all
e

— T -

f: Let (G=(v,e),P}) be an instance
HC proolem., Let ¢ be the instance
of the {V|-city TSP with c{v,u)=1 if
(v,u)€E and c{v,u) =2+ |V|é1 otherwise., £
is again the tour corresponding to P. It
can be easily seen that (G,P)ERUHC iff

(c,f)EL . //f
e

Similarly to the exact case, the
complexity of the recognition problem for
L is a 'lower hound for the complexity per
i%eration of any local search algqorithm for
the TSP, the 1local optima of which are
quaranteed to be e-approximate (since one
call of the function IMPR0OVE of any such
algorithm would solve the RUHC problem via
the reduction outlined in the proof of
Theorem 6). Hence Theorem 6 imolies that,
unless P=NP, all 1local search algorithms
[such as the ones
[Li1,{LK}, (RS ], TS5H)) vhose
reauire only a nolynomiial amount of time,
will vyvield 1local optima that can be

provosed by

iterations

arbitrarily far from the global optimum,

It should be emphasized that Theorem 6
and its implications are valid when no
additional restrictions are imposed on the
instances of the TSP considered. For
example, if a “natural" constraint -the
triangle inequality- holids ameng the
intercity distances, [ RSL] have shown that
1-approximate solutions can be obtained by
algorithms (not necessarily iterative) of
polynomial time complexity.

We also note that the methodolongy used
in the proofs of this Section appears to be
a fairly strong tool for understanding the
nature (and limitations) of 1local search.
Por example we c¢an construct an instance ¢
of the TSP, in which two disjoint tours s
and t satisfy =s€%N(t)., This settles (for
the directed case) a conjecture by [Lil.



On the other hand by similar methods we can

construct a family of pathological

instances of the TSP, on which any local
scarch alqorithm should perform arbitrarily
hadly.

cities) have

instances
(r/18) !
(r/3)-optimal (in the terminology of [Li)),

These (defined on r

tours that are

and a global optimum which is arbitrarily
better. PFor the non-symmetric case these
parameters can be improved to (r/6)! and r
respectively.

4. The Complexity of the Euclidean

-

sP

(E]

Althouah the motivation for the TSP
traced back to the

Buclidean case (the cities are

can probably he
points on
Euclidean

the two-dimensional space with
f

integer coordinates and the distances are
the usual Euclidean metric) there is little
known about the complexity of the Euclidean
is5P. There 1is a general feeling in the
literature (eqg LK1 that the Enclidean T3P
is considerably easier than +the general
case, either because the henristics seem to
better

perform or because special methods

of attack are applicable. Por example it
is almost alvays easy in the Euclidean TSP
to exhibit edges that are not contained in
any optimal tour (namely the chords of the
convex hull of the

cities), whereas ‘the

same task seems to be considerably harder
in the general case the same task seems to
be considerably harder in the general case
(see for example Theorem #). Nevertheless
Section it

that the Buclidean TSP

easier than the general problem.

in this is shouwn esgsentially

cannot be "much"

In fact we are dealing with two
The first, the tour-TSP, is the

The other, the path-TSP, is

problems.
ordinary TSP.
the problem facing traveling salesmen who
can start from any city and are not
particularly interested in returning to the
path-TSpP

can be especially useful as a more precise

starting city of their tour. The

model for some problems arising in
applications, like the hole

problems [ LK].

drilling

The following suggests that the

compuotational requirements of these

problems are closely related to each other:

Theorem_ 7 The problems tour-TSP and

path-TSP reduce to each other in linear

tire.

Proof: Starting with the

path-=5pP,
create a new city with equal distances from
all other
resul*ing TSP corresponds in a natural way
cities, An

cities. 4n optimal tour in the
optimal tour in the resulting
TSP corresoonds in a natural way to an

optimal path in the original.

For the opposite direction suppose

and that k
n
equals n times the largest distance between

that we have n cities c ,...,cC

any two cities. Let d be the distance
length

We create a new copy

function (generalized to denote the

of paths and tours).

c; of c1, and modify 4 as follows:
d* (¢, ,c )y=d(c,,c ) if i,1i#1
d'(c?,cj)=d(c:,c;)+2k for all i
d'(c',c_)=d(c1,c.)*2k for all j
d'(c1,c3)=3k

It is not hard to sSee that in the

resulting instance all optimal paths must

have ¢ and c; as endpoints. Hence all

such paths correspond to a tour in the
original instance, and minimizing paths in
the resulting TSp is equivalent to

minimizing tours in the original.//

Tt is not <clear t+hough how the
Euclidean cases of these problems relate to
each other. 0Obviously the above reductions

do not work. Of course one way to reduce
the Euclidean cases to each
show that

and 9).

other is to
both are NP-Complete (Theorems 8

We will now give a more precise

definition of the Buclidean TSP. The



cities can be given in terms of a 1list of
pairs of integers denoting the coordinates
with respect to some coordinate system. It
is not clear what the distance matrix
should be, If we take it to be the
{infinite precision) real-valued Buclidean
metric, it is a nontrivial task to show
that the resulting problem is in NP, since
there is no obvious upper bhound for the
precision required in order to compare the
length of a tour or path with a given

integer. In what follows we will assume
that the

are the inteqral parts of this metric. Any

elements of the distance matrix
desired precision can be thus obtained by

increasing the scale accordingly.

Theorem 8: The EBuclidean path-7SP is

NP-Complete.

The proof of this Theorem is a
reduction of the exact cover problem [Ka)
path-TSP. The

construction is essentially an elahoration

to the Zuclidean

on the one used in [G6GJS] tfor the proof of
the NP-Completeness of the planar
Hariltonian path ©problem for digraphs.

Sirce the whole construction 1is vrather

complicated, it will not be detailed here
(for the complete description of the proof
see[ Pal1]D. By a similar construction vwe
can show that the Euclidean version of the

tour-ISP problem is also NP-Complete.

9: The Euclidean tour-75P is

The same technigue can be used in
ordex to prove that another restriction of
the TSP, the "rectilinear" (or "Manhattan")

TSP is also NP-Complete.

*Garey_ and Johnson [Jo] have independently
reached the same conclusion.
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