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The need to solve  these  equations  made  this 
procedure  very  difficult to implement. A 
large  number of solutions  exist,  indicating 
that  the divergence was not a unimodal 
function of the  vector of coefficients -,. The 
various  possible  solutions  were  found by 
initiating  the  iterations  with  different  values 
of X,  and  the  divergence  for  each  solution was 
calculated.  In  this  way  the  solution  produc- 
ing the  largest  divergence was obtained. 

5)  Minimunz expected  error l i w a r  dis- 
criminant function: For this  test (6)  and (7) 
given in Kullback  were  solved  iteratively, 
and  the  linear  discriminant  yielding  the 
minimum  expected  error was thereby  ob- 
tained. 

TABLE I 

Covariance  matrix  for  letter 4 

1.034  1.281  0.351  -0.293  0.098  0.301  0.141 
1.967 0.664  -0.219  0.259  0.556  0.276  2.094 

1.336 

7.1.58 1.192 
2.269 

2.726  1.116  0.678 
I .  367 

2.097 

5.72; 
0.146  0.201  -0,308 

2.941 
1.280  0.933  2,107 

1.949 
1.577 

2.197 
1.229 
6.606 

Mean  vector  for  letter .A 
~~~ ~~~ 

7.825  6.750  5.835  8.525  6.615  7.065  7.865  4.435 

Covariance  matrix  letter  for  B 

-_____ 

4.792  4.417  4.244  1.798  0.790  0.785 2.99.3 
5.074 

2.406 
4.636  2.798 
5.428 

1.824  0.639 
3.224 

0.644 
2.111 

2.  i99 
0.903 

5.287  3.006  1.326 
1.131 
1 .897 

2.943 

3.574 
2.648 

2.229 
4.008 

2.471 
2.405 

1.915 
1.106 

4.507  1.527 
3 977 

Mean  vector  for  letter  B 

5.760  5.715  5.705  4.150  6.225  6.960  6.750  3.910 

TABLE I1 
COMPARISOX OF RESULTS OF FEATURE ORDERIXG  PROCEDURES 

True divergence MariU-Green diveraence  order 

The  quantities pm and 45 are  such that 
a =5(q,) and 6 =5(qa) where 5 is the  stan- 
dardized  normal  distribution  function, and 
a and p are  errors of the first and  second 
kind,  respectively. To obtain  the  minimum 
total  expected  error,  the  linear  discriminant 
which  minimizes f i  for any fixed a was found 
for  various  values of a. The one  producing 
the  minimum  total  error  rate was then  the 
desired  optimum  linear  discriminant.  The 
feature  selection was again  performed  by 
ordering the  magnitude of the  respective 
coefficients. I t  should  be  noted that  the fea- 
ture  ordering  resulting  from  this  procedure 
was identical to  that  obtained  from  Proce- 
dure 3. This was due  to  the  fact  that  the lin- 
ear  discriminant  obtained  in  each  case  was 
very  nearly  the  same. 
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Feature 
ordering A e Avg.  Divergence ’ ~~~~~~g A 4 Avg. Divergence 

~~ 

Error 
CI 

Error 

1 4  9 . 8  

3 . 6  
5 . 3  

2.7 
2 .3  
1 .6  
0.9 
1.9 

15 .3  
14.8 
7.5 
4.2 
4.1 
4.4 
2.6 
1.7 

12.5 
10.0 
5 .5  

3.2 
3.4 

3 .0  
1 . 7  
1.8 

6 .5  
11.9 

23.6 
19.0 

26.0 
29.8 

9 .8  

3 . 6  
5 . 3  

2 .9  
1 . 8  

15.3 
14.8 7.5 

/ . I  
5 . 9  

12.5 
10.0 
5 .5  
5 . 3  
3 . 8  

1 . 1  

1 . 8  

3 .0  

11.9 
6 .5  

19.0 
19.9 
25.2 
29.8 
33.1 
36.1 

2 i 4  
3 124 
4  1234 
5  12345 
6 123467 
i 1234567 
8 12345678 

0 .9  
1.6  

1.9  

4 . 4  
2.6 
1 .7  

33.1 
36.1 

I Results  ior  both  minimum  expected  error  and 
approximation  to  maximum  divergence 

linear  discriminant  functions i 
Maximum  divergence  linear 

discriminant  order 

Feature Error  Error 
ordering A % B 4vg. Divergence Ez::‘, A c/c Divergence B Avg. 

1  11.4  31.5  21.4  3.9 
12 
127 

6.3  20.4  13.3  8.6 

1247 
6.3  18.1  12.2  9.8 

12467 
2 .9  7.7  5.3 19.9 
1.8 5.9  3.8 25.2 

124567 2.0 4.2 3.1 28.6 
1245678 2 .0  2.7  2.3 31.6 
12H5678  1.9 1 .7  1 . 8  36.1 

1 
14 
124 
1245 
12345 
123457 
1234567 
12345678 

11.4 

3 .6  
5.3 

3.7 
2.3 
1.9 
0.9 
1.9 

31.5 
14.8 

6 .0  
7.5 

4.1 
3.0 
2.6 
1.7 

21.8 
10.0 
5 .5  

11.9 
3.9 

21.8 
19.0 

26.0 
28.0 
33.1 
36.1 

4 

6 
5 

7 
8 

5.3 

2.4 
3 .2  

1.7 
1 . 8  

Calir. 
2 i\~owwithGeneral Research Corp., Santa  Barbara 

maximum  divergence = (0.77. -0.43. -0.02, 0.25, -0.552, -0.21. 
Linear 0.31, 0.038) 

approximation  to  maximum  divergence = (0.675, -0.471.  -0.154. 0.508, -0.177, 

minimum  error = (0.709. -0.490. -0.115, 0.459.  -0.135, 
discriminants -0.035.  0.081, -0.012) 

-0.054, 0.099.  0.025) 

3) Approximation to  ntuximunt divergence 
l i n e a r  discriminatzt function: For this  test  the 
covariance  matrices  given in Table I were 
averaged  and (2) and (3) solved.  These  equa- 
tions  are  shown  in  Kullbackz  to  determine 
the linear  discriminant  maximizing  the 
divergence  when the covariance  matrices are 

far  the  simplest to implement,  since i t  re- 
quires  only  the  averaging of the  covariance 
matrices  and two relatively  simple  matrix 
multiplications.  h-evertheless,  quite  reason- 
able  results  were  obtained. 

4) Maximum diaergence linea? discrinti- 
nant function: For this  test no averaging 
was performed on the  covariance  matrices. 
Equations (4) and (5) which are derived in 
Kullback  were  solved  iteratively  and  the 
features  ordered  as to  the  magnitude of their 
respective coefficients. 

Zly - XZzy = 6 (4) 
where 

On Power Spectrum 
Identification Methods 

In  a  recent  paper  by  Tretter  and  Steig- 
litz,[’l a  method  for  identifying  power  spec- 
tral  density  functions was presented.  The 
main  problem  discussed  in that paper  was 
how to  achieve  parameter  identification 
when the  spectral  density  functions  contain 
zeros. -4 search  technique was suggested to  
carry  out  the  solution.  The  purpose of this 
correspondence is to point  out  that  the  same 
problem  has  also  been  studied  in a recent 
paper  by  the  author.[?]  However,  the  results 
are completely  different. I t  is felt  that a 
comparison of the  two  results,  along  with  the 
classical  results by  might be of 

equal. 
J = 6’2716 
y = 2-16 (3) 

where Z is the  average  covariance  matrix, 6 
is the difference in the means of the  two 
classes,  and y is the vector of coefficients of 
the  linear  discriminant.  This  procedure is by 
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some  interest  to  the  readers. For the con- 
venience of discussion, the  author's  results 
will be  briefly introduced using the  same 
notations as in Tretter  and  Steiglitz. 

The  discrete  random process x which has 
a spectral  density  function 

where 

and a. = bo = 1, can  be  generated  by  the 
system 

5 6,x(n) = p2 2 &a(.) (1) 

xhere ~ ( n )  is a white  random process of 

correlate  both sides of (1) 
unity  constant  power  spectrum. Yow auto- 

n-0 7%-0 

K-L. 
= fit 1 aia<+t, 0 5 k 5 K 

i = O  

= 0, k >  K (2) 

where R,,(k) is the  autocorrelation  function 
of x .  Equation (2) implies that  for k >IC 

K 
biR,(K + j - i) 0, 

i-0 

j = 0, 1, . - * , L. (3) 

Take  the first L equations of (3) for k 
=K+ 1, and  replacing R,(z3 by  the  mean 
logged productsf,, the solutions  for 6 ,  can  be 
easily written as 

b = - F'f ( 4) 

where b is  column  vector [ 6;; i = 1, * * . L , 
F is  the  matrix { f ! l - j + ~ ~ ;  i ,  j = 1, . - ,' L\ , 
and f is the column  vector { f i + ~ ;  

i = l ,  2 , .  . . , L.}. Kow pass the signal T 
through  the filter D ( z )  =x."=, b,,z-inwhich 
the b ,  are  known;  the  output signal y is 
a moving-average-scheme  time  series the 
spectrum of which is an all-zero function. 
Using (2) and  the  method  by Wold,[31 the 
solutions  for a,  are identified  from the 
relat i~nship[~l  

K fl (1 - 2fiz-1) = a&- (5) 
K 

i =1  i - 0  

where zif is a root of N ( z )  and  is  given b>- one 
of the  two 1-alues  (one is the inverse of the 
other) of 

L+dC 
2 -  4 

Y being a root of 
K 

R,,(K - i ) F i  = 0 
i -0 

in which R, , (k ) ,  the  autocorrelation  function 
of y ,  is defined by the left-hand  side of (2). 
Finally  the  solution  for B 2  is 

*=O 

I t  is interesting to see that  when the 
order of .V(z) is zero, (4) and (7) become 

identical to  the all-pole spectrum  esti- 
rnate~.llI-[~l  However,  the  above  results are 
equally  applicable to  non-Gaussian  signals. 

A\ few comments on all the  methods  are 
in  order: 

1) The  author's  method shows that  i t  is 
possible t o  obtain  parameter  estimates  ana- 
lytically and less complex.  Hence computa- 
tional  approach  appears  undesirable  and 
unnecessary. 

2) The condition that  the  roots of :Y(z) 
be situated inside the  unit circle is required 
by  Tretter  and Steiglitz's  method but  not  by 
the  author's  method. Xn appropriate  value 
(greater  than  one or less than one) can  be 
chosen  from (6)  for  each Z L ~  on  prior  ground. 
Therefore,  the  method is more  general. 

3) Since  the  residual  function R given by  
Tretter  and Steiglitz is a highly  nonlinear 
function of the  parameters a, and b,, the 
surface of R is usualll- Inultirnodal. There- 
fore, it is quite difficult to  see that  the proce- 
dure of first  minimizing R with  respect to a, 
and then calculating b,  would always lead to  
the  true  minimum  value of R. It  appears 
that  the initial  conditions cf b, in the  search 
procedure  would, in general, affect the re- 
sults. Unless convergence of the proposed 
computational  solution  can  be  guaranteed, 
a higher-dimensional (K+Lj multimodal 
search  would  be necessarl- to  minimize R. 
This, of course, \vi11 be  quite a difficult  com- 
putational  job. 

4) I t  is noted that a similar  nonlinear 
minimization  problem  also arose in a method 
proposed by  ii~hittle.[sl  His  method calls for 
the  minimization of a function 

C&,(k) = min (8) 

where Ck is the coefficient of S in the  Laurent 
expansion of the  function 

Clearly, C k  is a nonlinear  function of a, and 
b,:. Note  that  the  roots of n ( z )  also  have  to 
be less than  unity in  magnitudes  for (9) to  be 
a convergent series.  IVhen the order of X@) 
becomes  zero, (8 )  yields  the  same all-pole 
results  given  by (4). 
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Authors' Reply' 
.Although our method is more  complex 

computationally,  the  resulting  parameters 
are  optimum in the maximum  likelihood 
sense  for  Gaussian  signals.  Therefore, under 

I hianuscript received  October 18,  1967. 

relatively  weak  conditions  on the  spectral 
density,  these  estimates  are  consistent, 
aqmptotically unbiased, and  asymptoti- 
cally  minimum  variance. It  has  been pointed 
out  by iVhittle,[51 p. 213, that  the  variances 
of the coefficients of X(z) estimated  accord- 
ing to  the maximum  likelihood or equiva- 
lently  minimum  residual  criterion  can  be 
significantly  smaller than  that of the coef- 
ficients estimated using  Wold's method. 
Hsia  and  Landgrebe  have  provided  no mea- 
sure of the precision of their  estimates. 

iVith  respect to  Comment 2 of Hsia it 
should  be  observed that  the reciprocals of 
the  roots of L'f(z) must  be roots of S(2-l). 

Consequently  there is no loss of generality 
in choosing  those  roots  lying  inside the  unit 
circle  for S ( z ) .  

iVe agree that minimizing a nonlinear 
function of several  viariables is not  easy  and 
that care  must be taken  to insure  finding an  
absolute  rather  than a local minimum.  This 
\vas not  found  to  be a major problem in 
simulations. The required  computations 
were  relatively  easily  performed  by an IBM 
7091  computer. 

ii-ith  respect to Comment 4 of Hsia  it 
should  be  observed that  Whittle's  criterion 
is equivalent  to  the  minimum  residual cri- 
terion. If a finite  record of a discrete  stochas- 
tic  process x ( R )  with  spectral  density @=(z) 
is passed through a filter D(z ) / ;V( z )  resulting 
in  the  output y ( k ) ,  the  average  square  value 
of y ( k )  is 

where 

X ( z )  is  the x transform of the finite sample 
of r ( k ) ,  and where  end effects have  been 
neglected. 
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Spectral  Density of the Output 
of Aperiodic Samplers 

The purpose of this  correspondence  is to  
present a simple  method of evaluating  the 
spectral  density of the  output of an  aperiodic 
sampler or gate  with  stationary  random 
inputs. I t  is assumed that  the  sampling 
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