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METEOR: A Constraint-Based FIR Filter Design 
Program 

Kenneth Steiglitz, Fellow, IEEE, Thomas W .  Parks, Fellow, IEEE, and James F. Kaiser, Fellow, IEEE 

Abstract-The usual way of designing a filter is to specify a 
filter length and a nominal response, and then to find a filter of 
that length which best approximates that response. In this pa- 
per we propose a different approach: specify the filter only in 
terms of upper and lower limits on the response, find the short- 
est filter length which allows these constraints to be met, and 
then find a filter of that order which is farthest from the upper 
and lower constraint boundaries in a minimax sense. 

Previous papers have described methods for using an ex- 
change algorithm for finding a feasible linear-phase FIR filter 
of a given length if one exists, given upper and lower bounds 
on its magnitude response. The resulting filters touch the con- 
straint boundaries at many points, however, and are not good 
final designs because they do not make best use of the degrees 
of freedom in the coefficients. We use the simplex algorithm for 
linear programming to find a best linear-phase FIR filter of 
minimum length, as well as to find the minimum feasible length 
itself. The simplex algorithm, while much slower than ex- 
change algorithms, also allows us to incorporate more general 
kinds of constraints, such as concavity constraints (which can 
be used to achieve very flat magnitude characteristics). 

We give examples that illustrate how the proposed and the 
usual approaches differ, and how the new approach can be used 
to design filters with flat passbands, filters which meet point 
constraints, minimum phase filters, and bandpass filters with 
controlled transition band behavior. 

I. INTRODUCTION 
HE FIR linear-phase filter design problem begins with T the formulation of specifications arising from the ap- 

plication at hand. Typical specifications include the de- 
sired stop-band attenuation, passband deviation, location 
of zeros of transmission, etc. Two methods for designing 
a filter to meet these specifications include the approxi- 
mation approach and the limit approach. In the approxi- 
mation approach, the length of the filter and a desired fre- 
quency response are specified. The filter coefficients are 
determined to minimize the maximum weighted error be- 
tween the desired and actual responses over the frequency 
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bands of interest. In the limit approach, a set of upper and 
lower limits are specified for the frequency response. The 
necessary number and values of filter coefficients for 
which the frequency response remains within the pre- 
scribed limits are then determined. The limit approach was 
used in the earliest work on analog filter design more than 
50 years ago. Cauer [ l ]  designed analog filters to meet 
prescribed, limit type tolerance schemes using elliptic 
functions. It is possible to use the approximation ap- 
proach to meet limit constraints and to use the limit ap- 
proach described in this paper to solve approximation 
problems. 

In 1970, Herrmann published an article describing the 
equations which must be solved to obtain a filter with the 
maximum possible number of equal ripples [2] (later 
called extra-ripple [3] or maximal-ripple [4] filters). This 
maximal ripple design is neither an approximation ap- 
proach nor a limit approach. Rather, it is a hybrid ap- 
proach where the filter length and ripple size (equivalent 
to limits on the frequency response) are specified and the 
bandedges are determined by the algorithm. Schussler, in 
1970, presented the work he and Herrmann had been 
doing on the design of maximal-ripple filters at the Arden 
House Workshop [5]. Hofstetter developed an efficient al- 
gorithm for solving the equations proposed by Herrmann 
and Schussler and presented papers with Oppenheim and 
Siege1 at the 1971 Princeton Conference [6] and the 1971 
Allerton House Conference [7] describing the algorithm 
and relating it to the Remes exchange algorithm. 

Several papers on the Chebyshev approximation ap- 
proach to filter design appeared at about the same time. 
Helms, in 197 1 [8], described techniques, including lin- 
ear programming, to solve the Chebyshev approximation 
problem for filter design. Parks and McClellan used 
the Remes exchange algorithm [9], [lo] to solve the 
Chebyshev approximation problem. 

Hersey et a l . ,  described, at about the same time, an 
interactive method for designing filters with upper and 
lower constraints on the magnitude of the frequency re- 
sponse [ 111. The limit approach was also used by Mc- 
Callig and Leon in 1978 [ 121 and by Grenez in 1983 [13]. 

When a low-pass filter is designed using the Chebyshev 
approximation approach, the five interrelated parameters 
are the filter length N ,  the passband edge Fp, the stopband 
edge F,, the passband error S,, and the stopband error 6,. 
Relations among these parameters have been determined 
numerically for the Chebyshev approximation problem 
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and design formulas have been published [ 141, [ 151. With 
the help of these design formulas it is possible to fix any 
four of these parameters and optimize the remaining pa- 
rameter. Since these design formulas are not exact, sev- 
eral iterations of the design process are usually necessary. 
For example, when the bandedges and deviations are 
given, an estimate of the necessary filter length can be 
calculated using the design formulas. Usually the filter 
with this estimated length will not be exactly the mini- 
mum length required to meet the specifications and the 
filter will be designed again with a slightly different length 
until the minimum-length filter is obtained. 

The use of transition bands will give good low-pass de- 
signs but may cause problems for multiband bandpass fil- 
ters [ 161. The frequency response is not controlled in the 
transition band and may make large, unexpected, excur- 
sions which make the design useless. The design formulas 
can be used to modify the stopband specifications to elim- 
inate the unwanted excursions in most cases, but the 
choice of stopband edges and appropriate error weighting 
functions is more of an art than a science. The limit ap- 
proach offers a way to avoid unwanted excursions in mul- 
tiband filter design. Upper and lower limits are imposed 
on the response for all frequencies. The limits imposed 
on the bands which otherwise would be unrestricted tran- 
sition bands eliminate the possibility of large peaks in the 
magnitude of the frequency response, but do not impose 
any particular shhpe on the response in these bands. 

In this paper we describe a very flexible design program 
which combines most of the useful characteristics of the 
approximation approach and the limit approach to FIR fil- 
ter design. We use the simplex algorithm for linear pro- 
gramming to find the linear-phase filter of minimum length 
which meets prescribed limits on the frequency response 
and then maximize the distance from the constraints. For 
a fixed length filter, the bandedges can be adjusted to 
maximize or minimize the width of a frequency band while 
still meeting prescribed limits on the frequency response. 
The bands can consist of just one frequency so that the 
location of the zeros can be fixed in the stopband. Addi- 
tional constraints, such as concavity of the response to 
give flat magnitude characteristics, can be imposed in ap- 
propriate frequency bands. First, we describe the algo- 
rithm and the Pascal program and then we give examples 
to show how this new approach can be used in a variety 
of situations. 

11. THE ALGORITHM 

There are four different types of linear-phase filters. For 
both even and odd symmetry of the impulse response, we 
obtain linear phase with either even or odd number of coef- 
ficients. In Rabiner and Gold [17] it is shown that the 
frequency response for each of the four types of linear- 
phase filters has the form 
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where the real-valued amplitude function A(Q)  is a 
weighted sum of trigonometric functions, where N is the 
length of the filter and L = 0 or L = 1 ,  depending on the 
filter symmetry. 

For convenience, in the following discussion we as- 
sume that the filter model is the following sum of cosines, 
corresponding to an odd-length, even symmetric impulse 
response, although any linear combination of known 
functions can be used: 

U -  1)/2 

i = O  
A@,) = c uj cos (&I,). 

A@,)  is the real-valued frequency response of the filter at 
frequency Q,, and the frequency points at which specifi- 
cations are made, Q,, k = 1, 2 ,  3 ,  * * , need not be 
equally spaced. 

An upper limit constraint at Qk has the form 

We introduce a parameter y which represents the distance 
between the frequency response and the upper bound, so 
that some of the constraints look like 

A(Q,) + 4’ I U(Q2,). 

Since we are maximizing y ,  we call those constraints 
which have y in them optimized constraints, and those 
that do not, hugged constraints. Similarly, lower bounds 
on the frequency response result in constraints of the form 

or 

depending on whether the constraint is hugged or opti- 
mized. 

Putting constraints on the second derivative of the fre- 
quency response has been shown to be an effective way 
to obtain filters that are very flat [15]. The second deriv- 
ative is a linear function of the coefficients, namely, for 
the case 1 filters considered here 

m - 1  

A ” @ , )  = - I = )  c i2ai cos (iQ2,) 

so that concavity can be written as linear inequalities of 
the form 

A”(Q2,) I 0 

for a concave downward function, or 

A”(Q2,) L 0 

for a concave upward function. 

the linear programming problem 
When all the constraints are written down, we obtain 

(PRIMAL) max y 
subject to 

CTu + hy 5 b 
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where the matrix C is determined from the sampled trig- 
onometric functions, the vector a is made up of the coef- 
ficients a;, the vector b contains the bounds, and the vec- 
tor h has a 1 wherever a constraint is optimized, and a 0 
wherever it is hugged. The variables a and y are urcon- 
strained in sign. We will call this the PRIMAL problem. 
The dual of this linear program is in standard form, the 
most convenient for numerical solution: 

(DUAL) min b?r 

subject to 

Cx = 0,  hTx = 1,  andx  L 0. 

We solve DUAL using the standard two-phase simplex 
algorithm [ 181. Phase I searches for a feasible solution to 
DUAL, starting from an artificial basis, and phase I1 
searches for an optimal solution. 

It is a fundamental fact of linear programming theory 
that the cost function of the DUAL always satisfies b‘x 
1 y, the cost function of the PRIMAL, with equality if 
and only if x and y are both optimal in their respective 
programs. Therefore, if the DUAL cost b Tx ever falls be- 
low zero during pivoting, the optimal PRIMAL cost must 
be negative. This means that the original filter approxi- 
mation problem is infeasible, and we stop the simplex al- 
gorithm whenever this condition is obtained. Application 
of the simplex algorithm to the DUAL problem therefore 
terminates in one of the following conditions: 

a) Negative cost reached, implying that the original 
design problem is feasible; 

b) Optimality is reached in DUAL with nonnegative 
cost, in which case the original design problem has 
a feasible solution; 

c) DUAL is unbounded, which implies that PRIMAL 
(and the original design problem) is infeasible; 

d) DUAL is infeasible, which implies that PRIMAL 
(and the original design problem) is either infeasible 
or unbounded. 

A comment is in order as to why the variable y is intro- 
duced in those situations when we are interested only in  
whether there is a feasible solution to lower and upper 
bound constraints. Computational experience has shown 
that with a trivial cost function in the primal, the simplex 
method applied to the dual sometimes cycles in  realistic 
filter-design problems, because of degeneracy. A nontriv- 
ial cost function seems to provide enough direction to the 
simplex algorithm to avoid such stagnation. Rather than 
take special precautions to avoid cycling, we chose al- 
ways to maximize the distance y from the response to the 
constraint boundaries. (As we saw above, it is not always 
necessary to complete the optimization when the original 
problem is infeasible.) This has the additional advantage 
of being useful for the final design when the length is 
known, and also does not interfere with the resolution of 

ties based on size of the pivot elements, which is impor- 
tant for numerical stability (see [19]). 

A special case arises unavoidably, however, when there 
are no constraints designated as optimized. In that case, 
h = 0 and DUAL is always infeasible. However, the con- 
straint matrix of DUAL in this case is not of full rank, 
having a zero row, and phase I ends with an artificial basis 
element remaining in the basis. The redundant row is dis- 
regarded in phase 11, and the optimization finds a solution 
to the original problem (if any exist) with zero cost, cor- 
responding to a response that is allowed to touch any of 
the constraint boundaries. Thus, the algorithm functions 
in a useful way, even if a zero row is present in the DUAL 
constraint matrix. 

The optimal value of the dual variable x has a well- 
known and interesting interpretation. Suppose the con- 
straint values b are changed a small amount to b + db. 
This changes the cost function in the dual a small amount, 
but will not in general change the optimal solution x to 
the dual. The new value of the optimal cost function be- 
comes y = b Tx + db  Tx. Thus, x is the partial derivative 
of the optimal value of y with respect to the constraint 
values b. Simplex finds an optimal value for x that has at 
most m + 1 positive entries, and, by complementary 
slackness. each of these corresponds to an extremum of 
the distance between the frequency response and con- 
straints (a “ripple”) in  the case of an upper or lower 
bound, or to a point where the second derivative is zero 
in the case of a concavity constraint. 

The simplex algorithm is used in the following three 
modes, depending on what design task is desired: 

a) Given m ,  < m2, find the minimum-length rn be- 
tween them such that the original design problem is 
feasible (that is, such that DUAL has a nonnegative 
optimal solution), and optimize y for that minimum 
length; 

b) Solve the original optimization problem for fixed 
length mo; 

c) Given a particular right (left) bandedge and a set of 
constraints in which it occurs, find the largest 
(smallest) value for that bandedge for which the 
original design problem is feasible, and optimize y 
for that bandedge value. (The optimum value of y 
will in general be positive because the bandedge 
value is rounded to the nearest gridpoint.) 

What is the best search strategy to use in finding the 
minimum length in a)? We might expect, because the cost 
of testing feasibility increases with m ,  that the strategy 
with least expected cost (assuming uniformly distributed 
answers) probes to the left of the midpoint between the 
current left and right boundaries. However, computation 
of the optimal strategies for probe-cost functions that grow 
as a low-order polynominal in m shows that binary search 
is surprisingly near optimal. More work on this problem 
is in progress [20], but binary search appears adequate for 
this application. Mode b) allows us to do things like find 
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the best stopband rejection, while keeping passband rip- 
ple within limits. Mode c) allows us to do things like ex- 
tend the end of a stopband as far as possible, while keep- 
ing the other constraints fixed. Binary search is also used 
in c). 

111. THE PROGRAM 
The algorithm described above was implemented in 

Pascal, and the current version is available from the au- 
thors.’ The authors’ intent is that the program be read and 
modified by users, rather than used as a static package, 
and Pascal seems well suited to this purpose: it is widely 
available, cleanly designed, allows careful structuring, 
and hopefully, good readability. 

As might be expected, the critical parts of the program 
involve the treatment of tests which theoretically deter- 
mine whether quantities are positive, negative, or zero. 
These tests determine when each of the various termina- 
tion conditions is reached, and roundoff error requires us 
to decide on how small a positive number is considered 
zero, how small a negative number is considered nega- 
tive, and so on. Experience has shown that a single pa- 
rameter eps can be used for these tests at several different 
places in the program, and that eps can be fixed at lo-’ 
for the range of problems used as examples in this paper. 

The only cases observed so far where serious accumu- 
lation of roundoff error occurs is when a wide band of 
frequencies is unconstrained, and the frequency response 
is allowed to grow very large in those bands, say as large 
as lo6. The problem is manifested by the cost in phase I 
reaching relatively large negative numbers before detect- 
ing optimality, even though the cost in phase I is theoret- 
ically nonnegative. Of course, these designs are imprac- 
tical, and the accuracy problem irrelevant, but the program 
continues to function in these cases. 

Trading off space for running time is a serious issue in 
the program design. At one extreme, we can precompute 
and store the tableau entries, which avoids recomputa- 
tion, but uses a great deal of storage. At the other ex- 
treme, we can generate the tableau entries on the fly, using 
the least space, but the most time. As a compromise be- 
tween the two, we can precompute and store tables of the 
trigonometric functions used for the tableau entries. We 
chose the first alternative because it appears that execu- 
tion time is a more serious limitation than storage for the 
kinds of design problems likely to be solved. If storage is 
a serious problem, references to the tableau entries must 
be replaced by procedure calls that compute the required 
values. 

IV. EXAMPLES 
We present a series of eight examples illustrating var- 

ious features of the algorithm. Two separate programs are 

‘Pascal and C versions of source code are available to anonymous ftp at 
princeton.edu in the directoryipub as meteor.p, form.p, mete0r.c. and 
form. c. 

used to design a filter. The program FORM is an inter- 
active program which requests information from the user 
and creates an input file for METEOR which solves the 
linear programming problem. The desired frequency re- 
sponse is specified by two kinds of specifications: limit 
and concavity. We call these “limit specifications” and 
‘‘concavity specifications. ” 

Limit Specz$cations: Each limit specification consists 
of the following information: 

Information Form 

Upper or lower? 
Left bandedge, right bandedge 
Bound at left edge, bound at right edge 
Hugged or not hugged? 
Arithmetic or geometric interpolation? 

“+ ”  or “-” 

IF,. F21, real 
[ B , ,  B J ,  real 
“h” or “n” 
&*a’’ or “‘9” 

An upper bound on the frequency repsonse is indicated 
by a “+,” and a lower by a “ - . ”  The left and right 
bandedges, F ,  and F2, are expressed in units of cycles/ 
sampling interval, so that the Nyquist frequency corre- 
sponds to 0.5. The frequency response is constrained by 
the value B I  at the left bandedge, and by B, at the right 
bandedge; the values in between are interpolated by the 
program either arithmetically (linearly) (‘ ‘a”), or geo- 
metrically (‘ ‘g’ ’), (linearly in decibels). Finally, if a limit 
specification is “hugged,” it is not included in the opti- 
mization criterion of the final linear program, and is in- 
cluded if it is “not hugged.” Thus, the final design is 
pushed away as much as possible from those limit speci- 
fications that are not hugged, but may be arbitrarily close 
to the hugged limit specifications. 

Concavity Spec@cations: Each concavity specification 
is determined by the following information: 

Information Form 

Concave up or down 
Left bandedge, right bandedge 

“+” or “-” 

[ F , ,  F z ] ,  real 

The frequency response is constrained to be concave up 
or down in the indicated band. 

Mode: The design program has three modes, “mini- 
mum-length,’’ “optimize,” and “push.” In the “mini- 
mum-length’’ mode, the minimum length that satisfies the 
given constraints is found. The user specifies either even 
or odd length and either even or odd symmetry of the im- 
pulse response. 

In the “optimize” mode, the response is pushed away 
from the nonhugged constraints for the fixed length spec- 
ified by the user. If the design is not realizable at all for 
this fixed length, the program reports infeasibility. 

In the “push” mode, a set of bandedges are pushed as 
far as possible while still respecting the constraints for the 
fixed length specified by the user. The set is pushed either 
to the left or the right. 

In the following examples we first display the specifi- 
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cation file in the format produced by the program FORM, 
then graph the resulting frequency response. 

Example I :  Low-Pass, Minimum-Length Filter: Here 
we use four limit specifications, which are displayed as 
follows by FORM: 

0 2 -  

# Type Sense edgel edge2 boundl bound2 hugged? interp 

1 limit + 0.000 0.200 1.100 1.100 n U 

2 limit - 0.000 0.200 0.900 0.900 n U 

3 limit + 0.250 0.500 0.100 0.100 n U 

4 limit - 0.250 0.500 -0.100 -0.100 n U 

FINDING MINIMUM LENGTH 
ODD LENGTHS from 7 to 2 1 
COSINE MODEL (even symmetric coefficients) 
201 grid points 

The lower and upper limits N I  and N2 (7 and 21 in this 
case) for the filter length are estimated using formulas de- 
veloped in [14] and [15]. Since we are specifying limits 
for the real-valued amplitude function which may be neg- 
ative we must specify a negative lower limit in the stop 
band. Fig. 1 shows the resulting amplitude response; the 
minimum length satisfying the specifications is 17. Note 
in Fig. 1 that since the constraints are not hugged the opti- 
mized response is strictly within the limits. The resulting 
equiripple response is equivalent to that obtained with the 
Parks-McClellan algorithm. In Fig. 1 we have shown the 
amplitude response to clearly display the negative as well 
as the positive limits. For the remaining examples we will 
display the magnitude of the frequency response. 

Example 2: Flat Passband, Low-Pass, Minimum-Length 
Filter: Suppose we want a low-pass filter with the same 
bandedges as in example 1, but we want the passband to 
be flat. One simple way to do this is to add a concavity 
specification that forces the frequency response to be con- 
cave down ("-") in the passband. We can also relax the 
upper limit specification in the passband to be hugged, 
and change the upper limit to 1.0, so that the frequency 
response can decrease monotonically in the passband from 
a value of 1. The new specifications are shown below. 

# Type Sense edgel edge2 boundl bound2 hugged? interp 

1 limit + 0.000 0.200 1.000 1.000 h U 

2 limit - 0.000 0.200 0.900 0.900 n U 

3 limit + 0.250 0.500 0.100 0.100 n U 

4 limit - 0.250 0.500 -0.100 -0.100 n U 

5 concave - 0.000 0.200 

FINDING MINIMUM LENGTH 
ODD LENGTHS from 2 1 to 3 1 
COSINE MODEL (even symmetric coefficients) 
201 grid points 

The resulting frequency response, shown in Fig. 2, has 
a zero frequency gain of exactly 1 because the upper limit 
in the passband is hugged. The stopband has the same 
upper and lower limits as example 1 .  The price we pay 
for the flat passband is an increase in filter length from N 
= 17 for example 1, to N = 29 for this example. 

1.2 1 

0.8 - 

8 0.6 - 

- 
0.4- 

0.2 1 

O ! 
-0.2 

0 0.05 0.1 

\ -I 

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

frequency 

Fig. 1 .  Frequency response for example I ,  a length-17 low-pass filter. 

1.2, 1 

i 

frequency 

Fig. 2. Length-29 filter with monotonically decreasing passband response. 

Example 3: Flat Passband, Minimum-Phase Filter: If a 
minimum-phase filter is desired with the same magnitude 
performance as the linear-phase filter in Example 2, the 
factorization approach of Herrmann and Schiissler [21] 
can be used beginning with the length-43 filter which re- 
sulted from the following specifications: 

# Type Sense edgel edge2 boundl bound2 hugged? interp 

1 limit + O.Oo0 0.200 1.000 1.000 h a 
2 limit - 0.000 0.200 0.810 0.810 n a 
3 limit + 0.250 0.500 0.010 0.010 n a 
4 limit - 0.250 0.500 0.000 0.000 h U 

5 concave - 0.000 0.200 

FINDING MINIMUM LENGTH 
ODD LENGTHS from 37 to 55 
COSINE MODEL (even symmetric coefficients) 
201 grid points 

The lower limit of 0.81 in the passband and the upper 
limit of 0.01 in the stopband are used in anticipation of 
the square root involved in the minimum-phase design, 
while the lower limit of 0.0 in the stopband guarantees a 
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1 2  I non-negative response. Half of the 42 roots of the 
length-43 filter, 10 roots inside the unit circle and 1 each 
of the 11 double roots on the unit circle, are retained to 
give the length-22 minimum-phase filter with response 
shown in Fig. 3. This minimum-phase filter, length-22 is 
slightly shorter than the linear-phase, length-29, filter of 
example 2 which meets the same magnitude specifica- 
tions. 

Example 4: Point Constraints with a Flat Passband Fil- 
ter: If there are specific frequencies in the stopband where 
zeros are desired to null out interference, the following 
specifications which require zeros at frequencies of 0.3 
and 0.4 would be appropriate. 

# Type Sense edgel edge2 boundl bound2 

1 limit + 0.000 0.200 1.000 1.000 
2 limit - 0.000 0.200 0.900 0.900 
3 limit + 0.250 0.500 0.100 0.100 

5 concave - 0.000 0.200 
6 limit + 0.300 0.300 0.000 0.000 

8 limit + 0.400 0.400 0.000 0.000 

4 limit - 0.250 0.500 -0.100 -0.100 

I limit - 0.300 0.300 0.000 0.000 

9 limit - 0.400 0.400 0.000 0.000 

FINDING MINIMUM LENGTH 
ODD LENGTHS from 2 1 to 3 1 
COSINE MODEL (even symmetric coefficients) 
201 grid points 

hugged? interp 

h U 

n U 

n U 

n U 

n U 

n U 

n a 
n a 

In this case there was no increase in length over the 
length of 29 in example 2, required to meet these addi- 
tional point constraints; the zeros of the response were 
simply shifted as shown in Fig. 4. Generally, however an 
increase in length would be required to meet these addi- 
tional constraints. 

Example 5: Partial-Band Differentiator, Pushing the 
Stopband: Suppose next we want a linearly increasing 
magnitude response, followed by rejection at higher fre- 
quencies. We know we want a linearly increasing re- 
sponse up to 0.25 cycles/sample, and we want as wide a 
stopband as possible with a length of 16. We do this by 
specifying the differentiating band by an upper constraint 
linearly interpolated from 0.01 to 0.26 that is optimized 
(pushed away from), and a lower constraint from 0.0 to 
0.25 that is huqged. The left bandedges of the upper and 
lower stopband constraints are then pushed left in the 
mode “push.” 

#’ Type Sense edgel edge2 boundl bound2 hugged? interp 

1 limit + 0.000 0.250 0.010 0.260 n U 

2 limit - 0.000 0.250 0.000 0.250 h U 

3 limit + 0.400 0.500 0.0100 0.0100 n a 
4 limit - 0.400 0.500 -0.0100 -0.0100 n a 

PUSHING 2 BANDEDGES LEFT, fixed length = 16, bands: 3 4 
SINE MODEL (odd symmetric coefficients) 
201 grid points 

The resulting bandedge is 0.3555, and Fig. 5 shows the 
frequency response. 

Note that the bandedges in the stopband have been 
pushed to lower frequencies as far as possible until the 

1-, 

08- 

06- 

0.4 - 

0.2 - 

1 

‘0  005 0 1  0.15 0 2  025 0.3 0.35 0 4  045 05  

frequency 

Fig. 4. Length-29 filter with point constraints 

frequency 

5. Frequency response for example 5, a length-16 low-pass differen- 
tiator with a minimum-width transition band. 

constraints are hugged. The specifications of any one 
bandedge for any type of filter, low-pass, bandpass, etc., 
can be pushed in this manner. 
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__ 

I907 

1.2, 

frequencv 

Fig. 6.  Length-25 bandpass filter with a transition-band excursion 

Example 6: Bandpass Filter: This example shows how 
to find the minimum-length linear-phase filter which meets 
the frequency specifications listed below and has well-be- 
haved transition bands. 

# Type Sense edge1 edge2 bound1 bound2 hugged’? interp 

1 limit + 0.000 0.080 0.100 0.100 n U 

2 limit - 0.000 0.080 -0.100 -0.100 ti U 

3 limit + 0.250 0.370 1.100 1.100 ti (I 

4 limit - 0.250 0.370 ,900 ,900 ti U 

5 limit + 0.400 0.500 0.100 0.100 n U 

6 limit - 0.400 0.500 -0.100 -0.100 n U 

FINDING MINIMUM LENGTH 
ODD LENGTHS from 21 to 29 
COSINE MODEL (even symmetric coefficients) 
201 grid points 

The initial design using METEOR, maximizing the dis- 
tance from all the constraints, produces a filter of length 
25, the shortest length that meets these specifications, and 
a deviation of 0.097846. 

The frequency response for this design is shown in Fig. 
6, and is essentially the same as that produced by the 
Parks-McClellan program [4]. On the scale of Fig. 6, 
there appears to be a problem in the transition band, but 
in the bands where the Chebyshev error was minimized, 
the response looks good. 

To eliminate the transition band excursion, new limits 
were introduced which constrained the response in the first 
transition band to lie between - 1.1 and + 1.1. The new 
algorithm found that the filter length must be increased to 
27 in order to meet these new, stricter, limits. The re- 
sponse of this length-27 filter is shown in Fig. 7. As in 
Fig. 6 ,  the distance from all the original constraints is 
maximized, but the response is allowed to touch the new 
constraints. 

Another way to eliminate the transition band peak is to 
fix the length at 27 and push the upper edge of the lower 
stopband to the right, maximizing the width of the first 
stopband, thus reducing the width of the first transition 
band and eliminating the transition band peak. The band- 
edge found is 0.1667 cycles/sample, and corresponds to 

, 

‘ 0  005 0 1  015 0 2  0 2 5  0 3  035 0 4  045 0 5  

frequency 

Fig. 7. Length-27 bandpass filter with transition limits. 
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frequency 

Fig. 8. Length-27 bandpass filter with minimum-width transition band. 

a deviation of 0.099998. The resulting frequency re- 
sponse is shown in Fig. 8. 

V .  TIMING COMPARISON WITH THE PARKS-MCCLELLAN 
PROGRAM 

The Parks-McClellan program runs much faster than 
METEOR, as we would expect given METEOR’S greater 
generality, and the fact that METEOR uses the simplex 
algorithm instead of the Remes exchange algorithm. 
However, the running time of METEOR on present-day 
computers is not prohibitive even for reasonably large 
problems. To illustrate this, we give some timing com- 
parisons on a SPARCstation 1 +  (Model 4/65) using an 
f 77 compiler at optimization level 03, and a Pascal com- 
piler at optimization level 2. 

The examples run were simple fixed-length lowpass fil- 
ters of length L ,  with L = 2‘, i = 4, * - a , 8; passband 
[0, 0.11; and stopband [x, 0.51, where x = 0.1 * (1 + 
2(4- ’ ) ) .  Thus the filters were of length-16 with stopband 
[0.2, 0.51; length-32 with stopband [O. 15, 0.51; etc. The 
left edge of the stopband was moved left as the filter was 
made longer to keep the deviation from specifications 
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TABLE I 
TIMING COMPARISON 

SPARCstation 1 + Model 4165 
Parks-McClellan Meteor Meteor (convex passband) 

Length Deviation CPU seconds Deviation CPU seconds Deviation CPU seconds 

16 0.0283516 0.1 0.02835 I5 0.2 0.0397526 0.2 

64 0.0213816 0.5 0.02 138 15 3.8 0.0509093 4.3 
32 0.0235960 0. I 0.0235959 0.7 0.0467533 0.7 

128 0.0185210 2.0 0.01 85210 32.7 0.0550728 31.6 
256 0.0186837 3.9 0.0186838 184.6 0.0589392 207.0 

- 

roughly constant over the examples. The number of grid 
points was kept comparable in the programs by choosing 
grid density 10 in the Parks-McClellan program, and 
using 10 * ( L / 2 )  + 1 grid points in METEOR. The upper 
and lower bounds in the passband were 1.5 and 0.5; and 
0.5 and -0.5 in the stopband. Table I shows the optimal 
deviations from 1 in the passband (or 0 in the stopband) 
found by each program, as well as the user CPU times. 

The deviations of the two programs check to six sig- 
nificant figures. The Parks-McClellan program is clearly 
much faster, by a factor increasing with filter length, to a 
factor of 16 for the length-128 problem, and 47 for the 
length-256 problem. However, the CPU time of about 3 
min on a modem workstation for a length-256 filter would 
hardly be prohibitive in most situations. Of course, when 
the minimum length is sought, with no prior estimate, bi- 
nary search on the length will result in as many as 8 = 
log (256) instances of optimizations. 

Also shown are the deviations and running times for the 
same problems, using METEOR, but with concave-down 
passbands in [0, 0. I]. The passband was specified by a 
single-point upper bound at the left-edge, a single-point 
lower bound at the right edge, and a concavity constraint 
in the entire band. The upper and lower bounds are re- 
dundant within the passband, and this strategy reduces the 
number of columns generated by METEOR. The running 
times are roughly the same as those for the traditional de- 
sign, and the results illustrate the price paid in increased 
deviation by constraining the passband to be concave 
down. 

VI. CONCLUSION 
A new approach to filter design, using the simplex 

method of linear programming, was proposed which is 
very general and can incorporate a wide variety of con- 
straints on the frequency response of the filter. Several 
examples were presented to illustrate the wide range of 
applications of this approach to linear-phase filter design. 
We are presently working on extensions of this approach 
to the design of filters with constraints on group delay 
and/or phase as well as magnitude. 
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